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Machine learning is 
transforming science

Halicin: structurally 
new antibiotic 

Personalized 
Exoskeletons
http://roams.caltech.edu/ 

https://www.microsoft.com/en-us/research/project/crispr/ 

AlphaFold

https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220 

CRISPR ML

http://roams.caltech.edu/
https://www.microsoft.com/en-us/research/project/crispr/
https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220


…and autonomous 
decision-making

https://learn.microsoft.com/en-us/azure/cognitive-services/personalizer/how-personalizer-works 

AlphaGo

Microsoft Azure Personalizer

MLNav: Learning to Safely Navigate on Martian Terrains
https://arxiv.org/abs/2203.04563 

https://learn.microsoft.com/en-us/azure/cognitive-services/personalizer/how-personalizer-works
https://arxiv.org/abs/2203.04563


…and creativity

https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed 

https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed


…and common-sense reasoning

https://viper.cs.columbia.edu/ 

https://viper.cs.columbia.edu/


Operationally: What is Machine Learning?
(Optimization Perspective)

Data: 𝑥 Learning Signal: 𝐿!(⋅)

argmin!𝐿 𝜃 =*
"

𝐿"(𝑓 𝑥; 𝜃 )

Profit!

Optimization Problem:



Tuning Neural Networks 
is Messy and Hard
Initialization, activation, loss, architecture type, 
depth & width, dropout rate, optimizer, learning 
rate, momentum, batch size, …

https://www.asimovinstitute.org/the-neural-network-zoo-2016/ 
(Brock et al, 2019)

https://www.asimovinstitute.org/the-neural-network-zoo-2016/


Tuning Neural Networks 
is Messy and Hard
Initialization, activation, loss, architecture type, 
depth & width, dropout rate, optimizer, learning 
rate, momentum, batch size, …

https://www.asimovinstitute.org/the-neural-network-zoo-2016/ 
(Brock et al, 2019)

Heuristic Tuning

https://www.asimovinstitute.org/the-neural-network-zoo-2016/


Canonical View of ML Optimization

• Typical update rule:

𝜃 ← 𝜃 − 𝜂∇𝐿 𝜃

Parameters
Gradient of 
Loss w.r.t. 
parameters

Learning Rate (tunable hyperparameter)

(ignoring stochastic aspect, i.e., full batch optimization)



Canonical View of ML Optimization

• Typical update rule:

𝜃 ← 𝜃 − 𝜂∇𝐿 𝜃

Parameters
Gradient of 
Loss w.r.t. 
parameters

Learning Rate (tunable hyperparameter)

(ignoring stochastic aspect, i.e., full batch optimization)

In Theory: 
• Set 𝜂 via perturbation analysis 

• How much 𝑓 can change w.r.t. 𝜃
• (e.g., global Lipschitz constant of 𝑓)

In Practice: 
• Re-tune 𝜂	if we change anything about learning setup!



Looking Inside a 
Neural Network

Input: x

Output: y

h1 hNh2 hN-1…

Hidden States

f1 f2 fN+1fNfN-1…

Per-Layer Functions

ℎ# = 𝑓#(ℎ#$%; 𝜃#)

Example:
Linear w/ ReLU activation

𝑓 ℎ; 𝜃 = 𝜃&ℎ '

(ignoring bias/offset)

Parameters



Intuition (for binary classification)

Sequence of transformations
• Each dimension is a half-space mapping
• Goal: last layer is a separable space with perfect classification

Images by Joe Marino



• How does the layer’s function change under parameter perturbation? 

Idea #1: Per-Layer Perturbation Analysis

vs 𝜃! + Δ𝜃! perturbation

Potential Application: depth- & width-invariant learning rate 𝜂

𝜃!



Idea #2: Control Dynamics of Hidden Layers

Recall: we want each layer to push representation towards good answer

Goal: control sequence of hidden layers ℎ%, … , ℎ( 
• quickly and robustly converge to low loss



How to 
exploit the structure 

of NNs to develop 
a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping 
of Neural ODEs 
“Lyapunov Loss”



Error
𝐿(𝜃)

𝜃!

Warm-Up: 
Local 
Perturbation 
Analysis

(ignoring stochastic aspect, i.e., full batch optimization)

𝐿 𝜃 + Δ𝜃 = 𝐿 𝜃 + ∇!𝐿 𝜃 &Δ𝜃 +
1
2
Δ𝜃&∇!-Δ𝜃 +	…

Taylor Expansion:

Linear Approximation

• Linear approximation      
breaks down as 𝚫𝜽 
increases!

• Understand rate of 
break-down via 
perturbation analysis.



