

Two Vignettes in Robust Detection & Adversarial Analysis in Control

Yisong Yue

ImageNet Large Scale Visual Recognition Challenge, Russakovsky et al, 2012

Deep learning in the wild

5

5.....

 " I want to use deep learning to optimize the design, manufacturing and operation of our aircrafts. But
 I need some guarantees." -- Aerospace Director

Robustness is Essential to Real-World Systems

• Many different concrete formal definitions.

Adversarial perturbations, domain shift, etc.

Two Vignettes in Robustness

 $x + \Delta x_1 x + \Delta x_2$ valid fingerprints "bird" valid fingerprints "real *computed fingerprints \varphi match? fake*

- High dimensional inputs (images)
- Robust input/output behavior
- Detect fake images

- Low(-er) dim. description
- Robust dynamical behavior
- Certify landing won't crash

Detecting Adversarial Examples via Neural Fingerprinting

Sumanth Dathathri

Stephan Zheng

Tianwei Yin

Richard Murray

Detecting Adversarial Examples via Neural Fingerprinting,

Sumanth Dathathri, Stephan Zheng, Tianwei Yin, Yisong Yue, Richard M. Murray, arXiv.

Adversarial Examples

Given: data (x, y), loss function L, and model parameters θ , an **attacker** tries to find x' = x + dx such that:

$$\max_{x':||x-x'||_{2}<\delta} L(x', f(x'), y^{*}; \theta)$$

A **defender** tries to find a θ , mechanism, ..., to ensure no solutions x' exist within distance δ of x.

2014 - ... : ongoing "arms race".

Many attacks and defenses have been proposed in recent years.

Many defenses have been broken by stronger attacks.

Hard to (theoretically) guarantee robustness.

Landscape of Adversarial Robustness Regimes

Robust Detection vs Prediction

Black-Box/Grey-Box/White-Box

Black-Box: Attacker only has black-box access to f.

Grey-Box: Attacker has access to f, training data, but not to a secret key.

White-Box: Attacker has access to everything.

Neural Fingerprinting

Robust Detection under Grey-Box Adversarial Attacks

- **Given:** fingerprint Δx , $\{\Delta y^j\}$, and a trained model f.
- NFP does "local consistency check" around input x.

Neural Fingerprinting Robust Detection under Grey-Box Adversarial Attacks

• **Intuition:** increasingly hard to find perturbation *dx* that conforms with a collection of (secret) fingerprints!

Fingerprints:

$$\chi^{i,j} = (\Delta x^i, \Delta y^{i,j})$$

 $i = 1 \dots N, j = 1 \dots J$

Robust Detection:

$$\begin{aligned} ?\exists j: &\frac{1}{N}\sum_{i=1}^{N}||F(x,\Delta x) - \Delta y^{i,j}||_{2}^{2} < \tau \\ &F(x,\Delta x) = f(x+\Delta x) - f(x) \end{aligned}$$

Training with Neural Fingerprinting

• (Assume fingerprints already chosen)

Visualizing Fingerprint Loss

• Toy example, 2 classes, 4 fingerprints

$$L_{fp}(x, y, \chi; \theta) = \sum_{i=1}^{N} ||F(x, \Delta x^{i}) - \Delta y^{i,k}||_{2}^{2}$$
$$F(x, \Delta x) = f(x + \Delta x) - f(x)$$

(Theoretical characterization for linear models in paper)

Choosing Fingerprints

• Choose Δx , $\{\Delta y^j\}$ by random sampling.

$$\begin{split} \Delta x^i &\sim \mathbb{N}(0, \sigma^2) \\ \Delta y^{i,k}_{l \neq k} &= -\alpha(2p-1) \\ \Delta y^{i,k}_{l=k} &= \beta(2p-1) \\ p &\sim \mathrm{Bern}\left(\frac{1}{2}\right) \end{split}$$

p resampled for each *i*

 $\alpha = 0.25, \beta = 0.75$ (method is not sensitive)

Grey-Box: fingerprints not known to attacker White-box: fingerprints known to attacker

Whole Recipe

- Choose Fingerprints via Random Sampling
- Train NN model w/ Fingerprint Loss
- Deploy NN model
 - Detects fake examples while also doing prediction

