Controlling the Structure of Inference and Learning in Neural Networks

Yisong Yue

Caltech

https://arxiv.org/abs/2210.10101
Machine learning is transforming science

Halicin: structurally new antibiotic

Personalized Exoskeletons

AlphaFold

https://www.microsoft.com/en-us/research/project/crispr/

http://roams.caltech.edu/
...and autonomous decision-making

MLNav: Learning to Safely Navigate on Martian Terrains
https://arxiv.org/abs/2203.04563

Microsoft Azure Personalizer

AlphaGo
...and creativity

Query: How many muffins can each kid have for it to be fair?

Execution:

```
muffin_patches = image_patch.find("muffin")

len(muffin_patches)=8
len(kid_patches)=2

8/2 = 4
```

Result: 4
Operationally: What is Machine Learning? (Optimization Perspective)

Data: x \[\text{Learning Signal: } L_x(\cdot) \]

Optimization Problem:

$$\arg\min_{\theta} L(\theta) = \sum_x L_x(f(x; \theta))$$

Profit!
Tuning Neural Networks is Messy and Hard

Initialization, activation, loss, architecture type, depth & width, dropout rate, optimizer, learning rate, momentum, batch size, ...

(Brock et al, 2019)
Tuning Neural Networks is Messy and Hard

Initialization, activation, loss, architecture type, depth & width, dropout rate, momentum, …

Heuristic Tuning

HARK Side of Deep Learning - From Grad Student Descent to Automated Machine Learning

Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly

(Brock et al, 2019)

Canonical View of ML Optimization

• Typical update rule:

\[\theta \leftarrow \theta - \eta \nabla L(\theta) \]

(ignoring stochastic aspect, i.e., full batch optimization)
Canonical View of ML Optimization

• **Typical update rule:**
 \[\theta \leftarrow \theta - \eta \nabla L(\theta) \]

 - **Parameters**
 - **Gradient of Loss w.r.t. parameters**
 - **Learning Rate (tunable hyperparameter)**

 (ignoring stochastic aspect, i.e., full batch optimization)

In Theory:
- Set \(\eta \) via perturbation analysis
- How much \(f \) can change w.r.t. \(\theta \)
- (e.g., global Lipschitz constant of \(f \))

In Practice:
- Re-tune \(\eta \) if we change anything about learning setup!
Looking Inside a Neural Network

Example:
Linear w/ ReLU activation

\[f(h; \theta) = [\theta^T h]_+ \]

(ignoring bias/offset)
Intuition (for binary classification)

Sequence of transformations
- Each dimension is a half-space mapping
- Goal: last layer is a separable space with perfect classification
Idea #1: Per-Layer Perturbation Analysis

• How does the layer’s function change under parameter perturbation?

Potential Application: depth- & width-invariant learning rate η
Idea #2: Control Dynamics of Hidden Layers

Recall: we want each layer to push representation towards a good answer

Goal: control sequence of hidden layers h_1, \ldots, h_N
- quickly and robustly converge to low loss
How to exploit the structure of NNs to develop a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping of Neural ODEs
“Lyapunov Loss”
Warm-Up: Local Perturbation Analysis

- Linear approximation breaks down as $\Delta \theta$ increases!
- Understand rate of break-down via perturbation analysis.

Taylor Expansion:

$$L(\theta + \Delta \theta) = L(\theta) + \nabla_{\theta} L(\theta)^T \Delta \theta + \frac{1}{2} \Delta \theta^T \nabla^2_{\theta} L(\theta) \Delta \theta + \ldots$$

Linear Approximation

(ignoring stochastic aspect, i.e., full batch optimization)
Majorize-Minimize Framework

Typical Form: $L(\theta + \Delta \theta) \leq L^{(k)}(\theta + \Delta \theta) + \psi_\theta(\Delta \theta)$

Error $L(\theta)$

- **Majorization**: upper bound on error that lies tangent.
- **Minimize majorization**: reduces error.

