
Two	Vignettes	in	
Robust	Detection	&	

Adversarial	Analysis	in	Control

Yisong	Yue

Deep	learning	in	the	lab

fawn

ImageNet	Large	Scale	Visual	Recognition	Challenge,	Russakovsky et	al,	2012

Deep	learning	in	the	wild

“	I	want	to	use	deep	learning	to	optimize	the	design,						
manufacturing	and	operation	of	our	aircrafts.		But			
I	need	some	guarantees.	”				-- Aerospace	Director

Robustness	is	Essential	to	Real-World	Systems

• Many	different	concrete	formal	definitions.

The	behavior	of	system	should	be	stable	
under	disturbances to	the	environment	
the	system	is	operating	in.

Input/output	or	dynamical Smoothness	or	invariance

Adversarial	perturbations,	domain	shift,	etc.

Two	Vignettes	in	Robustness

• Low(-er)	dim.	description
• Robust	dynamical	behavior
• Certify	landing	won’t	crash

• High	dimensional	inputs	(images)
• Robust	input/output	behavior
• Detect	fake	images

Figure 1: Example of detecting adversarial examples using NFP with N = 2 fingerprints, for K-class
classification. '(x) is the model output. NFP separates real data x (top) from adversarial data
x
0 = x+ ⌘ (bottom) by comparing the sensitivity of the model to predefined perturbations around

unseen inputs with a reference sensitivity encoded around the manifold of real images during training.
The training for NFP forces the maximum softmax scores on in-distribution samples to be high, and
a threshold on the maximum softmax score distinguishes between real examples from adversarial.

In this work, we focus on bounded adversarial attacks, which produce small perturbations ⌘ that
cause mis-classification. This is a standard threat model, for an extensive review see [1]. More
generally, a bounded adversarial example causes a large change in model output, i.e. for �, ⇢ > 0,
k⌘k  �, we have kf(x + ⌘) � f(x)k > ⇢ such that the class predicted by the model changes:
argmaxj f(x+⌘)j 6= argmaxj f(x)j . An example bounded attack is the Fast-Gradient Sign Method
(FGSM) [14] which uses an input-space gradient: ⌘ / sign @L(x,y;✓)

@x . Since the perturbation ⌘ is
small, a perturbed image x

0 can be indistinguishable from x but still cause very different predictions.

Encoding Fingerprints into Network Response To defend DNNs against adversarial data, we
propose training networks with NFP. Training with NFP entails encoding fingerprints around the
data-distribution into the network response, and the network response can then be leveraged to detect
whether an input example x is real or adversarial. A defender using NFP begins by choosing input
perturbation(s) �x around x, and desired changes in the model response �y. Formally, we define a
fingerprint � as the tuple � , (�x,�y). For K-class classification, we define a set of N fingerprints:

�
i,j = (�x

i
,�y

i,j), i = 1, . . . , N, j = 1, . . . ,K, (2)
where �

i,j is the i
th fingerprint for class j. To characterize sensitivity, we define the function

F (x,�x
i) to measure the change in model output. A simple choice could be F (x,�x

i) = f(x+
�x

i)� f(x) (although we will use variations hereafter). Once a defender has constructed a set of
desired fingerprints �, the chosen fingerprints can be embedded into the network’s response by adding
a fingerprint regression loss during training. Given a classification model, the fingerprint loss is:

Lfp(x, y,�; ✓) =
NX

i=1

kF (x,�x
i)��y

i,k
k
2
2, (3)

where k is the ground truth class for example x and �y
i,k are the fingerprint outputs. Note that we

only train on the fingerprints for the ground truth class. The total training objective then is:

min
✓

X

(x,y)

(L0(x, y; ✓) + ↵Lfp(x, y,�; ✓)) , (4)

where L0 is a loss function (e.g. cross-entropy loss for classification) and ↵ a positive scalar. Hereafter,
we will use ↵ = 1 for brevity, but in practice, we choose ↵ to balance the task and fingerprint losses.
As noted before, the �x

i (�y
i,j) are chosen by the defender. Note that we use the same directions

�x
i for each class j = 1, 2 . . . ,K, and that �y

i,j can be either discrete or continuous depending on
f(x; ✓). Here, the goal of a defender is to minimize D(x, f,�i,j) for real data x.

Detecting Adversarial Examples We exploit the characterization described above to detect adver-
sarial examples by comparing F (x,�x

i) with the reference output-perturbation �y
i:

D(x, f,�·,j) , 1

N

NX

i=1

kF (x,�x
i)��y

i,j
k2. (comparison function) (5)

3

Detecting	Adversarial	Examples	via	Neural	Fingerprinting

Stephan
Zheng

Sumanth
Dathathri

Tianwei
Yin

Richard
Murray

Detecting	Adversarial	Examples	via	Neural	Fingerprinting,	
Sumanth Dathathri,	Stephan	Zheng,	 Tianwei Yin,	Yisong	Yue,	Richard	M.	Murray,	arXiv.

