
Learning Fine-Grained Spatial Models for Dynamic
Sports Play Prediction

Yisong Yue∗†1, Patrick Lucey†, Peter Carr†, Alina Bialkowski‡†1, Iain Matthews†
∗California Institute of Technology

yyue@caltech.edu
†Disney Research

{patrick.lucey,peter.carr,iainm}@disneyresearch.com
‡Queensland University of Technology

a.bialkowski@connect.qut.edu.au

Abstract—We consider the problem of learning predictive
models for in-game sports play prediction. Focusing on basketball,
we develop models for anticipating near-future events given the
current game state. We employ a latent factor modeling approach,
which leads to a compact data representation that enables efficient
prediction given raw spatiotemporal tracking data. We validate
our approach using tracking data from the 2012-2013 NBA
season, and show that our model can make accurate in-game
predictions. We provide a detailed inspection of our learned
factors, and show that our model is interpretable and corresponds
to known intuitions of basketball gameplay.

I. INTRODUCTION

Under what circumstances is a ball handler likely to take
a shot or pass to a teammate? What defensive formations best
deter a player’s preferred actions? Such questions are of central
importance in the study of decision making in team sports, or
“sports analytics”. In particular, we are interested in developing
interpretable predictive models that can efficiently predict (or
forecast) the outcomes of various game situations.

A grand challenge in predictive modeling is to capture
the dynamics of adversarial gameplay in order to predict a
complete sequence of events of how a game situation may
unfold.2 Within this challenge, one important first step is to
predict the immediate future, i.e., the very next event. For
example, we might be interested in predicting the probability
that the ball handler will take a shot within the next second
– in a sense, this prediction task corresponds to the “one-step
lookahead” version of the general task of predicting complete
sequences of gameplay. We consider developing models to
predict near-term events (e.g., shots and passes) using fine-
grained spatiotemporal tracking data, which has become a
rapidly growing data source across many sports domains [5].

Developing predictive models using spatiotemporal data is
challenging due to the lack of readily available semantically
rich representations for encoding the game state. Although
one could manually craft such a representation, it would be
much more insightful to automatically infer one from data. For
example, the propensity of the ball handler to take a shot likely
depends on his/her position on the court, as well as that of the
defenders. Similarly, the likelihood of passing to a teammate

1This work was done while Yue and Bialkowski were at Disney Research.
2This challenge, or simpler variants of it, arises in many application domains

such as Go [1], and is also of fundamental theoretical interest [2], [3], [4].

Fig. 1. Depicting probabilities that the ball handler (Duncan) will pass to
his teammates (blue lines) or shoot (black line). Thicker lines indicates the
higher probability. These predictions can be computed in real-time.3

likely depends on aspects such as the teammate’s location
and the opposition’s coverage of the passing lane. Accurately
modeling such in-game events requires a representation that
can characterize the spatially and temporally varying behavior
of the ball handler, the teammates, and the defenders.

In this paper, we take a discriminative learning approach
to automatically train models to predict near-term game events
given current game conditions. Building upon and combining
discriminative learning techniques (such as Conditional Ran-
dom Fields [6]) along with techniques for spatial regularization
and non-negative matrix factorization [7], [8], we show how to
leverage basic high-level domain knowledge of sports game-
play to train accurate predictive models while automatically
inferring an interpretable feature representation. Our model
learns and incorporates representations for several aspects of
team gameplay, such as spatially varying shooting and passing
tendencies in the presence of opposition, and how the duration
of possessing the ball influences these tendencies.

An example of our near-term predictions for professional
basketball is shown in Figure 1. This snapshot depicts the in-
game predictions of the likelihood that the ball handler (Dun-
can) will pass to each teammate, as well as the probability that
he will shoot the ball (thicker lines indicate higher likelihood).
A good model should be able to make accurate predictions
that vary smoothly (or sometimes sharply) depending on the
locations of the ball handler, his teammates, and the opponents.

We validate our approach using spatiotemporal tracking
data recorded from over 600 games of the 2012-2013 NBA



season. We verify that our model can learn to accurately predict
near-term game events. We also analyze our learned factors,
and show that they are interpretable and correspond to known
intuitions of basketball gameplay. Due to the efficiency of
our approach, we can make predictions in real-time, allowing
for an interactive inspection of how shooting and passing
probabilities change under varying game states.3

II. RELATED WORK

Leveraging spatiotemporal data in sports analytics has
become increasingly popular in recent years due to the deploy-
ment of commercial tracking systems [9], [10], [11]. Compared
to more typical settings for analyzing spatiatemporal data such
crowd and surveillance domains [12], [13], analyzing behav-
iors in team sports is typically more complex as it is adversarial
compared to cooperative, and is contingent on the interaction
between and within groups compared to individuals.

Due to these challenges, most previous work in sports
analytics have focused on relatively small datasets [14], [15],
[16], did not build predictive models [17], [8], [18], used
coarse aggregate statistics that do not model specific in-game
scenarios [19], did not focus on adversarial team environ-
ments [20], do not model spatial information [21], [22], or
require extensive manual annotation [5]. In contrast, we are
interested in making in-game predictions of near-term events
over a large selection of adversarial in-game scenarios.

