
Controlling the Structure
of Inference and Learning
in Neural Networks

Yisong Yue

https://arxiv.org/abs/2210.10101

https://arxiv.org/abs/2210.10101

Machine learning is
transforming science

Halicin: structurally
new antibiotic

Personalized
Exoskeletons
http://roams.caltech.edu/

https://www.microsoft.com/en-us/research/project/crispr/

AlphaFold

https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220

CRISPR ML

http://roams.caltech.edu/
https://www.microsoft.com/en-us/research/project/crispr/
https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220

…and autonomous
decision-making

https://learn.microsoft.com/en-us/azure/cognitive-services/personalizer/how-personalizer-works

AlphaGo

Microsoft Azure Personalizer

MLNav: Learning to Safely Navigate on Martian Terrains
https://arxiv.org/abs/2203.04563

https://learn.microsoft.com/en-us/azure/cognitive-services/personalizer/how-personalizer-works
https://arxiv.org/abs/2203.04563

…and creativity

https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed

https://www.vice.com/en/article/bvmvqm/an-ai-generated-artwork-won-first-place-at-a-state-fair-fine-arts-competition-and-artists-are-pissed

…and common-sense reasoning

https://viper.cs.columbia.edu/

https://viper.cs.columbia.edu/

Operationally: What is Machine Learning?
(Optimization Perspective)

Data: 𝑥 Learning Signal: 𝐿!(⋅)

argmin!𝐿 𝜃 =*
"

𝐿"(𝑓 𝑥; 𝜃)

Profit!

Optimization Problem:

Tuning Neural Networks
is Messy and Hard
Initialization, activation, loss, architecture type,
depth & width, dropout rate, optimizer, learning
rate, momentum, batch size, …

https://www.asimovinstitute.org/the-neural-network-zoo-2016/
(Brock et al, 2019)

https://www.asimovinstitute.org/the-neural-network-zoo-2016/

Tuning Neural Networks
is Messy and Hard
Initialization, activation, loss, architecture type,
depth & width, dropout rate, optimizer, learning
rate, momentum, batch size, …

https://www.asimovinstitute.org/the-neural-network-zoo-2016/
(Brock et al, 2019)

Heuristic Tuning

https://www.asimovinstitute.org/the-neural-network-zoo-2016/

Canonical View of ML Optimization

• Typical update rule:

𝜃 ← 𝜃 − 𝜂∇𝐿 𝜃

Parameters
Gradient of
Loss w.r.t.
parameters

Learning Rate (tunable hyperparameter)

(ignoring stochastic aspect, i.e., full batch optimization)

Canonical View of ML Optimization

• Typical update rule:

𝜃 ← 𝜃 − 𝜂∇𝐿 𝜃

Parameters
Gradient of
Loss w.r.t.
parameters

Learning Rate (tunable hyperparameter)

(ignoring stochastic aspect, i.e., full batch optimization)

In Theory:
• Set 𝜂 via perturbation analysis

• How much 𝑓 can change w.r.t. 𝜃
• (e.g., global Lipschitz constant of 𝑓)

In Practice:
• Re-tune 𝜂	if we change anything about learning setup!

Looking Inside a
Neural Network

Input: x

Output: y

h1 hNh2 hN-1…

Hidden States

f1 f2 fN+1fNfN-1…

Per-Layer Functions

ℎ# = 𝑓#(ℎ#$%; 𝜃#)

Example:
Linear w/ ReLU activation

𝑓 ℎ; 𝜃 = 𝜃&ℎ '

(ignoring bias/offset)

Parameters

Intuition (for binary classification)

Sequence of transformations
• Each dimension is a half-space mapping
• Goal: last layer is a separable space with perfect classification

Images by Joe Marino

• How does the layer’s function change under parameter perturbation?

Idea #1: Per-Layer Perturbation Analysis

vs 𝜃! + Δ𝜃! perturbation

Potential Application: depth- & width-invariant learning rate 𝜂

𝜃!

Idea #2: Control Dynamics of Hidden Layers

Recall: we want each layer to push representation towards good answer

Goal: control sequence of hidden layers ℎ%, … , ℎ(
• quickly and robustly converge to low loss

How to
exploit the structure

of NNs to develop
a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping
of Neural ODEs
“Lyapunov Loss”

Error
𝐿(𝜃)

𝜃!

Warm-Up:
Local
Perturbation
Analysis

(ignoring stochastic aspect, i.e., full batch optimization)

𝐿 𝜃 + Δ𝜃 = 𝐿 𝜃 + ∇!𝐿 𝜃 &Δ𝜃 +
1
2
Δ𝜃&∇!-Δ𝜃 +	…

Taylor Expansion:

Linear Approximation

• Linear approximation
breaks down as 𝚫𝜽
increases!

• Understand rate of
break-down via
perturbation analysis.

Majorize-Minimize Framework
https://en.wikipedia.org/wiki/MM_algorithm

(ignoring stochastic aspect, i.e., full batch optimization)

Majorization: upper bound on
error that lies tangent.

Minimize majorization
⇒ reduces error.