Adversarial	Examples

Given:	data	(x,	y), loss	function	L, and	model	parameters 𝜃,	an	attacker
tries	to	find	x’	=	x	+	dx	such	that:

A	defender	tries	to	find	a	𝜃,	mechanism,	…,	to	ensure	no	solutions	x’
exist	within	distance	𝛿 of	x.	

2014	- ...	:	ongoing	“arms	race”.
Many	attacks	and	defenses	have	been	proposed	in	recent	years.	
Many	defenses	have	been	broken	by	stronger	attacks.
Hard	to	(theoretically)	guarantee	robustness.

Landscape	of	Adversarial	Robustness	Regimes
Robust	Detection	vs	Prediction

adversarial!

monkey

non-adversarial :)

fawn

Black-Box/Grey-Box/White-Box

Black-Box: Attacker	only	
has	black-box	access	to	f.

Grey-Box: Attacker	has	
access	to	f,	training	data,	
but	not	to	a	secret	key.

White-Box: Attacker	has	
access	to	everything.

Neural	Fingerprinting	
Robust	Detection	under	Grey-Box	Adversarial	Attacks

• Given:	fingerprint 𝛥x, {𝛥yj},	and	a	trained	model	f.
• NFP	does	“local	consistency	check”	around	input	x.

yes → x is ok :)

no → x is adversarial!

Neural	Fingerprinting	
Robust	Detection	under	Grey-Box	Adversarial	Attacks

• Intuition: increasingly	hard	to	find	perturbation	dx that	conforms	
with	a	collection	of	(secret)	fingerprints!

Fingerprints:

Robust	Detection:

Training	with	Neural	Fingerprinting

• (Assume	fingerprints	already	chosen)

Original	Training	Loss Fingerprint	Training	Loss

k is	ground	truth	class

Visualizing	Fingerprint	Loss

• Toy	example,	2	classes,	4	fingerprints

Without	NFP With	NFP NFP	Loss	

(Theoretical	characterization	for	linear	models	in	paper)

Choosing	Fingerprints

• Choose	𝛥x, {𝛥yj} by	random	sampling.

p resampled	for	each	i

𝛼 = 0.25, 𝛽 = 0.75 (method	is	not	sensitive)

Grey-Box:	fingerprints	not	known	to	attacker
White-box:	fingerprints	known	to	attacker

Whole	Recipe

• Choose	Fingerprints	via	Random	Sampling

• Train	NN	model	w/	Fingerprint	Loss

• Deploy	NN	model
• Detects	fake	examples	while	also	doing	prediction

Grey-Box:	Near-Perfect	Detection	of	SotA Attacks

Grey-Box:	Near-Perfect	Detection	of	SotA Attacks

MNIST CIFAR-10

White-Box:	Robust	Against	Existing	Attacks

• We	subsequently	designed	new	attack	to	break	Neural	Fingerprinting	
in	Adaptive	White-Box	Setting.

Tianwei
Yin

Two	Vignettes	in	Robustness

• Low(-er)	dim.	description
• Robust	dynamical	behavior
• Certify	landing	won’t	crash

• High	dimensional	inputs	(images)
• Robust	input/output	behavior
• Detects	fake	images

Figure 1: Example of detecting adversarial examples using NFP with N = 2 fingerprints, for K-class
classification. '(x) is the model output. NFP separates real data x (top) from adversarial data
x
0 = x+ ⌘ (bottom) by comparing the sensitivity of the model to predefined perturbations around

unseen inputs with a reference sensitivity encoded around the manifold of real images during training.
The training for NFP forces the maximum softmax scores on in-distribution samples to be high, and
a threshold on the maximum softmax score distinguishes between real examples from adversarial.

In this work, we focus on bounded adversarial attacks, which produce small perturbations ⌘ that
cause mis-classification. This is a standard threat model, for an extensive review see [1]. More
generally, a bounded adversarial example causes a large change in model output, i.e. for �, ⇢ > 0,
k⌘k  �, we have kf(x + ⌘) � f(x)k > ⇢ such that the class predicted by the model changes:
argmaxj f(x+⌘)j 6= argmaxj f(x)j . An example bounded attack is the Fast-Gradient Sign Method
(FGSM) [14] which uses an input-space gradient: ⌘ / sign @L(x,y;✓)

@x . Since the perturbation ⌘ is
small, a perturbed image x

0 can be indistinguishable from x but still cause very different predictions.