A particularly illuminating paper by Miller et al. [8]
showed how to incorporate spatial priors and non-negative
matrix factorization to build a generative latent factor model in
order to summarize basketball shot selection. They showed that
their learned factors correspond to an interpretable represen-
tation that summarizes shot selection charts of NBA players.
Indeed, non-negative matrix factorization techniques have been
shown to yield interpretable data representations in a wide
range of applications, including learning parts of objects [23],
molecular pattern discovery [24], and overlapping community
detection [25]. We will also build upon this technique in
developing our approach.

Our approach also bears affinity to Bayesian techniques for
spatial regularization such as Gaussian processes [26], [27],
and their extensions [8]. In fact, our spatial regularization
approach can be viewed as a frequentist analog to theirs.

From a dynamics perspective, our approach can be thought
of as a one-step lookahead filtering method, whereby we
estimate the probability of observing the next in-game event
given the current game state. Recent work by Fewell et al.
[16] estimated a transition graph of passes between players;
however, their model was estimated at a rather coarse level
of granularity and on a relatively small dataset, and did not
take into account spatial properties such as the location of the
players. As mentioned above, it the larger challenge would be
to model entire sequences of gameplay.

The topics of greatest relevance to sports analysts are
developing metrics to quantify the quality of a possession [28]
or defensive prowess [18], and suggesting more optimal game-
play strategies using analytical approaches [22]. Our approach
can be naturally integrated with such methods.

3See: http://projects.yisongyue.com/bballpredict

III. PREDICTING GAME EVENTS

We consider the problem of predicting future game event
y given the current game state x. We develop our approach
using basketball as the motivating application, although our
approach can be applied to other group activities as well as
modeling richer event classes within basketball. We assume
the following information is provided in every game state x:

• The identity b and location `b of the ball handler

• The identities and locations {(pm, `m)}4m=1 of the ball
handler’s four teammates

• The locations {p̃m, ˜̀
m)}5m=1 of the five opponents

• The amount of time τb the ball handler has possessed
the ball.

We are interested in predicting near-term events y from the
ball handler such as:

• Passing to teammate pi within the next t seconds

• Shooting the ball within the next t seconds

• Holding on to the ball (i.e., none of the above)4

When multiple events occur within the next t seconds (e.g.,
the ball handler passes to a teammate who then immediately
shoots), we only consider the first such event (i.e., the pass).
Given a training set S = {(yi, xi)}Ni=1, the goal is to learn a
model that can accurately predict the correct y given x.

A. Model

A natural approach is to model the response variable y
using a multi-class conditional random field [6]. Let

Y (x) = {s, p1, p2, p3, p4,⊥}

denote the space of possible predictions given x, which corre-
sponds to taking a shot, passing to one of four teammates, or
none of the above, respectively. We can model the conditional
probability of each event y ∈ Y (x) as being log-linear w.r.t. a
response function F (y|x):

P (y|x) =
1

Z(x|F )
exp{F (y|x)},

where Z(x|F ) denotes the standard partition function:

Z(x|F ) =
∑

y′∈Y (x)

exp{F (y′|x)}.

Intuitively, each F (y′|x) can be interpreted as the log-odds of
event y′ happening given game state x.

Perhaps the most obvious aspects are the distances between
the ball handler and the basket and his/her teammates. Shot
difficulty increases with distance, so players are intuitively
more likely to shoot closer to the basket. Similarly, players are
more likely to pass the ball to teammates that are reasonably
close to them. So one can instantiate a basic version of F as:

F (y|x) =

 Fs(x) ≡ w>
s φs(b, `b) if y = s

Fp(i, x) ≡ w>
p φp(pi, `i, b, `b) if y = pi

F⊥(x) ≡ w⊥ if y = ⊥
, (1)

4The ball handler is often dribbling and/or surveying the court in this case.

http://projects.yisongyue.com/bballpredict


where φs and φp are feature mappings that characterize the
distance between the ball handler and the basket and team-
mates, respectively (e.g., whether b is between 3-5 feet from
the basket), and ws, wp and w⊥ are parameters to be learned.

The simple model above ignores significant relevant in-
formation such as precise locations on the court with respect
to specific players (certain players tend to shoot or receive
passes at certain locations), and the locations of the defenders
(blocking a passing lane could suppress the probability that
the ball handler will pass to a teammate). However, crafting an
appropriate feature representation to capture these semantics is
a daunting and labor-intensive task. On the other hand, naively
learning a linear model directly from raw spatial data leads
to unreliable models that ignore known intuitions regarding
basketball gameplay. Furthermore, shooting and passing data
for individual players and locations is extremely sparse relative
to the spatial granularity of the data.