Grey-Box: Near-Perfect Detection of SotA Attacks

	Data	Method	FGSM	JSMA	BIM-a	BIM-b	$CW-L_2$
-	MNIST	LID	99.68	96.36	99.05	99.72	98.66
		KD	81.84	66.69	99.39	99.84	96.94
		BU	27.21	12.27	6.55	23.30	19.09
		KD+BU	82.93	47.33	95.98	99.82	85.68
-		NeuralFP	100.0	99.97	99.94	99.98	99.74
	CIFAR-10	LID	82.38	89.93	82.51	91.61	93.32
		KD	62.76	84.54	69.08	89.66	90.77
		BU	71.73	84.95	82.23	3.26	89.89
		KD+BU	71.40	84.49	82.07	1.1	89.30
		NeuralFP	99.96	99.91	99.91	99.95	98.87
		Data		FGSM	BIM-b		
		MiniIma	genet-20	99.96	99.68		

Grey-Box: Near-Perfect Detection of SotA Attacks

White-Box: Robust Against Existing Attacks

Data	Method	Adaptive-FGSM	Adaptive-BIM-b	Adaptive-CW- L_2	Adaptive-CW- L_2 ($\gamma_2 = 1$)	Adaptive-SPSA
MNIST	NeuralFP	99.91	99.37	95.04	99.17	99.94
CIFAR-10	NeuralFP	99.99	99.92	97.19	97.56	99.99

• We subsequently designed new attack to break Neural Fingerprinting in Adaptive White-Box Setting.

Tianwei Yin

Two Vignettes in Robustness

 $x + \Delta x_1 x + \Delta x_2$ valid fingerprints "bird" valid fingerprints $x + \Delta x_1 x + \Delta x_2$ valid fingerprints real match? match?

- High dimensional inputs (images)
- Robust input/output behavior
- Detects fake images

- Low(-er) dim. description
- Robust dynamical behavior
- Certify landing won't crash

Robust Regression for Safe Exploration in Control

Angie Liu

Guanya Shi

Anima Anandkumar

Soon-Jo Chung

Robust Regression for Safe Exploration in Control

Stable Drone Landing

Guanya Shi

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. ICRA 2019

Robust Landing Control (with pre-collected data)

Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C_K8MkC_SSQ

Neural Lander: Stable Drone Landing Control using Learned Dynamics Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. ICRA 2019

Controller Design (simplified)

Guanya Shi

• Nonlinear Feedback Linearization:

$$u_{nominal} = K_s \eta$$
 $\eta = \begin{bmatrix} p - p^* \\ v - v^* \end{bmatrix}$ Desired Trajectory (tracking error)

Uncertain Dynamics => Uncertain Control

Worst Case Analysis: we might crash!

Note: analysis requires propagating uncertainty over time

Robust Regression for Safe Exploration in Control

Certify Safety of Landing Trajectories (Adversarial Analysis Based on Current Training Data)

Empirical Visualization

(Pre-Collected Training Data, via Spectral Normalization)

Neural Lander: Stable Drone Landing Control using Learned Dynamics Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. ICRA 2019

Adversarial Analysis of Tracking Error

Robust Regression for Safe Exploration in Control

Key Tool: Robust Regression

• Goal: learn P(y|x) that is robust to target distribution

Angie Liu

 $argmin_{\theta} \mathbb{E}_{P_{target}(x)} \mathbb{E}_{P(y|x)} L(y, \hat{P}_{\theta}(y|x))$ Minimize "surprise" s.t.

$\hat{P}_{\theta}(y|x)$ fits training data

Robust Regression for Safe Exploration in Control

Robust Regression Guarantee

Corollary 2. [The neural network case] Let neural networks $\phi(x) = F_{\mathcal{A}}(x)$ use L fixed nonlinearities $(\sigma_1, ..., \sigma_L)$, which are ρ_i -Lipschitz and $\sigma_i(0) = 0$. Let reference matrices $(C_1, ..., C_L)$ be given, as well as spectral norm bounds $(s_i)_{i=1}^L$, and l_1 norm bounds $(b_i)_{i=1}^L$. If $\sqrt{\sum_i ||x_i||_2^2} \leq I$, for robust regression using network $F_{\mathcal{A}}$ with weight matrices $\mathcal{A} = (A_1, ..., A_L)$ and maximum dimension of each layer is at most D obey $||A_i||_{\sigma} \leq s_i$, $||A_i^T - C_i^T||_{2,1} \leq b_i$, and $||F_{\mathcal{A}}(x)||_2 \leq \mathfrak{X}$, the following holds with probability at least $1 - \delta$,