(ignoring stochastic aspect, i.e., full batch optimization)
Majorize-Minimize in Action

Example 1:

$$\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda |\Delta \theta|^2 \Rightarrow \text{gradient descent.}$$

Example 2:

$$\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda D(\theta + \Delta \theta, \theta) \Rightarrow \text{mirror descent.}$$

Example 3:

$$\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \frac{1}{2} \Delta \theta^T H \Delta \theta + \lambda |\Delta \theta|^3 \Rightarrow \text{cubic regularized Newton.}$$

(ignoring stochastic aspect, i.e., full batch optimization)
Aside: Duality of Majorization & Trust Regions

\[\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta + \lambda |\Delta \theta|^2 \]

- Closed-form solution: \(\Delta \theta = -\left(\frac{2}{\lambda} \right) \nabla_\theta L(\theta) \)

- Implies GD update rule: \(\theta \leftarrow \theta - \left(\frac{2}{\lambda} \right) \nabla_\theta L(\theta) \)

- Analogous to: \(\min_{\Delta \theta} \nabla_\theta L(\theta)^T \Delta \theta \) s.t. \(|\Delta \theta|^2 \leq C \)

Theoretical guidance via perturbation sensitivity, e.g., Lipschitz constant
Architecture-Naive Majorizations

\[
\begin{align*}
\min_{\Delta \theta} & \quad \nabla_\theta L(\theta)^T \Delta \theta + \lambda |\Delta \theta|^2 \\
\theta & \leftarrow \theta - \left(\frac{2}{\lambda}\right) \nabla_\theta L(\theta)
\end{align*}
\]

Can use smaller λ → shallower majorization

Must use larger λ → steeper majorization
Architecture-Naive Majorizations

- Deep networks have complicated optimization landscapes
- Using a single isotropic majorization can be very inefficient!

https://arxiv.org/abs/1712.09913
How to define a majorization that exploits NN structure?

• (First) Key Idea: per-layer perturbation analysis
• Perturb entire layer’s parameters => perturbation of final output
Thought Experiment

• Vary only n-th layer: $\theta_n + \Delta \theta_n$

• What is the Lipchitz constant of entire function f?

• Depends on parameters θ of other layers!
 • If other parameters are larger => perturbation is larger!
Architecture-Aware Perturbation Bounds

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101

For L_2 loss:

$$L(\theta + \Delta \theta) \leq L^{(1)} + \psi_\theta(\Delta \theta)$$
Architecture-Aware Perturbation Bounds

For L_2 loss:
\[L(\theta + \Delta \theta) \leq L^{(1)} + O(|\Delta f(\theta)|_2) + O(|\Delta f(\theta) - \Delta \theta^T \nabla_\theta f(\theta)|_2) \]

Overall perturbation sensitivity
\[\Delta f(\theta) := f(\theta + \Delta \theta) - f(\theta) \]

Breakdown of linear approx

"Deep Relative Trust": \[\frac{|\Delta \theta_n|^*}{|\theta_n|^*} \]

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101

Jeremy Bernstein
Kevin Huang
Majorize-Minimize for Neural Networks

• Derive *majorization* of error

• Plug in *architecture perturbation bound*

• *Minimize* to obtain optimization algorithm

Desiderata & Caveats

\[
L(\theta + \Delta \theta) \leq L^{(1)} + O(|\Delta f(\theta)|_2) + O(|\Delta f(\theta) - \Delta \theta^T \nabla_\theta f(\theta)|_2)
\]

\[
\leq C_1 \left[\prod_{n=1}^{N} \left(1 - \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right) - 1 \right]
\]

\[
\leq C_2 \left[\prod_{n=1}^{N} \left(1 - \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right) - 1 - \sum_{n=1}^{N} \frac{|\Delta \theta_n|_*}{|\theta_n|_*} \right]
\]

- “Clean” bound only for deep linear networks
 - Formula more complicated with non-linearities
 - First ever analysis even for deep linear networks

- Majorization has no (known) closed-form solution
 - Solving for the optimal \(\Delta \theta \) is itself an optimization problem
First Result

