
Structured	Imitation	and	
Reinforcement	Learning

Yisong	Yue



Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)



Imitation	Learning Tutorial
https://sites.google.com/view/icml2018-imitation-learning/

Yisong	Yue			 Hoang	M.	Le

yyue@caltech.edu hmle@caltech.edu

@YisongYue @HoangMinhLe

yisongyue.com hoangle.info



“	I	want	to	use	deep	learning	to	optimize	the	design,						
manufacturing	and	operation	of	our	aircrafts.		But			
I	need	some	guarantees.	”				-- Aerospace	Director



Starting	Point

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ

Standard	IL/RL	Objective

Side	Constraint

s.t.				
𝑅 ℎ < 𝛿

What	can	R	encode?

• Model-Based/Free
• On/Off	Policy
• Imitation/Reinforcement
• Optimal	Control



Side	Guarantees

Stability

B(x)

Safe	
Set						

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.

7

Smoothness

Ideal	Behavior

Unsmooth

Smooth	Recovery

• Fairness
• Low-risk
• Temporal	logic	
• Etc…

And	Possibly	Others:

(Robust	Control	=>	Robust	to	Model	Uncertainty)



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned	Optimizer

ModelModel Model

Blending	Models	&	Black-Box	Learning





Naïve	Approach

• Supervised	learning	of	demonstration	data
• Train	predictor	per	frame
• Predict	per	frame

Actual Human Movement
Supervised with Smooth RegularizationIn	practice,	post-hoc	smoothing:



Starting	Point

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.
𝑅 ℎ < 𝛿

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ + 𝜆R(h)

IL/RL	Objective

Smoothness	Constraint What	is	R?



Regularize	to	Function	Class
(h	is	“close	to”	some	g)

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.
∃𝑔 ∈ 𝐺: ℎ − 𝑔 > < 𝛿

𝑎𝑟𝑔𝑚𝑖𝑛',@𝐿 ℎ + 𝜆 ℎ − 𝑔 >

Model-Based	Controllers
(provably	smooth)

Intractable?



𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.
ℎ	𝑖𝑠	𝑐𝑙𝑜𝑠𝑒	𝑡𝑜	𝑓 ∈ 𝐹
ℎ	𝑖𝑠	𝑐𝑙𝑜𝑠𝑒	𝑡𝑜	𝑔 ∈ 𝐺

Model-Based	Controllers
(provably	smooth)

Alternative	Formulation

Deep	Neural	Nets
Random	Forests
Etc…



Smooth	Policy	Class

Policy

Black	Box	Predictor Smooth	Model

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛JK 𝑓 𝑠 − 𝑎′ > + 𝛾 𝑔 𝑠 − 𝑎′ >

= 	N O PQ@ O
RPQ

𝑎𝑟𝑔𝑚𝑖𝑛'S(N,@)𝐿 ℎ 						s. t.

Hoang
Le

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016



Test-Time	Functional	Regularization

Complex	Predictors	F

Smooth	Complex
Predictors	H

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛JK 𝑓 𝑠 − 𝑎′ > + 𝛾 𝑔 𝑠 − 𝑎′ >

= 	N O PQ@ O
RPQ

𝑎𝑟𝑔𝑚𝑖𝑛'S(N,@)𝐿 ℎ 						s. t.

Hoang
Le



ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛JK 𝑓 𝑠 − 𝑎′ > + 𝛾 𝑔 𝑠 − 𝑎′ >

= 	N O PQ@ O
RPQ

𝑎𝑟𝑔𝑚𝑖𝑛'S(N,@)𝐿 ℎ 						s. t.

Test-Time	Functional	Regularization

• By	construction:	h	“close”	to	g

• Certifications	on	g	=>	(relaxed)	certifications	on	h

• Compatible	with	many	forms	of	IL/RL

E.g.,	“smoothness”

Run-time	regularization



Reminder:	Naïve	Approach

• Supervised	learning	of	demonstration	data
• Train	predictor	per	frame
• Predict	per	frame

Actual Human Movement
Supervised with Smooth RegularizationIn	practice,	post-hoc	smoothing:



Our	Results

B 
E 

T 
T 

E 
R

Provably	Faster	Learning
(Natural	Policy	Updates)

Provably	Smooth	Predictions

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016



Qualitative	Comparison

Learning	Online	Smooth	Predictors	for	Real-time	Camera	Planning	using	Recurrent	Decision	Trees
Jianhui Chen,	Hoang	Le,	Peter	Carr,	Yisong	Yue,	Jim	Little.		CVPR	2016



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned	Optimizer

ModelModel Model

Blending	Models	&	Black-Box	Learning



Model-Based	Control

𝑠TPR = 𝐹 𝑠T, 𝑢T + 𝜖

New	State

Current	State

Current	Action	(aka	control	input)