Encoding Fingerprints into Network Response To defend DNNs against adversarial data, we
propose training networks with NFP. Training with NFP entails encoding fingerprints around the
data-distribution into the network response, and the network response can then be leveraged to detect
whether an input example x is real or adversarial. A defender using NFP begins by choosing input
perturbation(s) �x around x, and desired changes in the model response �y. Formally, we define a
fingerprint � as the tuple � , (�x,�y). For K-class classification, we define a set of N fingerprints:

�
i,j = (�x

i
,�y

i,j), i = 1, . . . , N, j = 1, . . . ,K, (2)
where �

i,j is the i
th fingerprint for class j. To characterize sensitivity, we define the function

F (x,�x
i) to measure the change in model output. A simple choice could be F (x,�x

i) = f(x+
�x

i)� f(x) (although we will use variations hereafter). Once a defender has constructed a set of
desired fingerprints �, the chosen fingerprints can be embedded into the network’s response by adding
a fingerprint regression loss during training. Given a classification model, the fingerprint loss is:

Lfp(x, y,�; ✓) =
NX

i=1

kF (x,�x
i)��y

i,k
k
2
2, (3)

where k is the ground truth class for example x and �y
i,k are the fingerprint outputs. Note that we

only train on the fingerprints for the ground truth class. The total training objective then is:

min
✓

X

(x,y)

(L0(x, y; ✓) + ↵Lfp(x, y,�; ✓)) , (4)

where L0 is a loss function (e.g. cross-entropy loss for classification) and ↵ a positive scalar. Hereafter,
we will use ↵ = 1 for brevity, but in practice, we choose ↵ to balance the task and fingerprint losses.
As noted before, the �x

i (�y
i,j) are chosen by the defender. Note that we use the same directions

�x
i for each class j = 1, 2 . . . ,K, and that �y

i,j can be either discrete or continuous depending on
f(x; ✓). Here, the goal of a defender is to minimize D(x, f,�i,j) for real data x.

Detecting Adversarial Examples We exploit the characterization described above to detect adver-
sarial examples by comparing F (x,�x

i) with the reference output-perturbation �y
i:

D(x, f,�·,j) , 1

N

NX

i=1

kF (x,�x
i)��y

i,j
k2. (comparison function) (5)

3

Robust	Regression	for	Safe	Exploration	in	Control

Guanya
Shi

Anima
Anandkumar

Soon-Jo
Chung

Angie
Liu

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Stable	Drone	Landing

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		ICRA	2019

Ground	effect

Guanya
Shi

Robust	Landing	Control	 (with	pre-collected	data)

PD PID Neural-Lander	(PD+Fa)

https://www.youtube.com/watch?v=C_K8MkC_SSQ

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics Guanya Shi,	Xichen Shi,	Michael	
O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	 Yisong	Yue,	Soon-Jo	Chung.	 	ICRA	2019

Controller	Design	(simplified)

• Nonlinear	Feedback	Linearization:

• Cancel	out	ground	effect	𝐹'(𝑠, 𝑢,-.):

𝑢0,1203- = 𝐾6𝜂 𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired	Trajectory
(tracking	error)

𝑢 = 𝑢0,1203- +	𝑢>?62.@3-

(time	delay)

Feedback	Linearization	(PD	control)

Requires	Lipschitz	&	small	time	delay

Stability	Guarantee:	
(simplified)

𝜂(t) ≤ 𝜂(0) exp
𝜆120 𝐾 − 𝐿'𝜌

𝐶 𝑡 +
𝜖

𝜆120 𝐾 − 𝐿'𝜌

⟹ 𝜂(t) →
𝜖

𝜆120 𝐾 − 𝐿'𝜌 Exponentially	fast

Unmodeled	
disturbance

Lipschitz	of	NN

Time	delay

Guanya
Shi

Uncertain	Dynamics	=>	Uncertain	Control

Crash!

Smooth	Landing
Overly	Conservative	

Worst	Case	Analysis:	we	might	crash!
Note:	analysis	requires	propagating	uncertainty	over	time

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Certify	Safety	of	Landing	Trajectories
(Adversarial	Analysis	Based	on	Current	Training	Data)

Empirical	Visualization
(Pre-Collected	Training	Data,	via	Spectral	Normalization)

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		ICRA	2019

Vertical	Velocity	(m/s)

He
ig
ht
	(m

)

Ground	Effect	(N
)

Spectral	Normalized Conventional	DNN

Adversarial	Analysis	of	Tracking	Error

𝜖
𝜆120 𝐾 − 𝐿'𝜌

Need	worst-case	analysis	
on	test	trajectory!