Theorem 6.2 in https://arxiv.org/abs/2210.10101

• **Key restriction:** enforce relative update of each layer to be the same
 • Suboptimal but closed-form update rule

\[
\theta_n \leftarrow \theta_n - \eta \frac{1}{N} \sqrt{\min(\text{dim}_n, \text{dim}_{n-1})} \ \frac{|\theta_n|_F}{\|\nabla_{\theta_n} L(\theta)\|_F} \cdot \nabla_{\theta_n} L(\theta)
\]

- Parameters of Layer n
- Per-Layer Scaling
- Normalized Gradient
- Total Depth
- dimensionality of hidden layer

• **Learning rate** \(\eta\) transfers to wider & deeper networks!
 • (Related to mu-Parameterization by Greg Yang et al.)
Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Same learning rate is (near-)optimal across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)
Initialize Weights:
• for layer n in $\{1, \ldots, N\}$:
 • $\theta_n \sim \text{unif(orthogonal}(\dim_n, \dim_{n-1}))$
 • $\theta_n \sim \theta_n \cdot \sqrt{\frac{\dim_n}{\dim_{n-1}}}$

Update Weights:
• $G \leftarrow \frac{1}{N} \sum_{n=1}^{N} |\nabla_{\theta_n} L|_F \cdot \sqrt{\frac{\dim_n}{\dim_{n-1}}}$
• $\eta \leftarrow \log \frac{1+\sqrt{1+4G}}{2}$
• for layer n in $\{1, \ldots, N\}$:
 • $\theta_n \leftarrow \theta_n - \frac{\eta}{N} \cdot \frac{\nabla_{\theta_n} L}{|\nabla_{\theta_n} L|_F} \cdot \sqrt{\frac{\dim_n}{\dim_{n-1}}}$

$|\theta_n| = \sqrt{\frac{\dim_n}{\dim_{n-1}}}$

$|\Delta \theta_n| = \frac{\eta}{N} \cdot \sqrt{\frac{\dim_n}{\dim_{n-1}}}$
AGD trains without hyperparameters

https://arxiv.org/abs/2304.05187
Case Study: Training Very Deep Networks
(Fully connected, no Skip Connections or Normalization Layers)

Training very deep networks is hard!
Practitioners use techniques like skip connections & normalization layers.

Different Ways to Design Optimizers

\[\theta_n \]

<table>
<thead>
<tr>
<th></th>
<th>1.2</th>
<th>-0.5</th>
<th>2.3</th>
<th>0.4</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4</td>
<td>2.1</td>
<td>-0.8</td>
<td>0.7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.5</td>
<td>-2.4</td>
<td>0.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>-2.1</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>-0.2</td>
<td>1.1</td>
<td>0.1</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

- Per-layer
- Per-neuron
- Per-synapse
Different Ways to Design Optimizers

• **Fromage:** Per-layer was our first foray

• **Nero:** Per-neuron
 • Also constrain per-neuron weight norm
 • Connections to batch-norm
 • Connections to generalization

• **Madam:** Per-synapse
 • Also sign-constrain weights
 • Leads to multiplicative update rule
 • Connections to biological synapses
Summary: Architecture-Aware Perturbation Bounds

Architectural perturbation bound

$$\|\Delta f(x)\| \leq C \cdot \prod_i \left(1 + \frac{\|\Delta W_i\|}{\|W_i\|} \right)^{-1}$$
Towards A Practical Theory of Deep Learning Optimization

\[R = R_1 + R_2 + R_3 \]

\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

Theory of Composite Functions?
- Learning Rate
- Learning Rate Decay
- Momentum
- Gradient Averaging
- Warm-up Iterations
- ...
Optimisation & Generalisation in Networks of Neurons

Thesis by
Jeremy Bernstein

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

https://arxiv.org/abs/2210.10101
How to exploit the structure of NNs to develop a more nuanced theory?