Majorize-Minimize Framework
https://en.wikipedia.org/wiki/MM_algorithm 

(ignoring stochastic aspect, i.e., full batch optimization)

Majorization: upper bound on 
error that lies tangent.

Minimize majorization 
⇒ reduces error.

Error
𝐿(𝜃)

𝜃!𝜃"

𝐿 𝜃 + Δ𝜃 ≤ 𝐿 . 𝜃 + Δ𝜃 + 𝜓! Δ𝜃Typical Form:

Order-k Taylor approximation 
(k=1 for linear)

Upper bound of the rest

https://en.wikipedia.org/wiki/MM_algorithm


Majorize-Minimize in Action

𝜆|Δ𝜃|-+min
/!

	 ∇!𝐿 𝜃 &Δ𝜃Example 1:
 

𝜆D(𝜃 + Δ𝜃, 𝜃)+min
/!

∇!𝐿 𝜃 &Δ𝜃Example 2:

𝜆|Δ𝜃|0+∇!𝐿 𝜃 &Δ𝜃 +
1
2Δ𝜃

&𝐻Δ𝜃min
/!

Example 3:

⇒ gradient descent.

⇒ mirror descent.

⇒ cubic regularized Newton.

D = Bregman Divergence

H = Hessian

(ignoring stochastic aspect, i.e., full batch optimization)

Upper bound of restOrder-k Taylor Approx



Aside: Duality of Majorization & Trust Regions

• Closed-form solution: Δ𝜃 = − (
)
∇*𝐿(𝜃)

• Implies GD update rule: 𝜃 ← 𝜃 − (
)
∇*𝐿 𝜃

• Analogous to:  min
+*	

s.t.

𝜆|Δ𝜃|-+min
/!

	 ∇!𝐿 𝜃 &Δ𝜃

Learning Rate

∇!𝐿 𝜃 &Δ𝜃 |Δ𝜃|- ≤ 𝐶 “Trust Region”

Theoretical guidance via 
perturbation sensitivity, 
e.g., Lipschitz constant



Error
𝐿(𝜃)

Architecture-Naive 
Majorizations

𝜆|Δ𝜃|(+min
+*

	 ∇*𝐿 𝜃 -Δ𝜃

𝜃 ← 𝜃 −
2
𝜆
∇*𝐿 𝜃

Can use smaller 𝝀 
→ shallower majorization

Must use larger 𝝀 
→ steeper majorization



Architecture-Naive 
Majorizations

https://arxiv.org/abs/1712.09913 

• Deep networks have 
complicated optimization 
landscapes

• Using a single isotropic 
majorization can be very 
inefficient!

https://arxiv.org/abs/1712.09913


• (First) Key Idea: per-layer perturbation analysis
• Perturb entire layer’s parameters => perturbation of final output

How to define a majorization 
that exploits NN structure? Jeremy

Bernstein
Kevin
Huang



Thought Experiment

• Vary only n-th layer: 𝜃! + Δ𝜃! 

• What is the Lipchitz constant of entire function f?

• Depends on parameters 𝜽 of other layers!
• If other parameters are larger => perturbation is larger!



Architecture-Aware Perturbation Bounds

Kevin
Huang

For L2 loss: 

	 𝐿 𝜃 + Δ𝜃 ≤ 𝐿 " + 𝜓#(Δ𝜃)

1st order Taylor

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101 

Upper Bound of Rest

Jeremy
Bernstein

https://arxiv.org/abs/2210.10101


Architecture-Aware Perturbation Bounds

Jeremy
Bernstein

Kevin
Huang

≤ 𝐶! 1
"#!

$

1 −
|Δ𝜃"|∗
|𝜃"|∗

− 1 ≤ 𝐶& 1
"#!

$

1 −
|Δ𝜃"|∗
|𝜃"|∗

− 1 −6
"#!

$
|Δ𝜃"|∗
|𝜃"|∗

For L2 loss: 

	 𝐿 𝜃 + Δ𝜃 ≤ 𝐿 " + 𝑂 |Δ𝑓 𝜃 |$ + 𝑂 |Δ𝑓 𝜃 −Δ𝜃%∇#𝑓 𝜃 |$

Overall perturbation sensitivity
Δ𝑓 𝜃 ≔ 	𝑓 𝜃 + Δ𝜃 − 𝑓(𝜃)

