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Deep learning in the lab
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ImageNet Large Scale Visual Recognition Challenge, Russakovsky et al, 2012
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“I want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
| need some guarantees. ” -- Aerospace Director




Robustness is Essential to Real-World Systems

* Many different concrete formal definitions.

Input/output or dynamical Smoothness or invariance

\ [

The behavior of system should be stable

under disturbances to the environment

the system*is operating in.

Adversarial perturbations, domain shift, etc.



Two Vignettes in Robustness

x+ Az x+ Axy  valid fingerprints

f real

match?

x fake

* High dimensional inputs (images)
* Robust input/output behavior
* Detect fake images

* Low(-er) dim. description
* Robust dynamical behavior
* Certify landing won’t crash



Detecting Adversarial Examples via Neural Fingerprinting

Sumanth Stephan Tianwei Richard
Dathathri Zheng Yin Murray

Detecting Adversarial Examples via Neural Fingerprinting,
Sumanth Dathathri, Stephan Zheng, Tianwei Yin, Yisong Yue, Richard M. Murray, arXiv.



Adversarial Examples

Given: data (x, y), loss function L, and model parameters 8, an attacker

tries to find x” = x + dx such that:
max  L(z', f(z),y";0)

z':||z—z'|[2<d

A defender tries to find a 8, mechanism, ..., to ensure no solutions x’
exist within distance ¢ of x.

2014 - ... : ongoing “arms race”.
Many attacks and defenses have been proposed in recent years.
Many defenses have been broken by stronger attacks.
Hard to (theoretically) guarantee robustness.



Landscape of Adversarial Robustness Regimes

Robust Detection vs Prediction Black-Box/Grey-Box/White-Box
(0'?1 Black-Box: Attacker only
=1%®| non-adversarial 3) has black-box access to f.
\0.62
fawn Grey-Box: Attacker has

access to f, training data,
but not to a secret key.

adversarial!
White-Box: Attacker has

access to everything.




Neural Fingerprinting
Robust Detection under Grey-Box Adversarial Attacks

* Given: fingerprint Ax, {4y'}, and a trained model f.
* NFP does “local consistency check” around input x.

(0.01\
’ f (33) =015
\0.:02}
~ ij for some 37?7
(0.03\
f(x + A.’L’) = O.:08 yes - Xxis ok )
\0 S01} no - x is adversarial!



Neural Fingerprinting
Robust Detection under Grey-Box Adversarial Attacks

* Intuition: increasingly hard to find perturbation dx that conforms
with a collection of (secret) fingerprints!

Fingerprints:
X'i,j — (Axi,Ayi’j)
i=1...N,j=1...J

Robust Detection:

N
1 i
?BJ:NE |F(x, Az) — Ay™||5 < T
i=1

F(z,Az) = f(z + Az) — f(z)



Training with Neural Fingerprinting

* (Assume fingerprints already chosen)

Original Training Loss Fingerprint Training Loss
N Ve
min } (Lo(z,y;6) + aLgp(z,y,x;0))
(z,y)

N
Lyp(z,y,x;0) = Y _||F(z, Az’) — Ay**||3

i=1 '\

F(z,Az) = f(z + Ax) — f(x) k is ground truth class



Visualizing Fingerprint Loss

N
. : pr(x,y,X; 6) = Z ||F(a:,Ax’) — Ay’:’k”g
* Toy example, 2 classes, 4 fingerprints P
F(z,Az) = f(z + Az) — f(x)
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(Theoretical characterization for linear modelsin paper)



Choosing Fingerprints

* Choose 4x, {4y} by random sampling.

Az' ~ N(0, %)
Ayl;ék = —a(2p—1)

Ayl k — = [(2p—1)

1 Grey-Box: fingerprints not known to attacker
p ~ Bern (—) White-box: fingerprints known to attacker

p resampled for each 1

a=0.25, f/=0.75 (method is not sensitive)
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Whole Recipe

* Choose Fingerprints via Random Sampling
* Train NN model w/ Fingerprint Loss

* Deploy NN model

* Detects fake examples while also doing prediction



Grey-Box: Near-Perfect Detection of SotA Attacks

Data Method FGSM JSMA BIM-a BIM-b CW-L,

MNIST LID 99.68 96.36 99.05 99.72  98.66
KD 81.84 66.69 99.39 9984  96.94
BU 2721 1227  6.55 23.30 19.09

KD+BU 8293 4733 9598 99.82  85.68
NeuralFP  100.0 9997 9994 9998 99.74

LD 8§38 8993 8251 OL61 9332
CIFAR-10  ppy 6276 8454 69.08 89.66  90.77
BU 7173 84.95 8223 326  89.89

KD+BU 7140 8449  82.07 1.1 89.30
NeuralFP 9996 9991 9991 9995  98.87

Data FGSM BIM-b
Minilmagenet-20  99.96  99.68




Grey-Box: Near-Perfect Detection of SotA Attacks
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White-Box: Robust Against Existing Attacks

Data Method Adaptive-FGSM  Adaptive-BIM-b  Adaptive-CW-Ly,  Adaptive-CW-Ly (2 = 1)  Adaptive-SPSA
MNIST NeuralFP 99.91 99.37 95.04 99.17 99.94
CIFAR-10 NeuralFP 99.99 99.92 97.19 97.56 99.99

* We subsequently designed new attack to break Neural Fingerprinting
in Adaptive White-Box Setting.