Tracking	Error:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Top Row. Results on the pendulum task: (a) the first, (b) the third, and (c) the fifth iteration
phase portrait of angle and angular velocity, dashed line shows the worst-case possible trajectory in
tracking, according to Theorem 2; heatmap shows the prediction of unknown dynamics (the wind);
(d) the unknown dynamics ground truth. Bottom Row. Results on the drone landing task: (e) the
first, (f) the fifth, and (g) the tenth iteration phase portrait with height and velocity; heatmap shows
the prediction of unknown dynamics (the ground effect); (h) the ground effect ground truth.

4 Experiments

We conduct experiments on simulation on the inverted pendulum and drone landing examples as
discussed in Section 3.1. We use kernel density estimation to estimate density ratios. We demonstrate
that our approach can reliably and safely converge to optimal behavior. We also compare with a
Gaussian process (GP) version of Algorithm 2. In general, we find that it is difficult to tune kernel
parameters, and all GP models underperform compared to our approach.

Example 1 (inverted pendulum with external wind). Recall that the safety set is S = {(↵, ↵̇) :
|↵| < 1.5} in the pendulum case, and the final control goal is to track ↵d(t) = sin(t). Therefore our
desired trajectory pool is P(C) = {↵d(t) = C ·sin(t), 0 < C  1}. The ground truth of wind comes
from quadratic air drag model. We use the angle upper bound in trajectory as the reward function
for choosing “most aggressive" trajectories. Figure 4 demonstrates the exploration process with
selected desired trajectories, worst-case tracking trajectory under current dynamics model, tracking
trajectories with the ground truth unknown dynamics model, and actual tracking trajectories. Here
we use base distribution N (0, 0.4) to start with and � = 0.5. As shown in Figure 4 (a) to (c), the
algorithm selects small C to guarantee safety at the beginning, and gradually is able to select larger
C values and track it with small error.

Example 2 (drone landing with ground effect) Recall that the safety set is S = {(z, ż) :
when z = 0, ż > �1}, which means the drone can not hit the ground with high velocity. Our desired
trajectory pool is P(C, hd) = {zd(t) = e�Ct(1+Ct)(1.5�hd)+hd, 0 < C, 0  hd < 1.5}, which
means the drone smoothly moves from z(0) = 1.5 to the desired height hd. If hd = 0, the drone
lands successfully. Note that greater C means faster landing. We use smaller landing time as the
reward function that determines the next “aggressive" trajectory. The ground truth of aerodynamics in
landing comes from a dynamics simulator that is trained in [10], where d(z, ż) is a four-layer ReLU
neural network trained by real flying data. Here we use base distribution N (0, 1) for robust regression
and � = 1. Results in Figure 4(e) to (g) demonstrate that, because of the lack of aerodynamics
d(z, ż), hd = 0 and big C may not be safe at the beginning. Starting from conservative desired
trajectories, the safe exploration using robust regression is able to track more aggressive desired
trajectory with hd = 0 and big C while staying safe.

7

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Vertical	Velocity	m/s
He

ig
ht
	m

Key	Tool:	Robust	Regression

• Goal:	learn	P(y|x)	that	is	robust	to	target	distribution	

𝑎𝑟𝑔𝑚𝑖𝑛S𝔼UVWXYZV [𝔼U(\|[)𝐿(𝑦, 𝑃S(𝑦|𝑥))

Angie
Liu

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

s.t.

𝑃S 𝑦 𝑥 	fits	training	data

Chosen	Adversarially

Minimize	“surprise”

Robust	Regression	Guarantee

bound holds with probability at least 1� �,

EPtrg(x,y)[(y � f̂(x))2]  W

2

4(2RB + ��2
0)�1 + �+ 4MR̂S(F) + 3M2

s
log 2

�

2n

3

5 .

If we assume that target data samples x’s stay in a ball B(✏) with diameter ✏ from the source data
S, B(✏) = x| sup

x02S
k x� x0

k  ✏, the true function f(x) is Lipschitz continuous with constant L,
and the robust regression mean estimator f̂ is also Lipschitz continuous with constant L̂, then,

sup
x2B(✏),y⇠f(x)

[(y � f̂(x))2]  ((2RB + ��2
0)�1/2 +

p

�+
⇣
L+ L̂

⌘
k✏k)2. (5)

We can further upper bound the Rademacher complexity if we know the function class.
Corollary 1. [The linear case] If H is linear function class with k ✓xk  A, i.e. we only use linear
features for �(x), and sup

x2S
k xk  X, the following holds with probability at least 1� �,

EPtrg(x,y)[(y � f̂(x))2]  W

2

4(2RB + ��2
0)�1 + �+

8A2X2

B2
+

3A2X2

B2

s
log 2

�

2n

3

5 .