$$\mathbb{E}_{P_{trg}(x,y)}[(y-\hat{f}(x))^{2}] \leq W \left[(2RB + \sigma_{0}^{-2})^{-1} + \lambda + \frac{32A\mathfrak{X}}{Bn^{\frac{3}{2}}} + \frac{288A^{2}\mathfrak{X}}{nB^{2}I} \ln n\sqrt{\mathcal{R}_{\mathcal{A}}\ln(2D^{2})} + \frac{3A^{2}\mathfrak{X}^{2}}{B^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2n}} \right], \quad (7)$$
where $\mathcal{R}_{\mathcal{A}}$ is the spectral complexity of networks $E_{\mathcal{A}}(x), \quad \mathcal{R}_{\mathcal{A}} := \left(\prod^{L}_{i} - a^{2}a^{2}\right)\left(\sum^{L}_{i} - (b_{i})^{\frac{2}{2}}\right)^{3}$. The

where $\mathcal{R}_{\mathcal{A}}$ is the spectral complexity of networks $F_{\mathcal{A}}(x)$, $\mathcal{R}_{\mathcal{A}} := \left(\prod_{j=1}^{L} s_j^2 \rho_j^2\right) \left(\sum_{i=1}^{L} \left(\frac{b_i}{s_i}\right)^{\frac{2}{3}}\right)^{\circ}$; The corresponding perturbation bounds for spectral normalized deep neural networks is,

Robustness
under perturbation
$$\sup_{x \in \mathbb{B}(\epsilon), y \sim f(x)} \left[(y - \hat{f}(x))^2 \right] \le \left((2RB + \sigma_0^{-2})^{-1/2} + \sqrt{\lambda} \right) + \left(L + \frac{A}{B} \mathcal{R}_{\mathcal{A}} \right) ||\epsilon||)^2 \quad (8)$$

Robust Regression for Safe Exploration in Control

Integration with Control

Theorem 2. Suppose x is in some compact set \mathcal{X} , and $\epsilon_m = \sup_{x \in \mathcal{X}} \|\epsilon\|$. Then \tilde{x} will exponentially converge to the following ball: $\lim_{t\to\infty} \|\tilde{x}(t)\| = \gamma \cdot \epsilon_m$, where

$$\gamma = \frac{\lambda_{\max}(M)}{\lambda_{\min}(K)\lambda_{\min}(M)} \sqrt{\left(\frac{1}{\lambda_{\min}(\Lambda)}\right)^2 + \left(1 + \frac{\lambda_{\max}(\Lambda)}{\lambda_{\min}(\Lambda)}\right)^2}.$$
(12)
Worst-case uncertainty
in realized trajectory

Robust Regression for Safe Exploration in Control

Results

Robust Regression for Safe Exploration in Control

Angie Liu

Guanya Shi

Sumanth Dathathri

Stephan Zheng

Xichen Shi

Michael O'Connell

Rose Yu

Kamyar Azizzadenesheli

Tianwei Yin

Anima Anandkumar

Soon-Jo Chung

Richard Murray

Detecting Adversarial Examples via Neural Fingerprinting,

Sumanth Dathathri, Stephan Zheng, Tianwei Yin, Yisong Yue, Richard M. Murray, arXiv.

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. ICRA 2019

Robust Regression for Safe Exploration in Control

Center for Autonomous Systems and Technologies

A New Vision for Autonomy

http://cast.caltech.edu

Autonomous Dynamic Robots

http://cast.caltech.edu

Postdoc Openings!

(applications considered starting January)

Mory Gharib

Soon-Jo Chung

Aaron Ames

Anima Anandkumar

Yisong Yue

Joel Burdick

Katie Bouman

Pietro Perona