Controlling the Structure of Inference and Learning in Neural Networks

Yisong Yue

Caltech

https://arxiv.org/abs/2210.10101
Machine learning is transforming science

Halicin: structurally new antibiotic

Personalized Exoskeletons

http://roams.caltech.edu/

https://www.microsoft.com/en-us/research/project/crispr/

AlphaFold
...and autonomous decision-making

MLNav: Learning to Safely Navigate on Martian Terrains

https://arxiv.org/abs/2203.04563

Microsoft Azure Personalizer

AlphaGo
...and creativity

...and common-sense reasoning

Query: How many muffins can each kid have for it to be fair?

Execution

```python
muffin_patches = image_patch.find("muffin")

len(muffin_patches) = 8
len(kid_patches) = 2

8 / 2 = 4
```

Result: 4

ViperGPT
https://viper.cs.columbia.edu/
Operationally: What is Machine Learning?

(Optimization Perspective)

Data: x → Learning Signal: $L_x(\cdot)$

Optimization Problem:

$$\arg\min_{\theta} L(\theta) = \sum_x L_x(f(x; \theta))$$

Profit!
Tuning Neural Networks is Messy and Hard

Initialization, activation, loss, architecture type, depth & width, dropout rate, optimizer, learning rate, momentum, batch size, ...

(Brock et al, 2019)
Tuning Neural Networks is Messy and Hard

Initialization, activation, loss, architecture type, depth & width, rate, momentum, ...

Heuristic Tuning

HARK Side of Deep Learning - From Grad Student Descent to Automated Machine Learning

Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly

(Brock et al, 2019)
Canonical View of ML Optimization

• Typical update rule:

\[\theta \leftarrow \theta - \eta \nabla L(\theta) \]

(ignoring stochastic aspect, i.e., full batch optimization)
Canonical View of ML Optimization

- **Typical update rule:**
 \[\theta \leftarrow \theta - \eta \nabla L(\theta) \]

 - **Parameters**
 - Gradient of loss w.r.t. parameters
 - Learning rate (tunable hyperparameter)
 (ignoring stochastic aspect, i.e., full batch optimization)

 - **In Theory:**
 - Set \(\eta \) via perturbation analysis
 - How much \(f \) can change w.r.t. \(\theta \)
 - (e.g., global Lipschitz constant of \(f \))

 - **In Practice:**
 - Re-tune \(\eta \) if we change anything about learning setup!

(ignoring stochastic aspect, i.e., full batch optimization)
Looking Inside a Neural Network

Example:
Linear w/ ReLU activation

\[f(h; \theta) = [\theta^T h]_+ \]

(ignoring bias/offset)
Intuition (for binary classification)

Sequence of transformations
• Each dimension is a half-space mapping
• Goal: last layer is a separable space with perfect classification
Idea #1: Per-Layer Perturbation Analysis

- How does the layer’s function change under parameter perturbation?

Potential Application: depth- & width-invariant learning rate η
Idea #2: Control Dynamics of Hidden Layers

Recall: we want each layer to push representation towards good answer

Goal: control sequence of hidden layers h_1, \ldots, h_N
- quickly and robustly converge to low loss
How to exploit the structure of NNs to develop a more nuanced theory?

Majorize-Minimize Framework

Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping of Neural ODEs
“Lyapunov Loss”
Warm-Up: Local Perturbation Analysis

- Linear approximation breaks down as $\Delta \theta$ increases!
- Understand rate of break-down via perturbation analysis.

Taylor Expansion:

$$L(\theta + \Delta \theta) = L(\theta) + \nabla_\theta L(\theta)^T \Delta \theta + \frac{1}{2} \Delta \theta^T \nabla^2_\theta L(\theta) \Delta \theta + \ldots$$

Linear Approximation

(ignoring stochastic aspect, i.e., full batch optimization)
Majorize-Minimize Framework

Typical Form: \(L(\theta + \Delta \theta) \leq L^{(k)}(\theta + \Delta \theta) + \psi_{\theta}(\Delta \theta) \)

Order-k Taylor approximation (k=1 for linear)
Upper bound of the rest

Majorization: upper bound on error that lies tangent.

Minimize majorization \(\Rightarrow \) reduces error.