Breakdown of linear approx1st order Taylor

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101 

“Deep Relative Trust”: |𝚫𝜽𝒏|∗
|𝜽𝒏|∗

https://arxiv.org/abs/2210.10101


Majorize-Minimize for 
Neural Networks

• Derive majorization of error

• Plug in architecture perturbation bound

• Minimize to obtain optimization algorithm

Related: “Automatically Bounding the Taylor Remainder Series: Tighter Bounds and New Applications” (https://arxiv.org/abs/2212.11429 )

https://arxiv.org/abs/2212.11429


Desiderata 
& Caveats

• “Clean” bound only for deep linear networks 
• Formula more complicated with non-linearities 
• First ever analysis even for deep linear networks

• Majorization has no (known) closed-form solution
• Solving for the optimal Δ𝜃 is itself an optimization problem



First Result 

• Key restriction: enforce relative update of each layer to be the same
• Suboptimal but closed-form update rule

• Learning rate 𝜼 transfers to wider & deeper networks!
• (Related to mu-Parameterization by Greg Yang et al.)

Jeremy
Bernstein

Kevin
Huang

𝜃! ← 𝜃! − 𝜂
1
𝑁

|𝜃!|<
min(dim! , dim!=>)	

⋅
∇*#𝐿(𝜃)
|∇*#𝐿 𝜃 |<

Parameters of Layer n

dimensionality of hidden layer

Normalized 
Gradient

Theorem 6.2 in https://arxiv.org/abs/2210.10101 

Per-Layer Scaling

Total Depth

https://arxiv.org/abs/2210.10101


Depth 4

Depth 6

Depth 8

Depth 10

Learning Rate

Lo
ss

Same learning rate is (near-)optimal 
across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)

Epoch 9
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Depth 4

Depth 6

Depth 8

Depth 10

Learning Rate

Lo
ss

Same learning rate is (near-)optimal 
across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)

Epoch 9 Epoch 14 Epoch 19



Case Study: Training Very Deep Networks
(Fully connected, no Skip Connections or Normalization Layers)

https://arxiv.org/abs/2002.03432 

B E T T E RAc
cu

ra
cy

Depth

SGD

Adam

Ours

Training very deep networks is hard!
Practitioners use techniques like 
skip connections & normalization layers.

https://arxiv.org/abs/2002.03432


|𝜃!| =
dim"

dim"#$
⇒

|Δ𝜃!| =
𝜂
𝑁 ⋅

dim"

dim"#$
⇒

Latest Result 
Automatic Gradient Descent

https://arxiv.org/abs/2304.05187 

Jeremy
Bernstein

Chris
Mingard

Initialize Weights:
• for layer 𝑛 in 1,… ,𝑁 :

• 𝜃!	~	unif orthogonal dim", dim"#$

• 𝜃!	~	𝜃! ⋅
%&'#
%&'#$%

Update Weights:

• 𝐺 ← $
(
∑!)$( |∇*&𝐿|+ ⋅

%&'#
%&'#$%

• 𝜂 ← log $, $,-.
/

• for layer 𝑛 in 1,… ,𝑁 :

• 𝜃! ← 𝜃! −
0
(
⋅

∇'&2
|∇'&2|(

⋅ %&'#
%&'#$%

https://arxiv.org/abs/2304.05187


AGD trains without 
hyperparameters

https://arxiv.org/abs/2304.05187 

Training Performance
Test Performance

SGD

Ours

Adam

https://arxiv.org/abs/2304.05187


Different Ways to Design Optimizers

1.2 - 0.5 2.3 0.4 1.3

- 0.4 2.1 - 0.8 0.7 1.5

1.1 0.5 - 2.4 0.3 1.0

0.4 - 2.1 - 0.2 0.1 0.5

1.4 - 0.2 - 1.1 0.1 1.4

Per-layer

Per-neuron

Per-synapse

𝜽𝒏



Different Ways to Design Optimizers
• Fromage: Per-layer was our first foray

• https://arxiv.org/abs/2002.03432 

• Nero: Per-neuron 
• Also constrain per-neuron weight norm
• Connections to batch-norm
• Connections to generalization
• https://arxiv.org/abs/2102.07227 

• Madam: Per-synapse
• Also sign-constrain weights 
• Leads to multiplicative update rule
• Connections to biological synapses
• https://arxiv.org/abs/2006.14560 

https://arxiv.org/abs/2002.03432
https://arxiv.org/abs/2102.07227
https://arxiv.org/abs/2006.14560


Summary: Architecture-Aware Perturbation Bounds

Majorise-minimise
‖Δf(x)‖ ≤

‖ΔWl‖

‖Wl‖
Πl( )1 + -1

Architectural perturbation bound

[ ]C ·

depthwidth



Towards A Practical Theory of Deep Learning Optimization

R = R1 + R2 + R3

1/R = 1/R1 + 1/R2 + 1/R3

Theory of Composite Functions?
n Learning Rate
n Learning Rate Decay
n Momentum
n Gradient Averaging
n Warm-up Iterations
n …



