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Imitation & Reinforcement Learning

Goal: Find “Optimal” Policy

State/Context s,
Imitation Learning:
Optimize imitation loss
ReinforcementLearning:
Optimize environmental reward
| St+1

(Known Dynamics => Optimal Control)

>

Agent

Environment/ World

Action a,
(oruy)




Imitation Learning Tutorial

https://sites.google.com/view/icml2018-imitation-learning/
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“I want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
| need some guarantees. ” -- Aerospace Director




Starting Point )
* Model-Based/Free

On/Off Policy
* Imitation/Reinforcement

Standard IL/RL Objective -

/ * Optimal Control
argmin, L(h) _
S. 1.
R(h)<é
/ What can R encode?

Side Constraint



 « Fairness
Side Guarantees And PossiblyOthers: | * LOW-Tisk
* Temporal logic
VA e Etc...

Ideal Behavior

Unsmooth

Smooth Recovery
>

X <

dt

el 3

Stability Safety Smoothness

(Robust Control => Robust to Model Uncertainty)



Blending Models & Black-Box Learning

Model-Based

Learning-Based
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Realtime Player Detection and Tracking

Human Operated Camera

. m
— [ ®
. > = > W (]
o ©

fay ™ &

-~

~
‘

SAUNLV3d

L
{
{
3
.
.’I

Ground Truth Pan I\
Predicled Pan
0
)
* \
[ |
2 10 |
= |
] |
& }
20} ‘
|} J
o,
Tl )
-30} ™
-40 !
0 500 1000 1500 2000 2500 3000 3500
Index Numbear

Learned Regressor

%fsﬂe;o Research




Naive Approach

* Supervised learning of demonstration data
* Train predictor per frame

* Predict per frame
In practice, post-hocsmoothing:
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Starting Point

IL/RL Objective

N

argmlnhL(h) h argminhL(h) + AR(h)

s.t.
R(h)<é

Smoothness Constraint What is R?



Regularize to Function Class
(his “close to” some g)

argmingL(h)

s.t. @) argming, ,L(h) + Al — g||?
dg € G:||h—g||*< b

W \
Intractable?

Model-Based Controllers
(provably smooth)




Alternative Formulation

argmingL(h)
S.L
hisclosetof € F
hisclosetog € G

/

Model-Based Controllers
(provably smooth)

Deep Neural Nets
Random Forests
Etc...



Smooth Policy Class

Hoang
Le

Black Box Predictor Smooth Model

argminp—r,yL(h) s.t.  h(s) = argming (f(s) —a’)* +y(g(s) — a’)?
_ fG)+yg(s)

Smooth Imitation Learning for Online Sequence Prediction 1 +y
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Test-Time Functional Regularization

Smooth Complex
Predictors H

Complex Predictors F

argming_r oHL(h) s.t.  h(s) = argming (f(s) —a’)* +y(g(s) — a')?

_ f(s)+yg(s)
B 1+y

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Test-Time Functional Regularization

argming—r oL(h) s.t.  h(s) = argming (f(s) —a)? +y(g(s) — a')?

_ f(s)+yg(s)
B 1+y

* By construction: h “close” to g Run-time regularization
* Certifications on g => (relaxed) certifications on h E.g., “smoothness”

* Compatible with many forms of IL/RL



Reminder: Naive Approach

* Supervised learning of demonstration data
* Train predictor per frame

* Predict per frame
In practice, post-hocsmoothing:
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Our Results

\

Provably Smooth Predictions

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

In]gtation Loss - Test Set - Adaptive vs. Fixed Beta
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Qualitative Comparison
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Blending Models & Black-Box Learning

Model-Based

Learning-Based
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Model-Based Control

New State Current Action (aka control input)

\

St+1 = F(sp,ug) + €

/ Unmodeled Disturbance / Error
Current State

(Value lterationis also contraction mapping)

Robust Control (fancy contraction mappings)
e Stability guarantees (e.g., Lyapunov)
* Precision/optimality depends on error




Learning Residual Dynamics £ = nominal dynamics

F = learned dynamics

Current Action (aka control input)

/

Se+1 = F(sp, ue) + F(St;ut) T €

\ / Unmodeled Disturbance / Error

Current State

New State

Leverage robust control (fancy contraction mappings)
* Preserve stability (even using deep learning)
 Requires F Lipschitz & bounded error




Stable Drone Landing

Ground effect

AR
BN

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. arXiv



Learn the Residual

Control System Formulation

{ p=1vV, mv =mg + Rf, + {,
* Dynamics: : :
R=RS(w), Jw=JwXw+T1,+ T,
~  f,=100,0,7]"
* Control: b [ T ] T
Tu — [Txa Tya Tz]
< " n2 ]
T CcT CT CT cT %
T . 0 cTlorm 0 —cT7larm no
Ty T —CT la,rm 0 CT la,rm 0 ’I’Lg
— Tz —cQ cQ e cQ _nZ a

[fa,wa fa,ya fa,Z]T

Learn the Residual

[Ta,xa Ta,ys Ta,z]T




Data Collection (Manual Exploration)

position (m)
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Learn ground effect: F(s,u) —» f, = (fazs fays faz]'

(s,u): height, velocity, attitude and four control inputs

Current Research:
Safe Exploration

Ensures F is Lipshitz
[Bartlett et al., NeurIPS 2017]
[Miyato et al., ICLR 2018]

|

Spectral-Normalized
4-Layer Feed-Forward



Prediction Results

—— RelLU Network prediction
—— Ground effect physical model with different u
e Ground truth

Ground Effect (N)
— N
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. arXiv



Prediction Results

Spectral Normalized

Height (m)

1

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

-2

Conventional DNN

ining set
ain

T T

-1 0

Vertical Velocity (m/s)

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,

Yisong Yue, Soon-Jo Chung. arXiv
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Controller Design (simplified)

Guanya
* Nonlinear Feedback Linearization: Shi

*
_ _|p—D Desired Trajectory
Unominal = KSTI n= [v — ¥ (tracking error)

\

Feedback Linearization (PD control)

* Cancel out ground effect F(s,Uy1q): U = Ungminal T Uresidual

7

Requires Lipschitz & small time delay



Controller Design (simplified)

* Nonlinear Feedback Linearization:

. P~ p* Desired Trajectory
Unominal = KSn n= [U — ¥ (tracking error)
Stability Guarantee: Time delay Unmodeled
(simplified) / - disturbance
In()ll < ln(0)llexp {A””""(K) il t} + —
¢ Amin(K) - L,D
N

= |[n(t)ll - _
)lmin(K) — LP

Exponentially fast

Lipschitz of NN

Guanya
Shi



Robust Landing Control

PID Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C K8MkC SSQ




Takeaways

* Control methods => analytic guarantees

(side guarantees)

* Blend w/ learning => improve precision/flexibility

* Preserve side guarantees (sometimesrelaxed)

* Sometimes interpret as functional regularization

(speeds up learning)
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Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong Yue,
Soon-Jo Chung. arXiv