Error
𝐿(𝜃)

𝜃!𝜃"

𝐿 𝜃 + Δ𝜃 ≤ 𝐿 . 𝜃 + Δ𝜃 + 𝜓! Δ𝜃Typical Form:

Order-k Taylor approximation
(k=1 for linear)

Upper bound of the rest

https://en.wikipedia.org/wiki/MM_algorithm

Majorize-Minimize in Action

𝜆|Δ𝜃|-+min
/!

	 ∇!𝐿 𝜃 &Δ𝜃Example 1:

𝜆D(𝜃 + Δ𝜃, 𝜃)+min
/!

∇!𝐿 𝜃 &Δ𝜃Example 2:

𝜆|Δ𝜃|0+∇!𝐿 𝜃 &Δ𝜃 +
1
2Δ𝜃

&𝐻Δ𝜃min
/!

Example 3:

⇒ gradient descent.

⇒ mirror descent.

⇒ cubic regularized Newton.

D = Bregman Divergence

H = Hessian

(ignoring stochastic aspect, i.e., full batch optimization)

Upper bound of restOrder-k Taylor Approx

Aside: Duality of Majorization & Trust Regions

• Closed-form solution: Δ𝜃 = − (
)
∇*𝐿(𝜃)

• Implies GD update rule: 𝜃 ← 𝜃 − (
)
∇*𝐿 𝜃

• Analogous to: min
+*	

s.t.

𝜆|Δ𝜃|-+min
/!

	 ∇!𝐿 𝜃 &Δ𝜃

Learning Rate

∇!𝐿 𝜃 &Δ𝜃 |Δ𝜃|- ≤ 𝐶 “Trust Region”

Theoretical guidance via
perturbation sensitivity,
e.g., Lipschitz constant

Error
𝐿(𝜃)

Architecture-Naive
Majorizations

𝜆|Δ𝜃|(+min
+*

	 ∇*𝐿 𝜃 -Δ𝜃

𝜃 ← 𝜃 −
2
𝜆
∇*𝐿 𝜃

Can use smaller 𝝀
→ shallower majorization

Must use larger 𝝀
→ steeper majorization

Architecture-Naive
Majorizations

https://arxiv.org/abs/1712.09913

• Deep networks have
complicated optimization
landscapes

• Using a single isotropic
majorization can be very
inefficient!

https://arxiv.org/abs/1712.09913

• (First) Key Idea: per-layer perturbation analysis
• Perturb entire layer’s parameters => perturbation of final output

How to define a majorization
that exploits NN structure? Jeremy

Bernstein
Kevin
Huang

Thought Experiment

• Vary only n-th layer: 𝜃! + Δ𝜃!

• What is the Lipchitz constant of entire function f?

• Depends on parameters 𝜽 of other layers!
• If other parameters are larger => perturbation is larger!

Architecture-Aware Perturbation Bounds

Kevin
Huang

For L2 loss:

	 𝐿 𝜃 + Δ𝜃 ≤ 𝐿 " + 𝜓#(Δ𝜃)

1st order Taylor

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101

Upper Bound of Rest

Jeremy
Bernstein

https://arxiv.org/abs/2210.10101

Architecture-Aware Perturbation Bounds

Jeremy
Bernstein

Kevin
Huang

≤ 𝐶! 1
"#!

$

1 −
|Δ𝜃"|∗
|𝜃"|∗

− 1 ≤ 𝐶& 1
"#!

$

1 −
|Δ𝜃"|∗
|𝜃"|∗

− 1 −6
"#!

$
|Δ𝜃"|∗
|𝜃"|∗

For L2 loss:

	 𝐿 𝜃 + Δ𝜃 ≤ 𝐿 " + 𝑂 |Δ𝑓 𝜃 |$ + 𝑂 |Δ𝑓 𝜃 −Δ𝜃%∇#𝑓 𝜃 |$

Overall perturbation sensitivity
Δ𝑓 𝜃 ≔ 	𝑓 𝜃 + Δ𝜃 − 𝑓(𝜃)

Breakdown of linear approx1st order Taylor

Lemmas 5.1 & 6.2 in https://arxiv.org/abs/2210.10101

“Deep Relative Trust”: |𝚫𝜽𝒏|∗
|𝜽𝒏|∗

https://arxiv.org/abs/2210.10101

Majorize-Minimize for
Neural Networks

• Derive majorization of error

• Plug in architecture perturbation bound

• Minimize to obtain optimization algorithm

Related: “Automatically Bounding the Taylor Remainder Series: Tighter Bounds and New Applications” (https://arxiv.org/abs/2212.11429)

https://arxiv.org/abs/2212.11429

Desiderata
& Caveats

• “Clean” bound only for deep linear networks
• Formula more complicated with non-linearities
• First ever analysis even for deep linear networks

• Majorization has no (known) closed-form solution
• Solving for the optimal Δ𝜃 is itself an optimization problem

First Result

• Key restriction: enforce relative update of each layer to be the same
• Suboptimal but closed-form update rule

• Learning rate 𝜼 transfers to wider & deeper networks!
• (Related to mu-Parameterization by Greg Yang et al.)