Inspired by latent factor approaches to collaborative fil-
tering and other problems with missing data [29], [21], [25]
and in particular [8], we develop a spatially coherent latent
factor model that yields a compact and interpretable data rep-
resentation while offering good predictive performance. Using
basic high-level domain knowledge of basketball gameplay, we
define several intuitively useful views (or coordinate systems)
of player locations and learn a factor model for each view.

B. Modeling Player Locations

1) Modeling Shooting: We begin with the simplest case
of modeling where certain players tend to shoot the ball.
Similar to [8], we first discretize the court into cells fine-
grained enough to capture all significant spatial variations.
We represent each player b using a Ks-dimensional latent
factor Bb, and we represent each location ` also using a Ks-
dimensional factor L`. Henceforth, we abuse notation and use
L` to refer to the factor of the cell that position ` belongs to.

We can score the tendency of player b to shoot at location `
as B>

b L`. Combining with the simple model in (1), our scoring
function for shooting can be written as

F `s (x) = w>
s φs(b, `b) +B>

b L`b , (2)

Intuitively, our use of latent factors follows from the as-
sumption that the variability in how players shoot can be
well captured by a low-rank projection (which is similar to
[8]).5 Since shot attempts for individual players is sparse, this
modeling approach allows us to “share” information across
players while still personalizing to each players’ individual
shooting tendencies. We will learn B and L from data.

2) Modeling Passing: When modeling where players are
likely to receive passes, we consider two views of the data.
First, similar to how we model shooting, we represent each
player pi using a Kp-dimensional latent factor Pi, and each
location ` using a Kp-dimensional factor M`. The score for
player pi receiving a pass at location ` would then be P>

i M`.

We next model pairwise location relationships independent
of player identity. Let Q1,`1 and Q2,`2 denote Kq-dimensional
factors representing passer and receiver locations, respectively.

5As shown in Figure 5, each of the Ks components in L correspond to a
shooting archetype, and each player is represented as a linear combination.
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Fig. 2. Depicting how coordinate systems of defenders are transformed to be
relative w.r.t. the ball handler. Here, Williams is calculated as being medium
distance away and off right of Parker’s path towards the basket.

We then model the score of a pass from `1 to `2 as Q>
1,`1

Q2,`2 .
Combining with the simple model in (1), our scoring function
for passing can be written as

F `p(i, x) = w>
p φp(pi, `i, b, `b) + P>

i M`i +Q>
1,`b

Q2,`i . (3)

We will learn P , M , Q1 and Q2 from data.

C. Modeling Opponents

Beyond considering the locations of the ball handler and
his teammates, it is also important to model the positions of
the opponents that are defending. In order to accurately model
opponents, it is important to model their relative positions with
respect to the ball handler or a potential pass recipient.

Let R(x, `1, `2) denote a function that computes the relative
positions of the defenders with respect to locations `1 and `2.
Specifically, R(x, `1, `2) performs the following operations:

• rotates the coordinate system around position `1 until
the direction `2 − `1 is the upward direction

• re-centers the coordinate system around `1

• applies this transformation to the locations of each
defender and outputs their updated locations

Consider Figure 2, where the ball handler Parker is being
defended by Williams. To compute the relative position of
Williams w.r.t. to Parker and the basket, we can compute
R(x, `b, `0), where `0 denotes the position of the basket.
Williams’s resulting relative position is computed as being a
medium distance in front of Parker and slightly off-right.

1) Modeling Shooting: We first consider modeling the
positions of defenders relative to the ball handler, which can
suppress the probability of taking a shot. Let D̃˜̀ denote a Kd-
dimensional latent factor corresponding to the relative location
˜̀w.r.t. the ball handler, and let L̃`b denote a factor representing
the position of the ball handler. We can write the scoring
function for how defenders impact shooting as:

F ds (x) =
∑

˜̀∈Rb(x)

[
v˜̀ + D̃>

˜̀ L̃`b

]
+ w>

d,sφd,s(x), (4)

where Rb(x) ≡ R(x, `b, `0), v˜̀ is a global parameter in-
dependent of the location of the ball handler, and φd,s(x)
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(a) Defending Duncan’s Receiving
Lane
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(b) Defending Duncan’s Shot 0 10 20 30 40 50
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(c) Defending Green’s Receiving
Lane
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(d) Defending Green’s Shot

Fig. 3. Depicting how coordinate systems of defenders are transformed to be relative w.r.t. a potential pass recipient. Figure (a) considers the passing direction
from Parker to Duncan, and Williams is considered to be near Duncan and to his right. Figure (b) considers the shooting direction of Duncan, and no defenders
are considered to be in front of him. Figure (c) considers the passing direction from Parker to Green, and Bogans is considered to be somewhat near Green but
significantly to the left. Figure (d) considers the shooting direction of Green, and Bogans is considred to be relatively close and directly in front of Green.

computes a set of distance features, such as the distance of
the closest defender to the ball handler. Intuitively, the way
which opponents will defend a player will vary depending on
location. For example, opponents tend to defend much more
closely when the ball-handler is closer to the basket. Our final
scoring function for shooting events can now be written as

Fs(x) = F `s (x)− F ds (x), (5)

for F `s defined in (2).

