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PO“CV Lea rning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

ReinforcementLearning:
Optimize environmental reward

State/Context s,

St+1

>

Agent

Environment/ World

Action a,




Policy Learning is Hard

* Long time horizons State/Context s,

e Sparse or expensive feedback

St+1

Agent

S S

* Exponential in time horizon
e (reinforcement learning)

* Infeasible to obtain sufficient demonstrations
e (imitationlearning)

Environment/ World

Action a,
(oru,)




Example: Learning to Search (Combinatorial Optimization)

State = partial solution
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max — Z P © Sl IO SR O B © IR
i=1

subject to: »

r1 + a9 > 1.
ro + a3 > 1.

rg + x4 > 1, Action = variable
- selection or branching
r3 + x5 > 1.

ry + x5 > 1. /
xr; € {0,1},Vi e {1,--- .5} Sparse Reward

@ feasible solution

[He et al., 2014] [Song et al., arXiv]



Learning from Multiple Views

Example: Minimum Vertex Cover
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max — E i,

1=1
subject to:
r1 + a9 > 1,
To + I3 Z 1
r3 + x4 > 1.
r3 + x5 > 1,

Ta +as > 1.
/ L4 5 — 4,
(3) (») v € {0,1),Vie {1,---,5)

Graph View Integer Program View
(Branch & Bound View)

[Khalil et al., 2017] [He et al., 2014]




Learning from Multiple Views

Example: Different Types of Integer Programs
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Co-Training [Blum & Mitchell, 1998]

* Many learning problems have different sources of information

* Webpage Classification: Words vs Hyperlinks
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What's Different about Policy Co-Training?

* Sequential Decisions vs 1-Shot Decisions

* (Sparse) Environmental Feedback
* Can collect more “labels” (Not always applicable)

5
max — E i,
i=1

subject to:

r1+ a9 > 1,

ro +x3 > 1,

r3 + x4 > 1,

T3+ x5 > 1.

Ty + x5 > 1,

x; € {0,1},Vie {1,---,5}

* Different Action Spaces
e Graph vs Branch-and-Bound




[1] “Learning combinatorial optimization algorithms over graphs” [Khalil et al., 2017]
[2] “Learning to Search in Branch and Bound Algorithms” [He et al., 2014]

I n t u it i O n [3] “Learning to Search via Retrospective Imitation” [Song et al., 2019]

E.g., [1]

MVC Instance

5
max — g €T,

1=1

subject to:
E.g., [2,3] T+ 20 > 1,
To + a3 > 1,
xr3 + x4 > 1,
xr3 + x5 > 1,
xy + x5 > 1,
x; € {0,1},Vie {1,--- .5}



[1] “Learning combinatorial optimization algorithms over graphs” [Khalil et al., 2017]
[2] “Learning to Search in Branch and Bound Algorithms” [He et al., 2014]

I n t u it i O n [3] “Learning to Search via Retrospective Imitation” [Song et al., 2019]

7'[1
E.g., [1]
MVC Instance

max — Zl €T;.
subject to: z1 =0

E.g., [2,3] T+ a9 > 1, 7.[2 Ty =
To +ax3 > 1, > z3 =1 Better!
xr3 + x4 > 1, Ty =
T3+ x5 > 1, 5 =0

€X'y +.I'5 Z 1,
x; € {0,1}.Vie {1,---,5}



Intuition

MVC Instance

E.g., [1]

E.g., [2,3]

[1] “Learning combinatorial optimization algorithms over graphs” [Khalil et al., 2017]
[2] “Learning to Search in Branch and Bound Algorithms” [He et al., 2014]
[3] “Learning to Search via Retrospective Imitation” [Song et al., 2019]
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max — g €T,

i=1

subject to:

xr1 + a9 > 1,
To + a3 > 1,
xr3 + x4 > 1,
xr3 + x5 > 1,
xy + x5 > 1,

z; € {0.1}.Vi e {1,--- .5}
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Demonstration

Better!



Theoretical Insight

* Different representations differ in hardness
e Goal: quantify improvement

(),: representation 2 easier

(),: representation 1 easier

Q: all problems



(Towards) a Theory of Policy Co-Training

e Two MDP “views”: M1 & M? SR
. subject to:
e f172(71) = t2 (and vice versa) o bar >,
To +x3 > 1,
“Trajectory” / “Rollout” v+ @4 2 1,
T3+ x5 > 1,
.. 1 1 .. 2 2 rq+ x5 > 1,
* Realizingt™ on M+ & realizingt“on M

* Question: when does having two views/policies help?
* Policy Improvement (next slide)
* Buildsupon[Kanget al., ICML 2018]

e Optimality Gap for Shared Action Spaces (in paper)
* Buildsupon [DasGuptaetal., NeurlPS 2002]

z; € {0,1},Vie {1,--- .5



Policy Improvement Bound

Q: allinstances

Standard for 1-step suboptimality JS Divergence of Want to Minimize
Policy Gradient of 7l on n?vs mlon 2,
KL Divergence of ' vs 7’1 on .(2\ / 1-step suboptimalityof 72 on (2,
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/ Vo o T
Performance Approximation by : |
: : 1 Discount Performance Gap of 72 over ! on 2,:
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Want to Maximize
Builds upon theoretical results from [Kang et al., ICML 2018]