Unmodeled	Disturbance	/	Error

Robust	Control	(fancy	contraction	mappings)
• Stability	guarantees	(e.g.,	Lyapunov)
• Precision/optimality	depends	on	error

(Value	Iteration	is	also	contraction	mapping)



Learning	Residual	Dynamics

𝑠TPR = 𝐹 𝑠T, 𝑢T + 𝐹W 𝑠T, 𝑢T + 𝜖

New	State

Current	State

Current	Action	(aka	control	input)

Unmodeled	Disturbance	/	Error

𝐹 =	nominal	dynamics
𝐹W =	learned	dynamics

Leverage	robust	control	(fancy	contraction	mappings)
• Preserve	stability	(even	using	deep	learning)
• Requires	𝐹W Lipschitz	&	bounded	error



Stable	Drone	Landing

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		arXiv

Ground	effect

Guanya
Shi



Control	System	Formulation

• Dynamics:

• Control:

• Unknown	forces	&	moments:

Learn	the	Residual

Learn	the	Residual



Data	Collection (Manual	Exploration)

• Learn	ground	effect:

• (s,u):	height,	velocity,	attitude	and	four	control	inputs

𝐹W 𝑠, 𝑢 		→ Spectral-Normalized
4-Layer	Feed-Forward

Ensures	𝑭Z is	Lipshitz
[Bartlett et	al.,	NeurIPS 2017]
[Miyato et	al.,	ICLR	2018]

Current	Research:	
Safe	Exploration



Prediction	Results

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		arXiv

Height	(m)

G
ro
un

d	
Ef
fe
ct
	(N

)



Prediction	Results

Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	
Yisong	Yue,	Soon-Jo	Chung.		arXiv

Vertical	Velocity	(m/s)

He
ig
ht
	(m

)

Ground	Effect	(N
)

Spectral	Normalized Conventional	DNN



Controller	Design	(simplified)

• Nonlinear	Feedback	Linearization:

• Cancel	out	ground	effect		𝐹W(𝑠, 𝑢[\]):

𝑢^[_`^J\ = 𝐾O𝜂

Feedback	Linearization	(PD	control)

𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired	Trajectory
(tracking	error)

𝑢 = 𝑢^[_`^J\ +	𝑢fgO`]hJ\

Guanya
Shi

Requires	Lipschitz	&	small	time	delay



Controller	Design	(simplified)

• Nonlinear	Feedback	Linearization:

• Cancel	out	ground	effect	𝐹W(𝑠, 𝑢[\]):

𝑢^[_`^J\ = 𝐾O𝜂 𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired	Trajectory
(tracking	error)

𝑢 = 𝑢^[_`^J\ +	𝑢fgO`]hJ\

(time	delay)

Feedback	Linearization	(PD	control)

Requires	Lipschitz	&	small	time	delay

Stability	Guarantee:	
(simplified)

𝜂(t) ≤ 𝜂(0) exp
𝜆_`^ 𝐾 − 𝐿W𝜌

𝐶 𝑡 +
𝜖

𝜆_`^ 𝐾 − 𝐿W𝜌

⟹ 𝜂(t) →
𝜖

𝜆_`^ 𝐾 − 𝐿W𝜌 Exponentially	fast

Unmodeled	
disturbance

Lipschitz	of	NN

Time	delay

Guanya
Shi



Robust	Landing	Control

PD PID Neural-Lander	(PD+Fa)

https://www.youtube.com/watch?v=C_K8MkC_SSQ



Takeaways

• Control	methods	=>	analytic	guarantees

• Blend	w/	learning	=>	improve	precision/flexibility

• Preserve	side	guarantees

• Sometimes	interpret	as	functional	regularization

(side	guarantees)

(sometimes	relaxed)

(speeds	up	learning)



Hoang
Le

Guanya
Shi

Jimmy
Chen

Xichen
Shi

Michael
O’Connell

Kamyar
Azizzadenesheli

Rose
Yu

Peter
Carr

Andrew
Kang

Anima
Anandkumar

Soon-Jo
Chung

Jim
Little

Smooth	Imitation	Learning	for	Online	Sequence	Prediction	
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016
Learning	Online	Smooth	Predictors	for	Real-time	Camera	Planning	using	Recurrent	Decision	Trees
Jianhui Chen,	Hoang	Le,	Peter	Carr,	Yisong	Yue,	Jim	Little.		CVPR	2016
Neural	Lander:	Stable	Drone	Landing	Control	using	Learned	Dynamics
Guanya Shi,	Xichen Shi,	Michael	O'Connell,	Rose	Yu,	Kamyar Azizzadenesheli,	Anima	Anandkumar,	 Yisong	Yue,	
Soon-Jo	Chung.		arXiv