Tianwei
Yin




Two Vignettes in Robustness

x+ Az x+ Axy  valid fingerprints

f real

match?

x fake

* High dimensional inputs (images)
* Robust input/output behavior
* Detects fake images

* Low(-er) dim. description
* Robust dynamical behavior
* Certify landing won’t crash



Robust Regression for Safe Exploration in Control

N
d AL

.

\ 5

Angie Anima Soon-Jo
Liu Anandkumar Chung

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv



Stable Drone Landing

Ground effect

AR
BN

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019



Robust Landing Control (with pre-collected data)

PID Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C K8MkC SSQ

Neural Lander: Stable Drone Landing Control using Learned Dynamics Guanya Shi, Xichen Shi, Michael
O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. ICRA 2019
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Controller Design (simplified)

* Nonlinear Feedback Linearization:

. P~ p* Desired Trajectory
Unominal = KSn n= [U — ¥ (tracking error)
Stability Guarantee: Time delay Unmodeled
(simplified) / - disturbance
In()ll < ln(0)llexp {A””""(K) il t} + —
¢ Amin(K) - L,D
N

= |[n(t)ll - _
)lmin(K) — LP

Exponentially fast

Lipschitz of NN

Guanya
Shi



Uncertain Dynamics => Uncertain Control

Overly Conservative

-.-*-.- Smooth Landing

~—— /

Worst Case Analysis: we might crash!

Note: analysisrequires propagatinguncertainty over time

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv



Certify Safety of Landing Trajectories

(Adversarial Analysis Based on Current Training Data)
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Empirical Visualization
(Pre-Collected Training Data, via Spectral Normalization)

Spectral Normalized Conventional DNN
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019



Adversarial Analysis of Tracking Error

€

Tracking Error: -
Amin (K) _ Lp

Need worst-case analysis
on test trajectory!

Robust Regression for Safe Exploration in Control
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Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv




Key Tool: Robust Regression

Angie
Liu

e Goal: learn P(y|x) that is robust to target distribution

Chosen Adversarially

argming Eptarget(x) ]Ep(y|x)L (y, ﬁg (y|X)) Minimize “surprise”

S.t.

P, (y|x) fits training data

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv



Robust Regression Guarantee

Robustness
under perturbation

Corollary 2. [The neural network case] Let neural networks ¢p(x) = F 4 (x) use L fixed nonlinear-
ities (01, ...,01,), which are p;-Lipschitz and 0;(0) = 0. Let reference matrices (C1, .., Cp,) be given,

as well as spectral norm bounds (s;)%_,, and Iy norm bounds (b;)l,. If \/>_; ||xi||3 < I, for robust
regression using network F 4 with weight matrices A = (A, ..., Ar) and maximum dimension of

each layer is at most D obey || A;||o < s, ||AL — Cl|l21 < by, and ||Fa(x)||2 < X, the following
holds with probability at least 1 — 9,

Ep,,, () [(y = f(2))?]

342%% [log 2
B2 2n

324X  288A42%%
<W |2RB+oy%) P+ 0+ = +

7
Bnz2 nB2] » ()

Inny/R.41n(2D2) +

3
where R 4 is the spectral complexity of networks F 4(x), R4 = (Hle s?p?) (ZiLzl (%)%) ; The

corresponding perturbation bounds for spectral normalized deep neural networks is,

wp [y F0)? < (@RE+03?) 2+ V) + (L ZRA) I

wEIB%(e),ny(m)

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv



Integration with Control

Theorem 2. Suppose x is in some compact set X, and €,, = sup,c y ||€||. Then & will exponentially

converge to the following ball: lim;_, . ||Z(t)|| = v - €m, where
)\maX(M) 1 5 Amax(A)
N ! 2. 12
! )\min (K)Amln(M) \/( >\min (A)) " ( i >\min (A) ) ( )

Worst-case uncertainty
in realized trajectory

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv
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Detecting Adversarial Examples via Neural Fingerprinting,
Sumanth Dathathri, Stephan Zheng, Tianwei Yin, Yisong Yue, Richard M. Murray, arXiv.

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue,
Soon-Jo Chung. ICRA2019

Robust Regression for Safe Exploration in Control
Angi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, arXiv



Center for Autonomous Systems and Technologies

A New Vision for Autonomy

Caltech

http://cast.caltech.edu




Autonomous Dynamic Robots




http://cast.caltech.edu
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