
Co-Training	for	Policy	Learning

Jialin Song Ravi	Lanka Hiro	OnoYisong	Yue

Agent

Environment	/	World

Action	at

st+1

State/Context	stGoal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

Policy	Learning		(Reinforcement	&	Imitation)

Policy	Learning	is	Hard

• Long	time	horizons

• Sparse	or	expensive	feedback

• Exponential	in	time	horizon	
• (reinforcement	learning)

• Infeasible	to	obtain	sufficient	demonstrations
• (imitation	learning)

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)

Example: Learning	to	Search	(Combinatorial	Optimization)

★

Sparse	Reward
@	feasible	solution

State	=	partial	solution

Action	=	variable	
selection	or	branching

[He	et	al.,	2014]	[Song	et	al.,	arXiv]

Learning	from	Multiple	Views

Graph	View Integer	Program	View
(Branch	&	Bound	View)

Example:	Minimum	Vertex	Cover

[Khalil	et	al.,	2017] [He	et	al.,	2014]

Learning	from	Multiple	Views
Example:	Different	Types	of	Integer	Programs

ILP QCQP

Co-Training [Blum	&	Mitchell,	1998]

• Many	learning	problems	have	different	sources	of	information

• Webpage	Classification:	Words	vs	Hyperlinks
My AdvisorProf. Avrim Blum My AdvisorProf. Avrim Blum

x2- Text infox1- Link infox - Link info & Text info

(Taken	from	Avrim Blum’s	slides)

What’s	Different	about	Policy	Co-Training?

• Sequential	Decisions	vs	1-Shot	Decisions

• (Sparse)	Environmental	Feedback
• Can	collect	more	“labels”

• Different	Action	Spaces
• Graph	vs	Branch-and-Bound

(Not	always	applicable)

Intuition

MVC	Instance

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]

E.g.,	[1]

E.g.,	[2,3]

Intuition

MVC	Instance

𝜋"

𝜋# Better!

E.g.,	[1]

E.g.,	[2,3]

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]

Intuition

MVC	Instance
Demonstration

𝜋"

𝜋#

E.g.,	[1]

E.g.,	[2,3]

[1]	“Learning	combinatorial	optimization	algorithms	over	graphs”	[Khalil	et	al.,	2017]
[2]	“Learning	 to	Search	 in	Branch	and	Bound	Algorithms”	[He	et	al.,	2014]
[3]	“Learning	 to	Search	via	Retrospective	 Imitation”	[Song	et	al.,	2019]

Better!

Theoretical	Insight

• Different	representations	differ	in	hardness
• Goal:	quantify	improvement

Ω: all	problems

Ω": representation	1	easier

Ω#: representation	2	easier

(Towards)	a	Theory	of	Policy	Co-Training

• Two	MDP	“views”:	𝑀" &	𝑀#

• 𝑓"→# 𝜏" ⟹ 𝜏# (and	vice	versa)

• Realizing	𝜏" on	𝑀" ⟺ realizing	𝜏# on	𝑀#

• Question: when	does	having	two	views/policies	help?
• Policy	Improvement	(next	slide)	

• Builds	upon	[Kang	et	al.,	ICML	2018]
• Optimality	Gap	for	Shared	Action	Spaces	(in	paper)

• Builds	upon	[DasGupta et	al.,	NeurIPS 2002]

“Trajectory”	/	“Rollout”

Policy	Improvement	Bound

𝐽 𝜋′" ≥ 𝐽/0 𝜋′" −
2𝛾 𝛼5" 𝜀5" + 4𝛽5:

𝜀5:
#

1 − 𝛾 # + 𝛿5:
#

Approximation	by
sampling	from	𝝅𝟏

DiscountPerformance	
of	new	policy
(either	RL	or	IL)

Performance	Gap	of 𝜋# over 𝜋" on 𝛺#:	
𝐽 𝜋# 𝑀~𝛺# − 𝐽 𝜋" 𝑀~𝛺#

JS	Divergence	of		
𝜋# vs		𝜋" on	𝛺#

1-step	suboptimalityof	𝜋# on	𝛺#KL	Divergence	of	𝜋" vs		𝜋′" on	𝛺

1-step	suboptimality
of		𝜋" on 𝛺

Ω: all	instances

Ω": 𝜋" better
Ω#: 𝜋# better

Builds	upon	 theoretical	results	from	[Kang	et	al.,	ICML	2018]

Standard	for	
Policy	Gradient

Want	to	Minimize

Want	to	Maximize

Policy	Improvement	Bound	(Summary)

• Minimizing	𝛽5:
# →	low	disagreement	between	𝜋# vs	𝜋"

• Maximizing	𝛿5:
# →	high	performance	gap	𝜋# over	𝜋" on	some	MDPs

𝐽 𝜋′" ≥ 𝐽/0 𝜋′" −
2𝛾 𝛼5" 𝜀5" + 4𝛽5:

𝜀5:
#

1 − 𝛾 # + 𝛿5:
#

CoPiEr Algorithm	(Co-training	for	Policy	Learning)