Policy Improvement Bound (Summary)

2y (apes + 4B3 €5)
(1—-y)°

J@) = (@)
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- 62

* Minimizing ,85222 - low disagreement between 2 vs 1

* Maximizing 552 - high performance gap 2 over ©! on some MDPs



CoPIEr Algorithm (Co-training for Policy Learning)

‘ Sample M~} » Rollout

Runnm! » 71 Runm? - 2
Update (only showing 1 view)
Augmented Obj: J(r") = |, (m") — AL(wt', ") max =3
. subject to:
Take gradient step o 1
To + X3 Z 1,
t T3+ x4 > 1,
r3 + x5 > 1,
. . Ty + x5 > 1,
Exchange (only showing 1 version) x; € {0.1}.Vi € {1,--- .5}
1 12— 12,1 1 _
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If T2 better: 't = f221(7%), 72 = ¢



BETTER

<

Performance gap compared to CoPiEr Final
o
(9.4]

Performance comparison for Minimum Vertex Cover

Strong vs Baselines mmm Gurobi BN Graph (CoPiEr) (El"ggsgggr\‘l‘;'mces)

1.6 (W/O Co-Training) B Graph (R.L) . B ILP (Retrospective imitation)
BN non-CoPiEr Final ~ mmmm ILP (CoPiEr) RL on Graph View
1.4 / B ILP (DAgger) BB CoPiEr Final [Khalil et al., 2017]

IL on MILP View
[He et al., 2014]
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CoPiEr Final Outperforms
Individual Views
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Strong vs Gurobi

&
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More experiments
in paper

100-200 200-300 300-400 400-500
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Co-Training for Policy Learning (summary)

* First formal framework for policy co-training

I INSI 2v(ajed + 4B3 &?
* Novel theoretical insights ) s ety 2 n(f_y)ﬂznz 8,) 2,
* Principled algorithm design gy [ssmviei=a) mp Rollout
Update (only showing 1 view) By Run 1'[sz +
Augmented Obj: j(r') = J(n") — AL(n’,T") /@ '“‘“" -2 %
. Take gradient step et
e Strong experimental results Y i
Exchange (only showing 1 version) ® ® ercln :lv} - five 5
izt better:72 =f12(zY), 7't =0 . ML M2

If 2 better: 1 = f2°1(¢2),72 =0
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Notation

Transition P(s’|s,a)

N
* MDP: M = (S,A,P,1,v,57).

X .\ Terminal State

Discount Factor

State Space Reward r(s,a)

Action Space (either RL or IL)

* Policy (or agent): m(s) = a

* Qr(s,a) = E| Yoy 'r(ssar)|so =s, a9 = a

* Ap(s,a) = Q(s,a) — V;(s)

* Goal: maximize J () = Ey s, [V (s0)]

A
(Over Distribution of MDPs)

State/Context s,

Agent

| St

Environment/ World

A

Action a,
(oru,)

'y

Value Function
Q Function

Advantage Function

(E.g., via Policy Gradient)




Policy Improvement Bound (detailed)

max max|A4.z2(s,a
Mesupp(2,) s,a | nz( )l

Eni~q |max Dy, ( () |7 ()
Eyi-aq, | max D5 (s)llm*(s)) /

y(4B5,€6, + anes
J@t) = ]7Tz1 (') (i _zy)z T 55222
New policy Sampled via ! Discount/v [

J (@M ~023) — J (| M~025)

Builds upon theoretical results from [Kang et al., ICML 2018]
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Performance gap compared to CoPiEr Final

Performance comparison for Risk-Aware Path Planning

CoPIEr Final

MILP (DAgger)
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. Gurobi (MILP) B MILP (CoPiEr)
20 BN QCQP (DAgger) B non-CoPiEr Final (DAgger)
BN QCQP (Retrospective Imitation) I non-CoPiEr Final (Retrospective Imitation)
N QCQP (CoPiEr) Bl non-CoPiEr Final
— [
—1

15

15x18 17x18 19x18 21x18
(1080) (1224) (1368) (1512)

# Waypoints x # obstacles
(#Binary variables in MILP)

Chance-Constrained
Path Planning
[Ono & Williams, 2008]

ILon MILP

ILon QCQP

[He et al., 2014]
[Song et al., arXiv]



431139

Swimmer Hopper
I ———————————————— =
3 A (CoPiEr) B (PG)
00 === A(PG) === B (ANl
——— A (AN) A+B
250 —— B (CoPiEr)
3
© 200
@
?150
<
100
== A (CoPiEr) ¥, g .
-=== A (PG) -=== B (AN) 50 P Ao
A (AN) A+B -
~—— B (CoPiEr) 0
Q i} 40 &0 80 100 0 p) 50 75 100 125 150 175 200 D 100 20 30 200 50
Reratiors Iterations Iterations

OpenAl Gym & Mujoco
Partitioned state space into two views
Shared action space

RL on both views