2) Modeling Passing: We next consider modeling the po-
sitions of defenders relative a potential pass recipient teamm-
mate, which can suppress the probability of the ball handler
passing that teammate the ball. We consider two sets of views
or coordinate systems here. The first view models defenders
relative to the direction of the pass, and the second view
models defenders relative to the direction of the basket (which
is similar to the defender model for shooting).

Figure 3 depicts examples of these two views. Figures 3(a)
and 3(c) show the first view with the defenders relative to the
direction of the pass. Figures 3(b) and 3(d) show the second
view with the defenders relative to the recipient’s path towards
the basket. Having defenders blocking the foward direction in
either view can contribute to reducing the probability that the
ball handler will pass to that teammate.

Let C̃1,˜̀ and C̃2,˜̀ denote the latent factors representing
the relative position ˜̀ of the defender w.r.t. the two views.
Let M̃1,` and M̃2,` denote the latent factors representing the
location of the pass recipient on the court. We can write the
scoring function for how defenders impact a teammate from
receiving a pass as:

F dp (i, x) =
∑

˜̀∈R1(i,x)

[
ṽ1,˜̀ + C̃>

1,˜̀
M̃1,`

]
(6)

+
∑

˜̀∈R2(i,x)

[
ṽ2,˜̀ + C̃>

2,˜̀
M̃2,`

]
(7)

+ w>
d,pφd(i, x), (8)

where ṽ1,˜̀ and ṽ2,˜̀ are global parameters, and φd is a feature
function that computes a set of distance features, such as the

distance between the defenders and the teammate and the ratio
of the passing distance to the defender’s distance. This results
in the scoring function for passing events:

Fp(x) = F `p(x)− F dp (x), (9)

for F `p defined as in (3).

D. Modeling Duration of Possession

We finally consider how player behavior varies depending
on duration of possession. For example, at some locations, a
player may often choose to immediately shoot or pass upon
receiving the ball. Elsewhere, a player may often choose to
keep the ball for a few seconds before shooting or passing.

Let Ts,τ , Ts,τ , and T⊥,τ denote latent factors corresponding
to the ball handler having had possession for τ time steps prior
to the current state. Let V` denote a latent factor representing
the location of the current ball handler. Then we can write the
contribution of duration of possession to shooting, passing, or
holding on to the ball, respectively, as:

F τs (x) = T>
s,τb

V`b ,

F τp (x) = T>
p,τb

V`b , (10)

F τ⊥(x) = T>
⊥,τbV`b ,

and add them to their corresponding scoring functions in (1).

E. Learning Objective

We now describe our learning criterion to be optimized
during model fitting. Let Θ denote all of the parameters of our
model (roughly 100-200 thousand, depending on the number
of factors). We formulate a discriminative learning objective
to minimize a trade-off between the negative conditional
log likelihood of the training data and a regularization term
controlling the complexity of our model:

argmin
Θ∈C

L(Θ) ≡
∑
i

− logP (yi|xi) + λR(Θ), (11)

where C denotes the feasible space of model parameters, R(Θ)
denotes the regularization function, and λ is a hyperparameter
that trades off between the two.



We define R(Θ) using two components that decompose
additively. The first component is the standard squared 2-norm
that encourages parameter weights to be small. The second
component is a spatial regularization term that encourages
parameters of nearby cells to be similar to each other.

1) Spatial Regularization: As an example, consider the
latent factors L representing the locations on the court that
players tend to shoot from (see Section III-B). We can write
the regularization term as

RL(L) =
∑
` 6=`′

κ`,`′‖L` − L`′‖2, (12)

where κ`,`′ controls for the degree of similarity between ` and
`′. (12) has the effect of encouraging the spatial parameters
to vary smoothly. The similarity coefficients κ can be chosen
using any kernel function. We use the RBF kernel:

κ`,`′ = exp
{
‖`− `′‖2/σ

}
,

where σ is a tunable paramter controlling the degree of
smoothness. We adopt an identical approach for regularizing
all of our spatially coherent factors, L, M , Q1, Q2, L̃, M̃1,
M̃2, and V . This approach bears affinity to generative models
that employ a Gaussian process prior [26], [27], [21], [8].

2) Non-Negativity Constraints: Our feasible space of
model parameters C requires that all of the latent factor com-
ponents must be non-negative. This constraint makes our ap-
proach analogous to related approaches based on non-negative
matrix factorization to derive interpretable models [23], [24],
[25]. For instance, non-negative latent factor models have
already been applied to basketball analysis for summarizing
shot charts of NBA players [8].

Note that the form of our scoring functions in (5), (9), and
(10) encode domain knowledge about which factors should
contribute positively or negatively to various events. In par-
ticular, we model player locations as positively influencing
the probability an event will happen, and defender locations
as negatively influencing the probabilities. As we will see in
Section VI, this leads to wide range of interpretable factors
that correspond to known intuition of basketball game play.