The corresponding perturbation bounds for a linear function class is,

sup
x2B(✏),y⇠f(x)

(y � f̂(x))2  ((2RB + ��2
0)�1/2 +

p

�) +

✓
L+

A

B

◆
||✏||)2. (6)

For deep robust regression, we utilize spectral normalized deep neural networks [9] and upper bound
the Radermacher Complexity using the bounded spectral complexity [9].
Corollary 2. [The neural network case] Let neural networks �(x) = FA(x) use L fixed nonlinear-
ities (�1, ...,�L), which are ⇢i-Lipschitz and �i(0) = 0. Let reference matrices (C1, .., CL) be given,
as well as spectral norm bounds (si)Li=1, and l1 norm bounds (bi)Li=1. If

pP
i
||xi||

2
2  I , for robust

regression using network FA with weight matrices A = (A1, ..., AL) and maximum dimension of
each layer is at most D obey ||Ai||�  si, ||AT

i
� CT

i
||2,1  bi, and ||FA(x)||2  X, the following

holds with probability at least 1� �,

EPtrg(x,y)[(y � f̂(x))2]

 W

2

4(2RB + ��2
0)�1 + �+

32AX

Bn
3
2

+
288A2X

nB2I
lnn

p
RA ln(2D2) +

3A2X2

B2

s
log 2

�

2n

3

5 , (7)

where RA is the spectral complexity of networks FA(x), RA :=
⇣Q

L

j=1 s
2
j
⇢2
j

⌘⇣P
L

i=1(
bi
si
)

2
3

⌘3
; The

corresponding perturbation bounds for spectral normalized deep neural networks is,

sup
x2B(✏),y⇠f(x)

[(y � f̂(x))2]  ((2RB + ��2
0)�1/2 +

p

�) +

✓
L+

A

B
RA

◆
||✏||)2 (8)

3 Control with a Robust Regression Dynamics Estimator

We propose to learn the non-linear dynamics using deep robust regression under covariate shift, which
is used to safely explore and collect data to improve model accuracy and derive improved control
polices.1 In order to connect learning to control, we need to adapt the general analysis of robust
regression to fit the control context, i.e., to analyze entire trajectory behaviors. Instead of assuming
the target data is IID samples from a static target data distribution, which can be too conservative
considering robustness on a large target data distribution consisting of all possible unseen states, we
propose to only consider one trajectory as the targe data distribution at a time, and to use robust
dynamics regression to establish safety and stability guarantees. We then enlarge the set of safe
trajectories episodically by collect training data along the executed trajectory and update the dynamics
model accordingly. We now introduce the dynamics model and controller design. Note that all the
norms in this section are the 2-norm. All proofs are in the appendix.

1 Note that robust regression is also applicable to the standard experimental design setting (e.g., Bayesian
optimization), and we conduct an empirical evaluation of that setting in the Appendix A.2.6.

4

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Robustness
under	perturbation

Integration	with	Controlwe define target data in a specific set and use robust regression for learning dynamics. We show
kx(t)� xd(t)k , kx̃(t)k (Euclidean distance between the desired trajectory and the real trajectory)
is bounded when the error of the dynamics estimation is bounded. Again, recall that x = [q, q̇] is our
state, and xd(t) is the desired trajectory.
Theorem 2. Suppose x is in some compact set X , and ✏m = sup

x2X k✏k. Then x̃ will exponentially
converge to the following ball: limt!1 kx̃(t)k = � · ✏m, where

� =
�max(M)

�min(K)�min(M)

s

(
1

�min(⇤)
)2 + (1 +

�max(⇤)

�min(⇤)
)2. (12)

3.4 Safe exploration algorithm

Algorithm 2 Safe Exploration for Control using
Robust Dynamics Estimation

Input: Pool of desired trajectories with parame-
ter k, xk

d(t), k = 1, 2,,K, cost function J , ro-
bust regression model of dynamics f , controller U ,
safety set S, base distribution N (µ0,�

2
0), parame-

ter �
Dynamics model f0 = N (µ0,�

2
0)

Training set = ;, f = f0

While t = 1, ..., T
Safe trajectory list L = ;
For i = 1, ...,K

Predict (µ,�2) = f(xk
d(t))

�m = max�(xk
d(t)); ✏m = ��m

If worst-case trajectory in S
Add x

k
d(t) to L

Track x
⇤
d(t) = argminxd(t)2L J(xd(t))

to collect data x
0(t) using controller U

Add data x
0(t) to Training set

Train dynamics model f 0, f = f
0

Output: dynamics model f , last desired trajectory
xT (t) and actual trajectory x

0
T (t)

Theorem 2 indicates that if we can design a com-
pact set X and find the corresponding maximum
error bound ✏m = sup

x2X k✏k on it, we can use
it to decide whether a trajectory in this set is safe
or not by checking whether its worst-case possible
tracking trajectory is in the safety set S.