Jeremy Bernstein

https://arxiv.org/abs/2210.10101 

https://arxiv.org/abs/2210.10101


How to 
exploit the structure 

of NNs to develop 
a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping 
of Neural ODEs 
“Lyapunov Loss”



Recall Idea #2: Control Dynamics of Hidden Layers

We want each layer to push representation towards good answer

Goal: control sequence of hidden layers ℎ%, … , ℎ( 
• quickly and robustly converge to low loss



Warm Up: Deep Networks

input

input layer function

hidden states

output layer function

outputoutput

hidden layer functions

𝑓'"𝑥 ℎ( 𝑓! ℎ! 𝑓$ ℎ$ 𝑓)*+ 𝑦



Warm Up: ResNets

𝑓'"𝑥 ℎ(

𝑓!

ℎ! ℎ$ 𝑓)*+ 𝑦

𝑓$

ℎB = 𝑓C! 𝑥
ℎ! = ℎ!=> + 𝑓! ℎ!=>
	 𝑦 = 𝑓DEF(ℎG)

Functional Form:



ResNets => Continuous-in-Depth => Neural ODEs

𝑓'"𝑥 ℎ(

𝑓

ℎ! ℎ$ 𝑓)*+ 𝑦

𝑓

ℎ& = ℎ&'" + 𝛿𝑓 ℎ&'"

“Euler Integration Step Size”
lim
2→4 𝜕ℎ

𝜕𝑡
= 𝑓 ℎ



Neural Ordinary Differential Equations (NODEs)

ℎ( = 𝑓)& 𝑥

𝜕ℎ
𝜕𝑡

= 𝑓 ℎ, 𝑥

	 𝑦(𝑡) = 𝑓*+,(ℎ 𝑡 )

WLOG: 𝑡 ∈ [0,1]
(“augmented” NODE since f depends on x -- https://arxiv.org/abs/1904.01681)

Comments:
• Forward pass requires ODE solve

• Can evaluate output at any time
• E.g., y(0.5)

• Includes continuous normalizing flows 
& other generative models 

Continuum of hidden layers
“Dynamics”

https://arxiv.org/abs/1806.07366 

Input Layer

Output Layer

https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/1806.07366


Using Control Theory to Shape Learning

• Control can shape dynamical systems (most commonly ODEs)

Stability

B(x)

Safe 
Set      

Safety Adversarial Robustness

Images by Aaron Ames & Brett Lopez



Why Shape Dynamics of NODEs?

Unstable NODE
Standard BackProp

Our Approach
Lyapunov Loss

Ivan
Jimenez Rodriguez

Dynamics:  
Trajectories

2D state space, Red Class is correct
Showing inference trajectories under perturbations



What dynamics can we shape?

• Full state space: ℎ 𝑡 ?
• (too unwieldy)

• Projection: 𝑉 ℎ(𝑡) ≡ 𝐿 𝑦 𝑡
• Dynamics of the training loss
• 1-D projection of state space

ℎ( = 𝑓)& 𝑥

𝜕ℎ
𝜕𝑡

= 𝑓 ℎ, 𝑥

	 𝑦(𝑡) = 𝑓*+,(ℎ 𝑡 )

WLOG: 𝑡 ∈ [0,1]

“Dynamics”

“Potential function”



Exponential Stability

𝑉(ℎ 𝑡 ) ≤ 𝑉(ℎ 0 )𝑒'-,Goal:

𝜕𝑉
𝜕ℎ

%

𝑓 ℎ ≤ −𝜅𝑉 ℎKey invariant:

Benefits: Fast convergence & Robustness

𝑉 𝑡 = 𝑐𝑒'-,

𝑠𝑙𝑜𝑝𝑒 = −𝜅𝑐𝑒'-,
            = −𝜅𝑉(𝑡) 
          



Exponential Convergence in Action
B 

E 
T 

T 
E 

R
Ivan

Jimenez Rodriguez
CIFAR-10

LyaNet is trained to optimize for 
exponential convergence
https://arxiv.org/abs/2202.02526 

https://arxiv.org/abs/2202.02526


Measuring Progress via Contraction Condition

One 
trajectory

Violation:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ > −𝜅𝑉(ℎ)

Satisfaction:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ ≤ −𝜅𝑉(ℎ)

Contraction Satisfied Everywhere => Exponential Stability!