IV. TRAINING

We train our model using gradient descent. For brevity, we
only present derivations for two of our latent factors. The other
partial derivatives can be derived analogously. We first derive
the partial derivative for factor L`, which models whether the
ball handler is likely to shoot at location `:

∂L
∂L`

= 2λ

L` +
∑
`′ 6=`

κ`,`′(L` − L`′)

−∑
i∈Ib`

∂ logP (yi|xi)
∂L`

,

where Ib` denotes training data indices where the ball handler
was in cell `. For latent factors that do not have spatial
regularization (e.g., B), there does not exist an analogous term
for κ`,`′(L` − L`′).

Let bi denote the ball handler in the i-th training example.
The partial derivative of conditional probabilities is:

∂ logP (yi|xi)
∂L`

=
(
1[yi=bi] − P (bi|x)

) ∂Fs(x)

∂L`
,

where 1[cond] is an indicator function that takes value 1 if cond
is true, and 0 otherwise. We finally observe that

∂Fs(xi)
∂L`

= Bbi .

All other partial derivatives for parameters appearing in a
shooting event can be derived analogously.

We next derive the partial derivatives for M`, which models
whether a teammate at location ` is likely to receive a pass:

∂L
∂M`

= 2λ

M` +
∑
`′ 6=`

κ`,`′(M` −M`′)

−∑
i∈Ip`

∂ logP (yi|xi)
∂M`

,

where Ip` denotes training data indices where a teammate was
in cell `.

Let pi denote the teammate in the i-th training example
that was in cell `. We can write the partial derivations w.r.t.
each training example as:

∂ logP (yi|xi)
∂M`

=
(
1[yi=pi] − P (pi|x)

) ∂Fp(pi, x)

∂M`
.

We finally observe that:

∂Fp(pi, xi)
∂M`

= Ppi .

All other partial derivatives for parameters appearing in a
passing event can be derived analogously. Any gradient descent
algorithm is then applicable. For our experiments, we used
adaptive stochastic gradient descent [30].

A. Initialization

We find that our learning objective (which is non-convex) is
particularly succeptible to local optima, and running gradient
descent algorithms from random initializations leads to bad
solutions. As such, finding a good initialization is key.

To find a good initialization, we first train our latent factor
models as a full rank matrix of parameters. For example,
instead of modeling the player by location shooting factors
B and L as separate factors, we instead directly estimate the
full player-by-location matrix of parameters B̄ ≡ B>L.6

Let bi denote the ball handler in the i-th training instance,
and let Ībell denote the training indices where ball handler was
in location `. We can write the partial derivative for each B̄b`:

∂L
∂B̄b`

= 2λ

B̄b` +
∑
`′ 6=`

κ`,`′(B̄b` − B̄b`′)

−∑
i∈Īb`

∂ logP (yi|xi)
∂B̄b`

,

and
∂ logP (yi|xi)

∂B̄b`
=
(
1[yi=bi] − P (bi|x)

) ∂Fs(x)

∂B̄b`
,

and finally
∂Fs(xi)
∂B̄b`

= 1.

All other partial derivatives for combined factors can be
derived analogously. This modification essentially decouples

6Each row of B̄ corresponds to a player, and each column to a location.



ROC CURVES

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
N

eg
at

iv
e 

R
at

e

Overall

 

 

+SDT

+SD

+S

Baseline

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Actions

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Passes

AVERAGE LOG LOSS

+SDT
+SD
+S
Baseline

Av
er

ag
e 

Lo
g 

Lo
ss

0.
9

1.
1

1.
3

1.
5

Overall

0.
9

1.
1

1.
3

1.
5

Actions

0.
9

1.
1

1.
3

1.
5

Passes

(a) Predictive Performance

LOG LOSS (OVERALL)

Baseline +S +SD +SDT
LOG LOSS (ACTIONS)

Baseline +S +SD +SDT
LOG LOSS (PASSES)

Baseline +S +SD +SDT
(b) Predictive Performance by Location

Fig. 4. Left: The left plots depict the aggregate results (ROC curves and log loss) for predicting all events (Overall), conditioned on actions (Actions), and
conditioned on passes (Passes). For ROC curves, random prediction corresponds to the diagonal dotted line. For log loss, random prediction corresponds to
− log(1/|Y |), where |Y | is the number of possible outcomes (6 for Overall, 5 for Actions, 4 for Passes). Our spatial factor models consistently improve
performance, although the gain of the temporal model (+SDT) is small. The ROC curves in the Overall task are similar, which is due to the majority of events
being the null event of no action taking place; the Actions and Passes tasks offer a more nuanced comparison. Right: The right plots depict the spatially varying
predictive performances (darker corresponds to higher error). Section VI offers insight on which components of our model leads to the various error reductions.

the interactions between players, since each row of B̄ now
does not interact with other rows of B̄. As a consequence,
the resulting optimization problem is convex and can be
solved optimally,7 at the expense of the learned model being
statistically unreliable due to each individual player/location
pair having very few data points.