Majorize-Minimize Framework

Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping of Neural ODEs

“Lyapunov Loss”
Recall Idea #2: Control Dynamics of Hidden Layers

We want each layer to push representation towards good answer

Goal: control sequence of hidden layers h_1, \ldots, h_N
- quickly and robustly converge to low loss
Warm Up: Deep Networks
Warm Up: ResNets

Functional Form:

\[h_0 = f_{\text{in}}(x) \]
\[h_n = h_{n-1} + f_n(h_{n-1}) \]
\[y = f_{\text{out}}(h_N) \]
ResNets \Rightarrow Continuous-in-Depth \Rightarrow Neural ODEs

$$f'\cdot h(\cdot) = f(h)$$

"Euler Integration Step Size"

$$h_n = h_{n-1} + \delta f(h_{n-1})$$

$$\lim_{\delta \to 0} \frac{\partial h}{\partial t} = f(h)$$
Neural Ordinary Differential Equations (NODEs)

\[h_0 = f_{in}(x) \]

\[\frac{\partial h}{\partial t} = f(h, x) \]

\[y(t) = f_{out}(h(t)) \]

Input Layer

Continuum of hidden layers

“Dynamics”

Output Layer

WLOG: \(t \in [0,1] \)

Comments:

- Forward pass requires ODE solve
- Can evaluate output at any time
 - E.g., \(y(0.5) \)
- Includes continuous normalizing flows & other generative models

(“augmented” NODE since \(f \) depends on \(x \) -- https://arxiv.org/abs/1904.01681)
Using Control Theory to Shape Learning

- Control can shape dynamical systems (most commonly ODEs)
Why Shape Dynamics of NODEs?

2D state space, **Red Class** is correct
Showing inference trajectories under perturbations

Dynamics:

- **Unstable NODE**
- Standard BackProp

Our Approach
Lyapunov Loss
What dynamics can we shape?

\[h_0 = f_{in}(x) \]
\[\frac{\partial h}{\partial t} = f(h, x) \]
\[y(t) = f_{out}(h(t)) \]

WLOG: \(t \in [0,1] \)

- Full state space: \(h(t) \)?
 - (too unwieldy)

- **Projection**: \(V(h(t)) \equiv L(y(t)) \)
 - **Dynamics of the training loss**
 - 1-D projection of state space
Exponential Stability

Goal: \(V(h(t)) \leq V(h(0))e^{-\kappa t} \)

Key invariant: \(\frac{\partial V^T}{\partial h} f(h) \leq -\kappa V(h) \)

Benefits: Fast convergence & Robustness

\[V(t) = ce^{-\kappa t} \]

\[\text{slope} = -\kappa ce^{-\kappa t} = -\kappa V(t) \]
Exponential Convergence in Action

CIFAR-10

LyaNet is trained to optimize for exponential convergence

Ivan
Jimenez Rodriguez
Measuring Progress via Contraction Condition

Violation: \(\frac{\partial V}{\partial h} f(h) > -\kappa V(h) \)

Satisfaction: \(\frac{\partial V}{\partial h} f(h) \leq -\kappa V(h) \)

Contraction Satisfied Everywhere => Exponential Stability!
Lyapunov Loss

- **Point-wise Lyapunov Loss**

\[
L_V(x, y, h) \equiv \max \left\{ 0, \frac{\partial V_y^T}{\partial h} f(h) + \kappa V_y(h) \right\}
\]

- **Lyapunov Loss:**

\[
L_V(\theta) \equiv \mathbb{E}_{x,y} \left[\int_0^1 L_V(x, y, h(t)) dt \right]
\]

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability!

Violation:

\[
\frac{\partial V^T}{\partial h} f(h) > -\kappa V(h)
\]

Satisfaction:

\[
\frac{\partial V^T}{\partial h} f(h) \leq -\kappa V(h)
\]

Contraction condition violation

[Link to ArXiv paper](https://arxiv.org/abs/2202.02526)
LyaNet
A Lyapunov Framework for Training Neural ODEs

1. Interpret training loss as potential function: $V(h(t)) \equiv L(y(t))$

2. Instantiate (point-wise) Lyapunov Loss:

$$L_V(x, y, h) \equiv \max \left\{ 0, \frac{\partial V_y}{\partial h} f(h) - \kappa V_y(h) \right\}$$