(ignoring stochastic aspect, i.e., full batch optimization)
Majorize-Minimize in Action

Example 1:
\[
\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda |\Delta \theta|^2 \Rightarrow \text{gradient descent.}
\]

Example 2:
\[
\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda D(\theta + \Delta \theta, \theta) \Rightarrow \text{mirror descent.}
\]

Example 3:
\[
\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \frac{1}{2} \Delta \theta^T H \Delta \theta + \lambda |\Delta \theta|^3 \Rightarrow \text{cubic regularized Newton.}
\]

(ignoring stochastic aspect, i.e., full batch optimization)
Aside: Duality of Majorization & Trust Regions

\[
\begin{align*}
\min_{\Delta \theta} & \quad \nabla_\theta L(\theta)^T \Delta \theta \\
& + \quad \lambda |\Delta \theta|^2
\end{align*}
\]

- Closed-form solution: \(\Delta \theta = - \left(\frac{2}{\lambda} \right) \nabla_\theta L(\theta) \)

- Implies GD update rule: \(\theta \leftarrow \theta - \left(\frac{2}{\lambda} \right) \nabla_\theta L(\theta) \)

- Analogous to: \(\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta \) s.t. \(|\Delta \theta|^2 \leq C \)

Theoretical guidance via perturbation sensitivity, e.g., Lipschitz constant

“Trust Region”

Learning Rate
Architecture-Naive Majorizations

\[
\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda |\Delta \theta|^2
\]

\[
\theta \leftarrow \theta - \left(\frac{2}{\lambda}\right) \nabla_\theta L(\theta)
\]

Can use smaller \(\lambda \) → shallower majorization

Must use larger \(\lambda \) → steeper majorization
Architecture-Naive Majorizations

- Deep networks have complicated optimization landscapes
- Using a single isotropic majorization can be very inefficient!

https://arxiv.org/abs/1712.09913
How to define a **majorization** that exploits NN structure?

- **(First) Key Idea:** per-layer perturbation analysis
- Perturb entire layer’s parameters => perturbation of final output

Jeremy Bernstein
Kevin Huang
Thought Experiment

• Vary only n-th layer: $\theta_n + \Delta \theta_n$

• What is the Lipchitz constant of entire function f?

• Depends on parameters θ of other layers!
 • If other parameters are larger => perturbation is larger!
Architecture-Aware Perturbation Bounds
Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101

For L_2 loss:

$$L(\theta + \Delta \theta) \leq L^{(1)} + \psi_\theta(\Delta \theta)$$

1st order Taylor

Upper Bound of Rest
Architecture-Aware Perturbation Bounds

Overall perturbation sensitivity

\[\Delta f(\theta) := f(\theta + \Delta \theta) - f(\theta) \]

For L₂ loss:

\[L(\theta + \Delta \theta) \leq L^{(1)} + O(|\Delta f(\theta)|_2) + O(|\Delta f(\theta) - \Delta \theta^T \nabla_\theta f(\theta)|_2) \]

```
\leq C_1 \left[ \prod_{n=1}^N (1 - \frac{|\Delta \theta_n|*}{|\theta_n|*}) - 1 \right]
```

```
\leq C_2 \left[ \prod_{n=1}^N (1 - \frac{|\Delta \theta_n|*}{|\theta_n|*}) - 1 - \sum_{n=1}^N \frac{|\Delta \theta_n|*}{|\theta_n|*} \right]
```

"Deep Relative Trust": \[\frac{|\Delta \theta_n|*}{|\theta_n|*} \]
Majorize-Minimize for Neural Networks

• Derive *majorization* of error

• Plug in *architecture perturbation bound*

• *Minimize* to obtain optimization algorithm

Desiderata & Caveats

- “Clean” bound only for deep linear networks
 - Formula more complicated with non-linearities
 - First ever analysis even for deep linear networks

- Majorization has no (known) closed-form solution
 - Solving for the optimal $\Delta \theta$ is itself an optimization problem

\[
L(\theta + \Delta \theta) \leq L^{(1)} + O(|\Delta f(\theta)|_2) + O(|\Delta f(\theta) - \Delta \theta^T \nabla_\theta f(\theta)|_2)
\]

\[
\leq C_1 \left[\prod_{n=1}^{N} \left(1 - \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right) - 1 \right]
\]

\[
\leq C_2 \left[\prod_{n=1}^{N} \left(1 - \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right) - 1 - \sum_{n=1}^{N} \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right]
\]
First Result