After learning B̄, we employ non-negative matrix factor-
ization to recover a good initialization of B and L. Following
the approach in [7], [8], our goal is find a B and L in order
to minimize the matrix divergence:∑

b,`

B̄b` log
B̄b`
BbL`

− B̄b` +BbL`,

which discourages large ratios between B̄ and the recovered
factors B and L. We use the multiplicative updates approach
from [7] to compute the factorization. Afterwards, we use
the recovered B and L to initialize (11). We apply the same
technique to initalize all of our latent factors. Since we use
this approach only for initialization, we can learn each pair
of factors independently while holding the other parameters
fixed, which leads to substantial computational savings.

V. EXPERIMENTS

We evaluate our model based on STATS SportsVU tracking
data from the 2012-2013 NBA season. The tracking data

7Since this intermediate objective is strongly convex, we employ accelerated
gradient descent [31] to quickly converge to the optimal initialization point.

includes coordinates of all players recorded at 25 frames per
second. Also included are in-game events such as passes and
shots. In total, our dataset comprises approximately 630 games.

We extracted every half court possession from each game,
where a half court possession is defined to be when at least
4 players from each team have crossed into half court for at
least four seconds. We focus on half court possessions since
those are most likely to reveal in-game dynamics.8 In total
we extracted about 80 thousand possessions, with possessions
averaging about 380 frames or 15 seconds in duration.

We selected 80% of the possessions at random (from each
team) for training and validation, and used the remaining 20%
for testing. Given the size of the dataset, we kept the regu-
larization parameter λ at a fixed value and considered a few
different kernel bandwidths during validation. We considered
four variants of our model for comparison.
• Baseline: the simple model (1) based on distance features.
• +S: adds on top the spatial tendencies described in Section

III-B.
• +SD: adds on top the defensive spatial tendencies described

in Section III-C.
• +SDT: adds on top the temporal spatial tendencies described

in Section III-D.

A. Results

Figure 4(a) shows our aggregate quantitative results. The
results of predicting over all time frames are shown in the

8The other major type of possession is a fast break.
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Shooting Factors (L)

Kawhi Carmelo Dirk Dion John Tim Kyrie Shawn Jeremy David
Leonard Anthony Nowitzki Waiters Wall Duncan Irving Marion Lin Lee

Fig. 5. Top Row: Depicting the spatial coefficents of the latent factors corresponding to the spatial coefficients contributing to the ball handler taking a shot at
each location (L). Each player’s shooting model can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficients of a player
with high affinity to each of the latent factors.

1 2 3 4 5 6 7 8 9 10

Receiving Pass Factors (M )

Tony Dirk LeBron Monta Manu David Jose Chandler Goran Joachim
Parker Nowitzki James Ellis Ginobili Lee Calderon Parsons Dragic Noah

Fig. 6. Top Row: Depicting the spatial coefficents of the latent factors corresponding to spatial coefficients contributing to a player receiving a pass at each
location (M ). Each player’s conditional shooting probabilities can be represented as a combination of these factors. Bottom Row: Depicting the spatial coefficents
of a player with high affinity to each of the latent factors.

left column. We evaluated using both ROC curves as well
as average log loss, and we observe that our latent factor
models offer significant improvement. The gain from adding
the temporal spatial components is small (i.e., +SDT offers
about a 0.1% relative reduction in average log loss compared
to +SD), but this gain is still statistically significant given the
approximately 6 million examples/frames in our test set.

Our dataset exhibits a notable amount of class imbalance
– about 70% of frames have no action events forthcoming in
the next 1 second. To further tease out the interesting effects
learned by our model, we also evaluate predictive performance
when conditioned on an action event (shot or pass), and also
on a pass event. These results are depicted in the second
and third columns of Figure 4(a), respectively. We observe a
more significant performance gain from our spatial latent factor
models compared to the baseline, although the performance of
+SDT is no longer distinguishable from +SD.

Figure 4(b) depicts how predictive performance varies
across the basketball court. We see that the spatial latent factor
model improves performance throughout the court. When

comparing all events (top row), we observe a significant error
reduction in the two “low post” locations.9 When comparing
action events (middle row), we observe a significant error
reduction along the baseline behind the basket (for +SD and
+SDT). We comparing only passing events (bottom row), we
observe a significant error reduction around the basket area
(for +SD and +SDT). Our inspection of the learned factors in
Section VI will shed light on how components of our model
contribute to the various reductions in error.

VI. MODEL INSPECTION

We now provide a detailed inspection our learned model
in order to identify patterns that match known intuitions of
basketball game play. We will also identify aspects of our
model that contribute to the various gains in performance
depicted in Figure 4(b). Although our focus is on basketball,
this type of analysis is applicable to a wide range of domains
with fine-grained spatial patterns.

9The two low post locations are situated about 10 feet and directed at 45
degree angles away from the basket.



