

Structured Imitation and Reinforcement Learning

Yisong Yue

Imitation & Reinforcement Learning

(Known Dynamics => Optimal Control)

Imitation Learning Tutorial

https://sites.google.com/view/icml2018-imitation-learning/

Yisong Yue

Hoang M. Le

yyue@caltech.edu

@YisongYue

hmle@caltech.edu

@HoangMinhLe

<u>yisongyue.com</u>

hoangle.info

 " I want to use deep learning to optimize the design, manufacturing and operation of our aircrafts. But
I need some guarantees." -- Aerospace Director

- Model-Based/Free
- On/Off Policy
- Imitation/Reinforcement
- Optimal Control

What can R encode?

(Robust Control => Robust to Model Uncertainty)

Blending Models & Black-Box Learning

Realtime Player Detection and Tracking

Naïve Approach

- Supervised learning of demonstration data
 - Train predictor per frame
 - Predict per frame

In practice, post-hoc smoothing:

Regularize to Function Class (h is "close to" some g)

Alternative Formulation

Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Test-Time Functional Regularization

$$argmin_{h=(f,g)}L(h) \quad \text{s.t.} \quad h(s) = argmin_{a'}(f(s) - a')^2 + \gamma(g(s) - a')^2$$
$$= \frac{f(s) + \gamma g(s)}{1 + \gamma}$$

- By construction: h "close" to g Run-time regularization
- Certifications on g => (relaxed) certifications on h E.g., "smoothness"
- Compatible with many forms of IL/RL

Reminder: Naïve Approach

- Supervised learning of demonstration data
 - Train predictor per frame
 - Predict per frame

In practice, post-hoc smoothing:

Our Results

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Qualitative Comparison

Learning Online Smooth P Jianhui Chen, Hoang Le, Peter Carr,

Blending Models & Black-Box Learning

Model-Based Control

(Value Iteration is also contraction mapping)

Robust Control (fancy contraction mappings)

- Stability guarantees (e.g., Lyapunov)
- Precision/optimality depends on error

Learning Residual Dynamics

F = nominal dynamics \tilde{F} = learned dynamics

Leverage robust control (fancy contraction mappings)

- Preserve stability (even using deep learning)
- Requires \tilde{F} Lipschitz & bounded error

Stable Drone Landing

Guanya Shi

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. arXiv

Data Collection (Manual Exploration)

Current Research: Safe Exploration

Ensures \widetilde{F} is Lipshitz [Bartlett et al., NeurIPS 2017] [Miyato et al., ICLR 2018] **Spectral-Normalized**

- Learn ground effect: $\tilde{F}(s, u) \rightarrow \mathbf{f}_a = [f_{a,x}, f_{a,y}, f_{a,z}]^\top$
- **4-Layer Feed-Forward**

(s,u): height, velocity, attitude and four control inputs

Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. arXiv

Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. arXiv

Controller Design (simplified)

Guanya Shi

• Nonlinear Feedback Linearization:

$$u_{nominal} = K_s \eta$$
 $\eta = \begin{bmatrix} p - p^* \\ v - v^* \end{bmatrix}$ Desired Trajectory (tracking error)

• Cancel out ground effect $\tilde{F}(s, u_{old})$: $u = u_{nominal} + u_{residual}$ Requires Lipschitz & small time delay

Controller Design (simplified)

Guanya Shi

• Nonlinear Feedback Linearization:

$$u_{nominal} = K_s \eta$$
 $\eta = \begin{bmatrix} p - p^* \\ v - v^* \end{bmatrix}$ Desired Trajectory (tracking error)

Robust Landing Control

Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C_K8MkC_SSQ

PID

Takeaways

- Control methods => analytic guarantees (side guarantees)
- Blend w/ learning => improve precision/flexibility

• Preserve side guarantees (sometimes relaxed)

Sometimes interpret as functional regularization

(speeds up learning)

Hoang Le

Guanya Shi

Jimmy Chen

Xichen

Shi

Anima Anandkumar

Michael O'Connell

Soon-Jo

Chung

Andrew Kang

Jim Little

Rose Yu

Azizzadenesheli

Carr

Smooth Imitation Learning for Online Sequence Prediction

Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees

Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue, Soon-Jo Chung. arXiv