Theorem 6.2 in https://arxiv.org/abs/2210.10101

- **Key restriction**: enforce relative update of each layer to be the same
 - Suboptimal but closed-form update rule

\[
\theta_n \leftarrow \theta_n - \eta \cdot \frac{1}{N} \cdot \frac{|\theta_n|_F}{\sqrt{\min(\text{dim}_n, \text{dim}_{n-1})}} \cdot \frac{\nabla_{\theta_n} L(\theta)}{|\nabla_{\theta_n} L(\theta)|_F}
\]

- **Parameters of Layer n**
 - **Total Depth**
 - **Dimensionality of hidden layer**
 - **Per-Layer Scaling**
 - **Normalized Gradient**

- **Learning rate** η transfers to wider & deeper networks!
 - (Related to mu-Parameterization by Greg Yang et al.)
Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Width:
- 64 1024
- 128 2048
- 256 4096
- 512 8192

Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Case Study: Training Very Deep Networks
(Fully connected, no Skip Connections or Normalization Layers)

Training very deep networks is hard! Practitioners use techniques like skip connections & normalization layers.

Initialize Weights:
- for layer \(n \) in \(\{1, \ldots, N\} \):
 - \(\theta_n \sim \text{unif}(\text{orthogonal}(\text{dim}_n, \text{dim}_{n-1})) \)
 - \(\theta_n \sim \theta_n \cdot \sqrt{\frac{\text{dim}_n}{\text{dim}_{n-1}}} \)

Update Weights:
- \(G \leftarrow \frac{1}{N} \sum_{n=1}^{N} |\nabla_{\theta_n} L|_F \cdot \sqrt{\frac{\text{dim}_n}{\text{dim}_{n-1}}} \)
- \(\eta \leftarrow \log \frac{1+\sqrt{1+4G}}{2} \)
- for layer \(n \) in \(\{1, \ldots, N\} \):
 - \(\theta_n \leftarrow \theta_n - \frac{\eta}{N} \cdot \frac{\nabla_{\theta_n} L}{|\nabla_{\theta_n} L|_F} \cdot \sqrt{\frac{\text{dim}_n}{\text{dim}_{n-1}}} \)

\[|\theta_n| = \sqrt{\frac{\text{dim}_n}{\text{dim}_{n-1}}} \]

\[|\Delta \theta_n| = \frac{\eta}{N} \cdot \sqrt{\frac{\text{dim}_n}{\text{dim}_{n-1}}} \]

Latest Result

Automatic Gradient Descent

Jeremy Bernstein

Chris Mingard
AGD trains without hyperparameters

https://arxiv.org/abs/2304.05187
Different Ways to Design Optimizers

\[\theta_n \]

<table>
<thead>
<tr>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>-0.5</td>
<td>2.3</td>
</tr>
<tr>
<td>-0.4</td>
<td>2.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>1.1</td>
<td>0.5</td>
<td>-2.4</td>
</tr>
<tr>
<td>0.4</td>
<td>-2.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.2</td>
<td>-1.1</td>
</tr>
</tbody>
</table>

- **Per-layer**
- **Per-neuron**
- **Per-synapse**
Different Ways to Design Optimizers

- **Fromage**: Per-layer was our first foray

- **Nero**: Per-neuron
 - Also constrain per-neuron weight norm
 - Connections to batch-norm
 - Connections to generalization

- **Madam**: Per-synapse
 - Also sign-constrain weights
 - Leads to multiplicative update rule
 - Connections to biological synapses
Summary: Architecture-Aware Perturbation Bounds

Architectural perturbation bound

\[\| \Delta f(x) \| \leq C \cdot \left[\prod_i \left(1 + \frac{\| \Delta W_i \|}{\| W_i \|} \right) \right]^{-1} \]
Towards A Practical Theory of Deep Learning Optimization

Theory of Composite Functions?
- Learning Rate
- Learning Rate Decay
- Momentum
- Gradient Averaging
- Warm-up Iterations
- ...

$$R = R_1 + R_2 + R_3$$

$$1/R = 1/R_1 + 1/R_2 + 1/R_3$$
Optimisation & Generalisation in Networks of Neurons

Thesis by
Jeremy Bernstein

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

https://arxiv.org/abs/2210.10101
How to exploit the structure of NNs to develop a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping of Neural ODEs
“Lyapunov Loss”
Recall Idea #2: Control Dynamics of Hidden Layers

We want each layer to push representation towards a good answer.