In practice, we design a pool of desired trajectories
and use the current predictor of the dynamics to
find the worst-case possible tracking trajectory for
each of the desired ones. Note that the worst-case
tracking trajectories can be computed by generat-
ing a “tube" using euclidean distance in Theorem 2.
We then eliminate unsafe ones and choose the most
“aggressive" one in terms of the primary objective
function for the next iteration. Instead of evaluat-
ing the actual upper bound, we use �maxx �(x)
for measuring ✏m as an approximation, since it
is guaranteed that the error is within �maxx �(x)
with high probability as long as the prediction is a
Gaussian distribution, if the true function is drawn
from the same distribution. We refer a detailed dis-
cussion to Appendix A.1.2. Algorithm 2 describes
this safe exploration procedure.

3.5 Convergence analysis

We show that using Algorithm 2, we are able to reach optimality in terms of learning the dynamics
model, i.e. converge to the optimal predictor in the function class.
Theorem 3. If there exists an optimal predictor f⇤ in function class F , f⇤ = argmin

f2F,x2X (y �
f(x))2, with mean and variance estimates (µ⇤(x),�2(x)⇤), the sequence of estimator from robust
regression in each step consist of µ0, µ1, ..., µt and �0,�1, ...,�t, for any ✏, the output of Algorithm 2
converge to f⇤, kf̂(x)� f⇤(x)k  ✏ with T as the smallest integer that satisfies the following with
at least probability 1� �:

TX

t=1

tX

i=1

s

2(�2
i
(x) + �2

i�1(x)) log

✓
|X |

2�

◆
+ (µt(x)� µ⇤(x))  T ✏. (13)

Given the convergence of the dynamics model, we can prove the optimal desired trajectory is collected
and tracked with good control performance at the end.
Corollary 3. If there exist an optimal trajectory parameter k⇤ for the controller to track x⇤

d
(t) safely

and obtain minimal cost function among all the safe trajectories when the estimated dynamic model
f̂(x) satisfies kf̂(x) � f⇤(x)k  ✏ for all x 2 X , x⇤

d
(t) is collected by Algorithm 2, as well as

being tracked with kx0(t)� x⇤
d
(t)k  �✏ for all t, with � in Theorem 2, where x0(t) is the tracking

trajectory using f⇤(x) as dynamics estimation.

6

Worst-case	uncertainty	
in	realized	trajectory

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Results
(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Top Row. Results on the pendulum task: (a) the first, (b) the third, and (c) the fifth iteration
phase portrait of angle and angular velocity, dashed line shows the worst-case possible trajectory in
tracking, according to Theorem 2; heatmap shows the prediction of unknown dynamics (the wind);
(d) the unknown dynamics ground truth. Bottom Row. Results on the drone landing task: (e) the
first, (f) the fifth, and (g) the tenth iteration phase portrait with height and velocity; heatmap shows
the prediction of unknown dynamics (the ground effect); (h) the ground effect ground truth.

4 Experiments

We conduct experiments on simulation on the inverted pendulum and drone landing examples as
discussed in Section 3.1. We use kernel density estimation to estimate density ratios. We demonstrate
that our approach can reliably and safely converge to optimal behavior. We also compare with a
Gaussian process (GP) version of Algorithm 2. In general, we find that it is difficult to tune kernel
parameters, and all GP models underperform compared to our approach.

Example 1 (inverted pendulum with external wind). Recall that the safety set is S = {(↵, ↵̇) :
|↵| < 1.5} in the pendulum case, and the final control goal is to track ↵d(t) = sin(t). Therefore our
desired trajectory pool is P(C) = {↵d(t) = C ·sin(t), 0 < C  1}. The ground truth of wind comes
from quadratic air drag model. We use the angle upper bound in trajectory as the reward function
for choosing “most aggressive" trajectories. Figure 4 demonstrates the exploration process with
selected desired trajectories, worst-case tracking trajectory under current dynamics model, tracking
trajectories with the ground truth unknown dynamics model, and actual tracking trajectories. Here
we use base distribution N (0, 0.4) to start with and � = 0.5. As shown in Figure 4 (a) to (c), the
algorithm selects small C to guarantee safety at the beginning, and gradually is able to select larger
C values and track it with small error.

Example 2 (drone landing with ground effect) Recall that the safety set is S = {(z, ż) :
when z = 0, ż > �1}, which means the drone can not hit the ground with high velocity. Our desired
trajectory pool is P(C, hd) = {zd(t) = e�Ct(1+Ct)(1.5�hd)+hd, 0 < C, 0  hd < 1.5}, which
means the drone smoothly moves from z(0) = 1.5 to the desired height hd. If hd = 0, the drone
lands successfully. Note that greater C means faster landing. We use smaller landing time as the
reward function that determines the next “aggressive" trajectory. The ground truth of aerodynamics in
landing comes from a dynamics simulator that is trained in [10], where d(z, ż) is a four-layer ReLU
neural network trained by real flying data. Here we use base distribution N (0, 1) for robust regression
and � = 1. Results in Figure 4(e) to (g) demonstrate that, because of the lack of aerodynamics
d(z, ż), hd = 0 and big C may not be safe at the beginning. Starting from conservative desired
trajectories, the safe exploration using robust regression is able to track more aggressive desired
trajectory with hd = 0 and big C while staying safe.