1 2 3 4 5 6 7 8 9 10 11 12

Passer Factors (Q1)

1 2 3 4 5 6 7 8 9 10 11 12

Receiver Factors (Q2)

Fig. 7. Top Row: Depicting the spatial coefficents of the latent factors corresponding to passing from each location. Bottom Row: Depicting the associated
spatial coefficents of the latent corresponding to receiving a pass at each location. Figure 8 shows examples of aggregate passing and receiving coefficients.

A. Where do Players Tend to Shoot?

We begin by inspecting the player-by-location shooting fac-
tors B and L. We estimated a 10-dimensional representation,
which visually correspond to known shooting patterns. Our
results are shown in Figure 5. The top row depicts the ten
learned factors (i.e., the rows of L), and the bottom row depicts
the spatial coefficients of players which have high affinity for
each of the factors. The first three factors correspond to players
who shoot at the 3 point line. The next three factor correspond
to players who shoot midrange shots. The seventh factor
corresponds to players who shoot just inside the lane. The
eight factor corresponds to players who shoot while attacking
the basket from the baseline. The final two factors correspond
to players who shoot near the basket.

We note that the first factor and the last two factors have
the strongest coefficients, which is unsurprising since those are
the most valuable shooting locations. Note that the first factor
also corresponds to the large error reduction in the “corner
three” locations in the middle row of Figure 4(b). We further
note that none of the factors have strong coefficients along the
baseline behind the basket, which is also a region of large error
reduction in the middle row of Figure 4(b).

A similar analysis was conducted by [8], but with two
key differences. First, [8] did not consider the in-game state
but only modeled the shot selection chart. In contrast, we are
interested in modeling the conditional probability of a player
shooting given the current game state. For example, a player
may often occupy a certain location without shooting the ball.
Second, as described below, we also model and analyze many
more spatial factors than just player shooting tendencies.

B. Where do Players Tend to Receive Passes?

We now inspect the player-by-location passing factors P
and M . We estimated a 10-dimensional representation, which
visually correspond to known passing patterns. The top row in
Figure 6 shows the ten learned factors (i.e., the rows of M ),
and the bottom row depicts the spatial coefficients of players
which have high affinity for each of the factors.

The first factor corresponds to players that receive passes
while cutting across the baseline. In fact, many of the factors
give off a visual effect of being in motion (i.e., spatial blur),

Fig. 8. Top Row: Depicting spatial coefficients of passing to different locations
on the court. The “X” denotes the location of the passer and corresponds to
a row in Q>

1 Q2. Bottom Row: Depicting the spatial coefficients of receiving
a pass from different locations on the court. The “X” denotes the location of
the receiver, and corresponds to a column in Q>

1 Q2.

which suggests that players are often moving right before
receiving a pass.10 The second factor corresponds to players
that receive passes in the low post, which also corresponds
to areas of high error reduction in the top row of Figure
4(b).11 The next three factors depict various midrange regions.
Typically, right handed players associate more with the fourth
factor, and left handed players associate more with the fifth
factor.12 The next three factors depict regions at the three-
point line, and the final two factors depict regions in the back
court.

The players with the strongest coefficients tend to be from
playoff teams that have tracking equipment deployed on their
home courts during the 2012-2013 NBA season, since those
players have the most training data available for them. For
example, we see that Figure 5 and Figure 6 contain several
players from the San Antonio Spurs, which had the most games
in our dataset.

10This effect is most likely an artifact of how we formulated our task to
predict events up to 1 second into the future. It may be beneficial to model
multiple time intervals into the future (e.g., half a second, one second).

11Note that although players often receive passes in the low post, they
typically do not shoot from that location, as evidenced in the shooting factors
in Figure 5. Capturing this sharp spatial contrast between receiving passes and
shooting contributes to the error reduction in those regions in Figure 4(b).

12This effect is due to players preferring to drive with their strong hand.



Fig. 9. Top Row: Depicting the spatial coefficients of the latent factors D̃
corresponding to how defender positions relative to the ball handler suppresses
the conditional probability that the ball handler will shoot. The “X” denotes
the ball handler, and the up direction corresponds to toward the basket. Bottom
Row: Depicting the corresponding spatial coefficents on the court L̃.

C. Where Does the Ball Tend to Get Passed To and From?

We now inspect the twelve Q1 and Q2 factors which
correspond to pairwise passer and teammate locations. The top
row of Figure 7 depicts the factors Q1 representing locations
of the passer, and the bottom row depicts the associated factors
Q2 representing the locations of the pass recipient.13 We
observe that the passing factors tend to exhibit more local
coherence, which fits with our intuition that players tend to be
stationary when passing. In contrast, we see that the receiving
factors exhibit more complex spatial structure. For example,
the seventh and eighth factors depict players who receive
passes after cutting across the baseline from behind the basket.
These results suggest a direction for future work: modeling
not only the current game state but also the recent trajectories
between the current state and the previous game states.

Figure 8 depictes the aggregate spatial coefficients Q>
1 Q2

of passing and receiving at a few example locations on the
court. Interestingly, one could interpret Q>

1 Q2 as analogous to
the transition matrix of a Markov chain random walk in terms
of passing the ball. It would be interesting to combine this
approach with the approach in [16] to model and analyze the
flow of basketball passes during a possession.