3. Optimize Lyapunov Loss everywhere

Optimization Considerations

\[L_V(\theta) \equiv E_{x,y} \left[\int_0^1 L_V(x, y, h(t)) dt \right] \]

• Evaluating integral exactly is hard

• Approximate by sampling (simplest is Monte Carlo)
 • Sample \((x,y,h)\) uniformly at random
 • Backprop on point-wise Lyapunov Loss

\[L_V(x, y, h) \equiv \max \left\{ 0, \frac{\partial V_y}{\partial h} f(h) - \kappa V_y(h) \right\} \]

Lyapunov Loss

Point-wise Lyapunov Loss

Benefits of Sampling

• Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

\[L_V(\theta) \equiv E_{x,y} \left[\int_0^1 L_V(x, y, h(t))dt \right] \]

Achieving \(L_V(\theta) = 0 \) under uniform measure implies \(L_V(\theta) = 0 \) in original measure

• Similar idea used in Score-Based Generative Models & Moser Flows

Connection to Control Theory

• V is an **Exponentially-Stabilizing Control Lyapunov Function (ES-CLF)** for a controllable ODE if for all states $h \in H$:

$$\min_{\theta} \left[\frac{\partial V^T}{\partial h} f(h; \theta) + \kappa V(h) \right] \leq 0$$

• Can we find a controller θ that makes V an ES-CLF?
 • In control, f has uncontrolled dynamics and θ is low-dim

• Connection between controllability & learnability
 • Can we find a θ that achieves zero Lyapunov Loss?
 • For NODEs, f is fully controlled and over-parameterized

Equivalent to Lyapunov Loss
Comments & Extensions

• Stabilize to sets rather than points
 • E.g., under adversarial perturbations, can still stabilize to a region of low loss
 • Sets need not be convex

• Combinations of conditions (multiple invariances)

• Other invariances:
 Forward-Invariance (never leaves “safe” set)
Motivating Application: Continuous Control

Note: Dynamics of Control System included in Neural ODE

\[\min_\theta \left[\frac{\partial V}{\partial h} f(h; \theta) + \kappa V(h) \right] \leq 0 \]
Neural Gaits

Learn NODE policy to satisfy composition of Barrier conditions
Implies indefinite walking (forward-invariance)

Example Barriers

Torso Angle

Swing Foot

Final Policy
Trained on Refined Model
2 Episodes of Data

https://arxiv.org/abs/2204.08120
Certified Forward-Invariance in NODEs

Certified Robust Forward Invariance (First Ever Result)

Summary:
Control-Theoretic Shaping of Neural ODEs

Final Policy
Trained on Refined Model
2 Episodes of Data

Cross Entropy Loss

Inference Time

LyaNet
Neural ODE
Towards Structure-Aware Theory of Deep Learning

• Neural Nets are not arbitrary black-box functions
 • Analyzing structure can lead to more nuanced theory
 • Can unlock new connections

Per-Layer Perturbation Analysis

\[\theta_n \quad \text{vs} \quad \theta_n + \Delta \theta_n \quad \text{perturbation} \]

Contraction Analysis
• Optimisation & Generalisation in Networks of Neurons, Jeremy Bernstein, PhD Thesis, Caltech, 2022

• On the distance between two neural networks and the stability of learning, Jeremy Bernstein et al., NeurIPS 2020

• Learning compositional functions via multiplicative weight updates, Jeremy Bernstein et al., NeurIPS 2020

• Learning by Turning: Neural Architecture Aware Optimisation, Yang Liu*, Jeremy Bernstein*, et al., ICML 2021

• LyaNet: A Lyapunov Framework for Training Neural ODEs, Ivan Jimenez Rodriguez et al., ICML 2022

• FI-ODE: Certified and Robust Forward Invariance in Neural ODEs, Yujia Huang*, Ivan Jimenez Rodriguez*, et al., arxiv

• Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, Ivan Jimenez Rodriguez*, Noel Csomay-Shanklin*, et al., L4DC 2022

• Automatic Gradient Descent: Deep Learning without Hyperparameters, Jeremy Bernstein*, Chris Mingard*, et al. arxiv