7

Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Guanya
Shi

Xichen
Shi

Michael
O’Connell

Kamyar
Azizzadenesheli

Rose
Yu

Anima
Anandkumar

Soon-Jo
Chung

Detecting	Adversarial	Examples	via	Neural	Fingerprinting,	
Sumanth Dathathri,	Stephan	Zheng,	 Tianwei Yin,	Yisong	Yue,	Richard	M.	Murray,	arXiv.
Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	 Yisong	Yue,	
Soon-Jo	Chung.		ICRA	2019
Robust	Regression	for	Safe	Exploration	in	Control
Anqi Liu,	Guanya Shi,	Soon-Jo	Chung,	Anima	Anandkumar,	 Yisong	Yue,	arXiv

Angie
Liu

Stephan
Zheng

Sumanth
Dathathri

Tianwei
Yin

Richard
Murray

A New Vision for Autonomy

Center for Autonomous Systems and Technologies

http://cast.caltech.edu

6.3 Summary of Facilities, Equipment, and Other Resources
The Center for Autonomous Systems and Technologies (CAST) at Caltech, directed by Prof.
Gharib, promotes interdisciplinary research and the exchange of ideas in the expanding area of
autonomous systems (). These systems include, but are not limited
to, drones and robots for use in science, industry, and medicine. The research conducted by the
center addresses sensing, control, vision, and other emerging areas. Currently, drones are highly
unstable flyers and are prone to atmospheric conditions. CAST’s unique open air wind tunnel
facility, shown in Fig. 13, allows researchers to study the complexity and challenges of control and
stability associated with autonomous single or collective drone systems. Drone performance can be
tested and studied under severe atmospheric conditions such as rain, hail, sandstorms, turbulence,
and gust.

Figure 13: Caltech’s CAST drone research
facilities.

The CAST-facility is built of 8,230 square feet (765
m2) of specialized lab including: high-bay drone &
robotic testing facility, fabrication lab & assembly area,
and o�ces, meeting rooms, visiting sta� o�ces and re-
strooms. 4,300 square feet (399 m2) is located inside the
first floor of the Karman Laboratory and enclose 1800
square feet (167 m2) of outside laboratory space where
the wind tunnel system and drone flight arena is located.

The CAST wind tunnel facility in (Figs. 3 & 13), at
its core, provides a paradigm change in the field of multi-
functional wind tunnels, by incorporating a wide variety
of flow conditions in a space e�cient package. Introduc-
ing a new technique of generating flow patterns not de-
pendent upon obstacle geometries (which result in major
pressure losses) allows an open loop tunnel concept to be
implemented, maximizing test section size in a limited
space environment. To meet recent research challenges
and open new fields of wind tunnel testing, Co-PI Gharib
and his students have built an innovative concept of a con-
figurable 10-foot-by-10-foot multi-fan array of 1296 fans
capable of generating wind speeds of up to 44 mph, with
a side wall of 324 fans to create a crosswind. The wall is
capable of creating a nearly infinite variety of wind con-
ditions for drones to learn to react to– everything from
a light gust to a stormy vortex. It can also be tilted 90
degrees to simulate vertical take o�s and landings.

A real-time optical tracking system, comprised of 48
IR cameras, is implemented throughout the entire outdoor
drone arena of the CAST facility, including a designated
subsystem for the wind tunnel test section, to relay de-
tailed positioning information to the user. This setup al-
lows drones to enter and exit the test section as desired

but remain actively tracked and controlled throughout all of the CAST facility. The setup consists

15

Autonomous	Dynamic	Robots

of an arrangement of high precision cameras placed throughout the capture space which can locate
an object three-dimensionally with sub-millimeter accuracy. The location information, for exam-
ple, can be fed back wirelessly to a control system to position one or more drones flying in the test
section with 200-micron accuracy.