Goal: control sequence of hidden layers h_1, \ldots, h_N
- quickly and robustly converge to low loss
Warm Up: Deep Networks

input x

input layer function f_{in}

hidden layer functions $h_0, f_1, h_1, \ldots, f_N, h_N$

output layer function f_{out}

output y
Warm Up: ResNets

Functional Form:

\[h_0 = f_{\text{in}}(x) \]
\[h_n = h_{n-1} + f_n(h_{n-1}) \]
\[y = f_{\text{out}}(h_N) \]
ResNets => Continuous-in-Depth => Neural ODEs

\[f'(x) = h \cdot f(h) + \gamma \cdot f(h) \cdot \delta h \]

"Euler Integration Step Size"

\[h_n = h_{n-1} + \delta f(h_{n-1}) \]

\[\lim_{\delta \to 0} \frac{\partial h}{\partial t} = f(h) \]
Neural Ordinary Differential Equations (NODEs)

https://arxiv.org/abs/1806.07366

\[h_0 = f_{in}(x) \]
\[\frac{\partial h}{\partial t} = f(h, x) \]
\[y(t) = f_{out}(h(t)) \]

Comments:
- Forward pass requires ODE solve
- Can evaluate output at any time
 - E.g., \(y(0.5) \)
- Includes continuous normalizing flows & other generative models

WLOG: \(t \in [0,1] \)

(“augmented” NODE since \(f \) depends on \(x \) -- https://arxiv.org/abs/1904.01681)
Using Control Theory to Shape Learning

- Control can shape dynamical systems (most commonly ODEs)

Images by Aaron Ames & Brett Lopez
Why Shape Dynamics of NODEs?

2D state space, **Red Class** is correct

Showing inference trajectories under perturbations

Dynamics:

- **Unstable NODE**
- Standard BackProp

Our Approach
Lyapunov Loss
What dynamics can we shape?

\[h_0 = f_{in}(x) \]

\[\frac{\partial h}{\partial t} = f(h, x) \]

\[y(t) = f_{out}(h(t)) \]

- **Full state space**: \(h(t) \)?
 - (too unwieldy)

- **Projection**: \(V(h(t)) \equiv L(y(t)) \)
 - **Dynamics of the training loss**
 - 1-D projection of state space

WLOG: \(t \in [0,1] \)
Exponential Stability

Goal: \[V(h(t)) \leq V(h(0))e^{-\kappa t} \]

Key invariant: \[\frac{\partial V^T}{\partial h} f(h) \leq -\kappa V(h) \]

Benefits: Fast convergence & Robustness
Exponential Convergence in Action

CIFAR-10

LyaNet is trained to optimize for exponential convergence

Measuring Progress via Contraction Condition

Violation:
\[\frac{\partial V}{\partial h} f(h) > -\kappa V(h) \]

Satisfaction:
\[\frac{\partial V}{\partial h} f(h) \leq -\kappa V(h) \]

Contraction Satisfied Everywhere => Exponential Stability!
Lyapunov Loss

- Point-wise Lyapunov Loss

\[L_V(x, y, h) \equiv \max \left\{ 0, \frac{\partial V_y^T}{\partial h} f(h) + \kappa V_y(h) \right\} \]

- Lyapunov Loss:

\[L_V(\theta) \equiv \mathbb{E}_{x,y} \left[\int_0^1 L_V(x, y, h(t))dt \right] \]

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability!