Lyapunov Loss

• Point-wise Lyapunov Loss

• Lyapunov Loss:

𝐿R 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉S
𝜕ℎ

-

𝑓 ℎ + 𝜅𝑉S(ℎ) 	

Contraction condition violation

𝐿R 𝜃 ≡ 𝑬T,S G
B

>
𝐿R 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability!
https://arxiv.org/abs/2202.02526 

Violation:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ > −𝜅𝑉(ℎ)

Satisfaction:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ ≤ −𝜅𝑉(ℎ)

https://arxiv.org/abs/2202.02526


LyaNet 
A Lyapunov Framework for Training Neural ODEs

1. Interpret training loss as potential function: 𝑉 ℎ(𝑡) ≡ 𝐿 𝑦 𝑡

2. Instantiate (point-wise) Lyapunov Loss:

3. Optimize Lyapunov Loss everywhere

Ivan
Jimenez Rodriguez

https://arxiv.org/abs/2202.02526 

𝐿R 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉S
𝜕ℎ

-

𝑓 ℎ − 𝜅𝑉S(ℎ) 	

https://arxiv.org/abs/2202.02526


Optimization Considerations

• Evaluating integral exactly is hard

• Approximate by sampling (simplest is Monte Carlo)
• Sample (x,y,h) uniformly at random
• Backprop on point-wise Lyapunov Loss

𝐿7 𝜃 ≡ 𝑬",9 F
4

%
𝐿7 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

𝐿7 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉9
𝜕ℎ

&

𝑓 ℎ − 𝜅𝑉9(ℎ) 	

Lyapunov Loss

Point-wise
Lyapunov Loss

https://arxiv.org/abs/2202.02526 

https://arxiv.org/abs/2202.02526


Benefits of Sampling

• Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

• Similar idea used in Score-Based Generative Models & Moser Flows

𝐿R 𝜃 ≡ 𝑬T,S G
B

>
𝐿R 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

Achieving 𝐿- 𝜃 = 0 under uniform measure implies 𝐿- 𝜃 = 0  in original measure

https://arxiv.org/abs/2202.02526 

https://arxiv.org/abs/2202.02526


Connection to Control Theory

• V is an Exponentially-Stabilizing Control Lyapunov Function (ES-CLF) 
for a controllable ODE if for all states ℎ ∈ 𝐻:

• Can we find a controller 𝜃 that makes V an ES-CLF?
• In control, f has uncontrolled dynamics and 𝜃 is low-dim

• Connection between controllability & learnability
• Can we find a 𝜃 that achieves zero Lyapunov Loss?
• For NODEs, f is fully controlled and over-parameterized

min
*

𝜕𝑉
𝜕ℎ

-

𝑓 ℎ; 𝜃 + 𝜅𝑉(ℎ) ≤ 0	

https://ieeexplore.ieee.org/document/6709752 

Equivalent to Lyapunov Loss
“controller”

https://ieeexplore.ieee.org/document/6709752


Comments & Extensions

• Stabilize to sets rather than points
• E.g., under adversarial perturbations, can still stabilize to a region of low loss
• Sets need not be convex

• Combinations of conditions (multiple invariances)

• Other invariances:

Forward-Invariance
(never leaves “safe” set)



Motivating Application: Continuous Control

Stability/Safety Specification

Torso Angle

Swing Foot

min
)

𝜕𝑉
𝜕ℎ

*

𝑓 ℎ; 𝜃 + 𝜅𝑉(ℎ) ≤ 0	

Sample States
Compile Loss

Deploy Controller

Note: Dynamics of Control System included in Neural ODE



Neural Gaits
Ivan

Jimenez Rodriguez
Noel

Csomay-Shanklin

https://arxiv.org/abs/2204.08120 

Torso Angle

Swing Foot

Learn policy to satisfy composition of continuous-time conditions
Implies indefinite walking (forward-invariance)

Example Barriers

https://arxiv.org/abs/2204.08120




Certified Forward-Invariance in NODEs
Ivan

Jimenez Rodriguez
Yujia

Huang

https://arxiv.org/abs/2210.16940  

Certified Robust Forward Invariance
(First Ever Result)

https://arxiv.org/abs/2210.16940


Summary: 
Control-Theoretic 
Shaping of Neural ODEs



Aside: Symbolic Music Generation 
    via Stochastic Control

Yujia
Huang

Symbolic Music Generation with Non-Differentiable Rule-Guided Diffusion
Yujia Huang, et al., arXiv https://scg-rule-guided-music.github.io/ 

https://scg-rule-guided-music.github.io/


Towards Structure-Aware Theory of Deep Learning

• Neural Nets are not arbitrary black-box functions
• Analyzing structure can lead to more nuanced theory
• Can unlock new connections

Per-Layer Perturbation Analysis
Contraction Analysis 

& Control Theory

𝑉(𝐻)
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