𝑀" 𝑀#

Run	𝜋" → 𝜏" Run	𝜋# → 𝜏#
Sample	𝑀~Ω

Exchange (only	showing	1	version)

If	𝜋" better:	𝜏′# = 𝑓"→#(𝜏"),	𝜏′" = ∅
If	𝜋# better:	𝜏′" = 𝑓#→"(𝜏#),	𝜏′# = ∅

Rollout

Update (only	showing	1	view)

Augmented	Obj:	𝐽F 𝜋G = 𝐽/ 𝜋G − 𝜆𝐿 𝜋G, 𝜏G

Take	gradient	step

B	
E	
T	
T	
E	
R

Erdős–Rényi
(100-500	vertices)

RL	on	Graph	View
[Khalil	et	al.,	2017]

IL	on	MILP	View
[He	et	al.,	2014]

More	experiments	
in	paper

Strong	vs	Baselines	
(w/o	Co-Training)

CoPiEr Final Outperforms	
Individual	Views

Strong	vs	Gurobi

Co-Training	for	Policy	Learning	(summary)

• First	formal	framework	for	policy	co-training

• Novel	theoretical	insights

• Principled	algorithm	design

• Strong	experimental	results

𝐽 𝜋′" ≥ 𝐽/0 𝜋′" −
2𝛾 𝛼5" 𝜀5" + 4𝛽5:

𝜀5:
#

1 − 𝛾 # + 𝛿5:
#

References
• “Co-Training	for	Policy	Learning,” Jialin Song,	Ravi	Lanka,	Yisong	Yue,	Masahiro	Ono,	UAI	2019

• “Combining	Labeled	and	Unlabeled	data	with	Co-training,” AvrimBlum,	Tom	Mitchell,	COLT	1998

• “PAC	Generalization	Bounds	for	Co-training,”	Sanjoy DasGupta,	Michael	Littman,	David	McAllester,	
NeurIPS 2002

• “Policy	Optimization	with	Demonstrations,”Bingyi Kang,	Zequn Jie,	Jiashi Feng,	ICML	2018

• “Learning	Combinatorial	Optimization	over	Graphs,” Elias	Khalil,	HanjunDai,	Yuyu Zhang,	Bistra
Dilkina,	Le	Song,	NeurIPS 2017

• “Learning	to	Search	in	Branch	and	Bound	Algorithms,”	He	He,	Hal	Daume III,	Jason	Eisner,	NeurIPS
2014

• “Learning	to	Search	via	Retrospective	Imitation,” Jialin Song,	Ravi	Lanka,	Albert	Zhao,	Aadyot
Bhatnagar,	Yisong	Yue,	Masahiro	Ono,	arXiv

Extra	Slides

Notation

• MDP:	𝑀 = 𝑆,𝐴, 𝑃, 𝑟, 𝛾, 𝑆O

• Policy	(or	agent):	𝜋(𝑠) ⟹ 𝑎
• 𝑉/ 𝑠 = 𝐸T ∑ 𝛾V𝑟 𝑠V,𝑎V |𝑠X = 𝑠VYX
• 𝑄/ 𝑠, 𝑎 = 𝐸T ∑ 𝛾V𝑟 𝑠V,𝑎V |𝑠X = 𝑠VYX , 𝑎X = 𝑎
• 𝐴/ 𝑠, 𝑎 = 𝑄/ 𝑠, 𝑎 − 𝑉/ 𝑠

• Goal:maximize	𝐽(𝜋) ≡ 𝐸\,]^ 𝑉/(𝑠X)

State	Space
Action	Space

Transition	P(s’|s,a)

Reward	r(s,a)
(either	RL	or	IL)

Discount	Factor

Terminal	State

Value	Function

Q	Function

Advantage	Function

(Over	Distribution	of	MDPs)

(E.g.,	via	Policy	Gradient)

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)

Policy	Improvement	Bound	(detailed)

𝐽 𝜋′" ≥ 𝐽/0 𝜋′" −
2𝛾 4𝛽5:

𝜀5:
+ 𝛼5" 𝜀5"

1 − 𝛾 # + 𝛿5:
#

Sampled	via	𝝅𝟏 Discount

𝐸\~_: max
]
𝐷de 𝜋"(𝑠)‖𝜋#(𝑠)

max
\∈]hii(_:)

max
],j

𝐴/:(𝑠, 𝑎)

𝐸\~_ max
]
𝐷kl 𝜋"(𝑠)‖𝜋′"(𝑠)

New	policy

𝐽 𝜋# 𝑀~𝛺# − 𝐽(𝜋"|𝑀~𝛺#)

Builds	upon	 theoretical	results	from	[Kang	et	al.,	ICML	2018]

B	
E	
T	
T	
E	
R

Chance-Constrained	
Path	Planning
[Ono	&	Williams,	2008]

IL	on	MILP
IL	on	QCQP
[He	et	al.,	2014]
[Song	et	al.,	arXiv]

B	E	T	T	E	R

OpenAI Gym	&	Mujoco

Partitioned	state	space	into	two	views

Shared	action	space

RL	on	both	views