Figure 14: Caltech’s Lucas wind tunnel
(1.3 m tall and 1.8 m wide)

The John W. Lucas Wind Tunnel at Caltech is a
medium-sized, low-speed wind tunnel with a 4.3 feet (1.3
meters) tall, 5.9 feet (1.8 meters) wide and 24.6 feet (7.5
meters) long test section. The closed circuit tunnel uti-
lizes a 670 hp (500 kW) synchronous motor driving a
16-blade variable pitch fan and can achieve flow speeds
up to 168 mph (75 m/s). It uses adaptive wall technol-
ogy to minimize the wall interference and reduce the need
for data corrections required in straight-wall tunnel tests.
Based on the measured pressure distribution around the
investigated model the wall contour is adapted to the cur-
rent model configuration to mimic an infinite flow field.
Equipped with a highly accurate 6-component strain gage balance, this tunnel provides precise data
about aerodynamic forces and moments. In addition, the Lucas Wind Tunnel is designed to facili-
tate particle image velocimetry (PIV) measurements, which enables a full dynamic characterization
of the flow field around any investigated model. The equipment was originally designed to fit within
the confines of the 90 x 30 x 20 feet (27.4 x 9.1 x 6.1 m) room in which it sits.

Figure 15: Prof. Chung’s space drone sim-
ulator facility.

The Aerospace Robotics and Control Laboratory at
Caltech, directed by PI Chung, has the facility and equip-
ment to develop full-autonomous aerial robots, such as
robotic multicopter systems with custom onboard autopi-
lot systems and single-board computers for computer-
vision based navigation and control, and robotic flapping
flying bats (AFOSR Young Investigator Award, 2009-
2011 and NSF CAREER Award 2013-2018). Our new
spacecraft research laboratory consists of a large space-
craft fabrication space with a clean room and one of the
largest spacecraft motion simulation flat floors among
university laboratories. The lab is also equipped with 3-
D printers for rapid prototyping of novel UAV designs,
multiple oscilloscopes, function generators, and real-time

control computers. The lab also has a state-of-the-art motion capture system for rapid implementa-
tion of control algorithms and two MarkForge Carbon Fiber 3D printers for fabricating lightweight
UAV wing and body structures. The Aerospace Department at Caltech (GALCIT) owns an ad-
vanced machine shop that is equipped with multiple 3D printers (SLS), laser cutters, and various
metalworking tools ().
6.4 Current and Pending Support
A separate document for listing funding and research activities of the PI and Co-PI in on-going and
pending research projects is attached into the R&R Senior / Key Person Profile Form.

16

All the tasks will be performed on campus at the two universities: Caltech and GaTech.
There are no human or animal subjects involved. We will release the data collected on robot
measurements in the wind tunnel for drones and from the walking lab for bipedal robots. We
will also release the trained AI models as well as the software code, and make experiments
reproducible. The outcomes will be published at top AI and robot venues and the technical
reports will be made available.

6 Learning-Based Flight Control Algorithms

Objectives: By leveraging the successful development and implementation of our guid-
ance, navigation, and flight control algorithms with the proposed algorithms to learn high-
fidelity 6-DOF flight dynamic models under various perturbations, we will further improve
a three-way trade-o↵ among robustness, computational e�ciency, and optimal performance
characteristics of our flight control and autonomy systems in this project.

Motivation: The recent successes of supervised machine learning have spurred great
interest in applying data-driven methods to virtually every domain. However, existing ma-
chine learning approaches cannot e↵ectively capture the full complexity of many real-world
settings such as adversary wind conditions for nonlinear flight stability. Thus far, the adop-
tion of data-driven techniques in such domains is piecemeal and ad-hoc, and is increasingly
a bottleneck in the development of systems that feature unconventional complicating factors
such fast interactions between environments, unsteady aerodynamics, and nonlinear flight
dynamics. We will develop an integrated approach that holistically combines principles from
learning theory with those from system-theoretic disciplines such as optimal and robust
stochastic nonlinear control.

Figure 1. Autonomous flight of Caltech’s electric VTOL with

dynamically-sweeping wings (Fig. ??) under a wide spectrum of

severe wind conditions generated by the 1296-fan-array.

Guidance and control strategies
for highly maneuvering flight will
be designed to operate at multi-
ple timescales: the outer loop will
run an order of magnitude slower
than the flight dynamics in SE(3),
while transition maneuvers will be
controlled at the same time scale
as the flight dynamics. We will
develop (1) optimal agile motion
primitives utilizing flight data col-
lected with CAST’s open air wind
tunnel (see Fig. 1) and simula-
tion of reduced-order aeromechan-
ical models, which are fed into
the inner loop around the flight
controllers , and (2) a maneuver-
specific motion planning algorithm
that will make high-level decisions
to smoothly sequence qualitatively di↵erent maneuvers such as gliding, 3D turning, div-

9

Mory Gharib

Anima	Anandkumar

Soon-Jo	Chung

Yisong	Yue

Aaron	Ames

Joel	Burdick

Postdoc	Openings!
(applications	considered	

starting	January)

http://cast.caltech.edu

Pietro	PeronaKatie	Bouman