D. What Defensive Positions Suppress Shot Probability?

We now inspect the defender factors, starting with the shot
suppression factors D̃ and L̃. Figure 9 depicts the five factors
we estimated here. The top row corresponds to the relative
positioning of defenders around the ball handler (D̃), and the
bottom row corresponds to the locations on the court that are
most affected by this kind of defensive positioning (L̃).

We see that the D̃ factors naturally correspond to different
defensive positionings, which is unsurprising since defenders
are known the defend more closely the closer the ball handler
is to the basket. We also note a complete lack of spatial
coefficients in the region around the basket, indicating that
defensive positioning does not suppress shot probability near
the basket14 – this effect also contributes indirectly to the error
reduction in the bottom row of Figure 4(b), since it allows for
estimating stronger coefficients elsewhere in the court and then
suppressing those scores through the defender factors.

13Players located in areas where the passing factor is strong tend to pass
to players located where the associated receiving factor is strong.

14Although it certainly affects the probability of making the shot.

(a) Defending Passing Lane (b) Defending Shooting Angle

Fig. 10. Depicting spatial coefficients corresponding to how the positions
of defenders relative to a player can suppress the probability of that player
receiving a pass. The “X” denotes the ball handler. In the left plots, the up
direction is towards the passer. In the right plots, the up direction is towards
the basket.
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Fig. 11. Top Row: Depicting the spatial coefficients (five factors of V ) of
the tendency to shoot, pass, and keep the ball (null). Bottom Row: Depicting
the time-varying coefficients for shooting Ts, passing Tp and keeping the ball
T⊥ over seven seconds.

E. What Defensive Positions Suppress Pass Probability?

We now inspect the factors C̃1, M̃1, C̃2, M̃2 that cor-
respond to pass suppression. These factors are depicted in
Figure 10. The left plots in the figure correspond to defending
the direction towards the ball handler, and the right plots
correspond to defending in the direction towards the basket.

In Figure 10(a), we see that the defenders tend to defend
more closely when the player is closer to the basket in order
to suppress a pass, which agrees with our intuition. In Figure
10(b), we see that defenders tend to hedge towards the middle
of the court, while still defending the path to the basket, which
also agrees with our intuition.15 We also see in the first factor
in Figure 4(b) that suppressing passes into the region near the
basket is best accomplished by “fronting” the offensive player
which leads to playing behind the player’s path to the basket.
Both sets of defender factors devote significant model capacity
to the region near the basket, which also contributes to the error
reduction in the bottom row of Figure 4(b).

F. How Does Behavior Vary with Duration of Possession?

We finally inspect the temporally varying factors Ts, Tp,
T⊥, and their corresponding spatial factors V . The top row of
Figure 11 depicts the five dimensions of V that we estimated,
and the bottom row depicts the corresponding temporally
varying coefficients of the five factors of Ts, Tp, and T⊥.
The first factor corresponds to locations where the ball handler

15Intuitively, pass to the corner often comes from the middle of the court,
so hedging against the middle should lead to suppressing passing probability.



tends to immediately shoot upon receiving a pass, as evidenced
by the high Ts weight within the first second.16 The second
factor corresponds to locations where the ball handler tends to
shoot after possessing the ball for at least one second, and is
focused on areas near the basket. The third factor correspond
to locations where the ball handler tends to pass, especially
after possessing the ball for two seconds. The fourth factor
corresponds to regions where the ball handler tends to pass
immediately upon receiving the ball.17 When the player does
not immediately pass the ball, then the probability of passing
decreases and the probability of the player holding on to the
ball increases. The last factor correspond to regions where the
ball handler tends to keep the ball for several seconds, such
as in the low post where players typically either spin into the
lane for a shot (the second factor) or pass the ball back to the
perimeter (as evidenced by the rise of Tp in the last factor).

VII. DISCUSSION & CONCLUSIONS

We have presented a fine-grained spatial model for predict-
ing dynamic in-game events in team sports, such as shooting
and passing. Our approach learns semantically meaningful and
compact representations across several views of spatial and
temporal variations, which enables efficient predicting at test
time (such as for interactive visualization). We validated our
model using spatiotemporal tracking data from the 2012-2013
NBA season. We find that our model does indeed learn to make
good predictions. We further conducted an extensive inspection
the learned factors in our model, and find that they correspond
to known intuitions of basketball gameplay.

While our model did show good prediction performance,
it can still be substantially improved. For example, we found
several instances where our learned factors exhibited “motion
blurr”. Another interesting direction is to model multiple recent
time steps (e.g., trajectories of players), as opposed to just
the current game state. Other avenues for future work include
predicting other types of in-game events such as driving the
ball, cutting by teammates, pick and rolls [15]. Finally, we
addressed only the one-step lookahead version of the more
general problem of predicting complete sequences of sports
gameplay, which is a much more difficult task.

Acknowledgements. Data Source: STATS LLC, copyright 2014.
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