LyaNet
A Lyapunov Framework for Training Neural ODEs

1. Interpret training loss as potential function: \(V(h(t)) \equiv L(y(t)) \)

2. Instantiate (point-wise) Lyapunov Loss:

\[
L_V(x, y, h) \equiv \max\left\{ 0, \frac{\partial V_y}{\partial h} f(h) - \kappa V_y(h) \right\}
\]

3. Optimize Lyapunov Loss everywhere

Optimization Considerations

\[L_V(\theta) \equiv \mathbb{E}_{x,y} \left[\int_0^1 L_V(x, y, h(t)) dt \right] \]

Lyapunov Loss

• Evaluating integral exactly is hard

• Approximate by sampling (simplest is Monte Carlo)
 • Sample \((x, y, h)\) uniformly at random
 • Backprop on point-wise Lyapunov Loss

\[L_V(x, y, h) \equiv \max \left\{ 0, \frac{\partial V_y}{\partial h} f(h) - \kappa V_y(h) \right\} \]

Point-wise Lyapunov Loss

Benefits of Sampling

• Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

\[
L_V(\theta) \equiv E_{x,y} \left[\int_0^1 L_V(x, y, h(t))dt \right]
\]

Achieving \(L_V(\theta) = 0 \) under uniform measure implies \(L_V(\theta) = 0 \) in original measure

• Similar idea used in Score-Based Generative Models & Moser Flows

Connection to Control Theory

V is an **Exponentially-Stabilizing Control Lyapunov Function (ES-CLF)** for a controllable ODE if for all states \(h \in H \):

\[
\min_{\theta} \left[\frac{\partial V^T}{\partial h} f(h; \theta) + \kappa V(h) \right] \leq 0
\]

Can we find a controller \(\theta \) that makes \(V \) an ES-CLF?
- In control, \(f \) has uncontrolled dynamics and \(\theta \) is low-dim

Connection between controllability & learnability
- Can we find a \(\theta \) that achieves zero Lyapunov Loss?
- For NODEs, \(f \) is fully controlled and over-parameterized

Equivalent to Lyapunov Loss
Comments & Extensions

• Stabilize to sets rather than points
 • E.g., under adversarial perturbations, can still stabilize to a region of low loss
 • Sets need not be convex

• Combinations of conditions (multiple invariances)

• Other invariances:

Forward-Invariance (never leaves “safe” set)
Motivating Application: Continuous Control

Note: Dynamics of Control System included in Neural ODE

\[
\min_{\theta} \left[\nabla V^T \frac{\partial f(h; \theta)}{\partial h} + \kappa V(h) \right] \leq 0
\]
Neural Gaits

Learn policy to satisfy composition of continuous-time conditions
Implies indefinite walking (forward-invariance)

Final Policy
Trained on Refined Model
2 Episodes of Data

Example Barriers

Torso Angle

Swing Foot

https://arxiv.org/abs/2204.08120
Certified Forward-Invariance in NODEs

Certified Robust Forward Invariance (First Ever Result)

Summary:
Control-Theoretic Shaping of Neural ODEs
Aside: Symbolic Music Generation via Stochastic Control

Yujia Huang, et al., arXiv
https://scg-rule-guided-music.github.io/
Towards Structure-Aware Theory of Deep Learning

- Neural Nets are not arbitrary black-box functions
 - Analyzing structure can lead to more nuanced theory
 - Can unlock new connections

Per-Layer Perturbation Analysis

Contraction Analysis & Control Theory

\[V(H) \]

\[H \]

\[\theta_n \, \text{vs} \, \theta_n + \Delta \theta_n \]

perturbation
References

• Optimisation & Generalisation in Networks of Neurons, Jeremy Bernstein, PhD Thesis, Caltech, 2022

• On the distance between two neural networks and the stability of learning, Jeremy Bernstein et al., NeurIPS 2020

• Learning compositional functions via multiplicative weight updates, Jeremy Bernstein et al., NeurIPS 2020

• Learning by Turning: Neural Architecture Aware Optimisation, Yang Liu*, Jeremy Bernstein*, et al., ICML 2021

• LyaNet: A Lyapunov Framework for Training Neural ODEs, Ivan Jimenez Rodriguez et al., ICML 2022

• FI-ODE: Certified and Robust Forward Invariance in Neural ODEs, Yujia Huang*, Ivan Jimenez Rodriguez*, et al., arxiv

• Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, Ivan Jimenez Rodriguez*, Noel Csomay-Shanklin*, et al., L4DC 2022

• Robust Agility via Learned Zero Dynamics Policies, Noel Csomay-Shanklin*, Will Compton*, Ivan Jimenez Rodriguez*, et al., (arxiv soon)

• Automatic Gradient Descent: Deep Learning without Hyperparameters, Jeremy Bernstein*, Chris Mingard*, et al. arxiv

• Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion, Yujia Huang, et al., arxiv