Jeremy
Bernstein

Kevin
Huang

𝜃! ← 𝜃! − 𝜂
1
𝑁

|𝜃!|<
min(dim! , dim!=>)	

⋅
∇*#𝐿(𝜃)
|∇*#𝐿 𝜃 |<

Parameters of Layer n

dimensionality of hidden layer

Normalized
Gradient

Theorem 6.2 in https://arxiv.org/abs/2210.10101

Per-Layer Scaling

Total Depth

https://arxiv.org/abs/2210.10101

Depth 4

Depth 6

Depth 8

Depth 10

Learning Rate

Lo
ss

Same learning rate is (near-)optimal
across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)

Epoch 9

Depth 4

Depth 6

Depth 8

Depth 10

Learning Rate

Lo
ss

Same learning rate is (near-)optimal
across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)

Epoch 9 Epoch 14

Depth 4

Depth 6

Depth 8

Depth 10

Learning Rate

Lo
ss

Same learning rate is (near-)optimal
across depth & width!

(ignoring stochastic aspect, i.e., full batch optimization)

Epoch 9 Epoch 14 Epoch 19

Case Study: Training Very Deep Networks
(Fully connected, no Skip Connections or Normalization Layers)

https://arxiv.org/abs/2002.03432

B E T T E RAc
cu

ra
cy

Depth

SGD

Adam

Ours

Training very deep networks is hard!
Practitioners use techniques like
skip connections & normalization layers.

https://arxiv.org/abs/2002.03432

|𝜃!| =
dim"

dim"#$
⇒

|Δ𝜃!| =
𝜂
𝑁 ⋅

dim"

dim"#$
⇒

Latest Result
Automatic Gradient Descent

https://arxiv.org/abs/2304.05187

Jeremy
Bernstein

Chris
Mingard

Initialize Weights:
• for layer 𝑛 in 1,… ,𝑁 :

• 𝜃!	~	unif orthogonal dim", dim"#$

• 𝜃!	~	𝜃! ⋅
%&'#
%&'#$%

Update Weights:

• 𝐺 ← $
(
∑!)$(|∇*&𝐿|+ ⋅

%&'#
%&'#$%

• 𝜂 ← log $, $,-.
/

• for layer 𝑛 in 1,… ,𝑁 :

• 𝜃! ← 𝜃! −
0
(
⋅

∇'&2
|∇'&2|(

⋅ %&'#
%&'#$%

https://arxiv.org/abs/2304.05187

AGD trains without
hyperparameters

https://arxiv.org/abs/2304.05187

Training Performance
Test Performance

SGD

Ours

Adam

https://arxiv.org/abs/2304.05187

Different Ways to Design Optimizers

1.2 - 0.5 2.3 0.4 1.3

- 0.4 2.1 - 0.8 0.7 1.5

1.1 0.5 - 2.4 0.3 1.0

0.4 - 2.1 - 0.2 0.1 0.5

1.4 - 0.2 - 1.1 0.1 1.4

Per-layer

Per-neuron

Per-synapse

𝜽𝒏

Different Ways to Design Optimizers
• Fromage: Per-layer was our first foray

• https://arxiv.org/abs/2002.03432

• Nero: Per-neuron
• Also constrain per-neuron weight norm
• Connections to batch-norm
• Connections to generalization
• https://arxiv.org/abs/2102.07227

• Madam: Per-synapse
• Also sign-constrain weights
• Leads to multiplicative update rule
• Connections to biological synapses
• https://arxiv.org/abs/2006.14560

https://arxiv.org/abs/2002.03432
https://arxiv.org/abs/2102.07227
https://arxiv.org/abs/2006.14560

Summary: Architecture-Aware Perturbation Bounds

Majorise-minimise
‖Δf(x)‖ ≤

‖ΔWl‖

‖Wl‖
Πl()1 + -1

Architectural perturbation bound

[]C ·

depthwidth

Towards A Practical Theory of Deep Learning Optimization

R = R1 + R2 + R3

1/R = 1/R1 + 1/R2 + 1/R3

Theory of Composite Functions?
n Learning Rate
n Learning Rate Decay
n Momentum
n Gradient Averaging
n Warm-up Iterations
n …

Jeremy Bernstein

https://arxiv.org/abs/2210.10101

https://arxiv.org/abs/2210.10101

How to
exploit the structure

of NNs to develop
a more nuanced theory?

Majorize-Minimize Framework
Per-Layer Perturbation: “Deep Relative Trust”

Control-Theoretic Shaping
of Neural ODEs
“Lyapunov Loss”

Recall Idea #2: Control Dynamics of Hidden Layers

We want each layer to push representation towards good answer

Goal: control sequence of hidden layers ℎ%, … , ℎ(
• quickly and robustly converge to low loss

Warm Up: Deep Networks

input

input layer function

hidden states

output layer function

outputoutput

hidden layer functions

𝑓'"𝑥 ℎ(𝑓! ℎ! 𝑓$ ℎ$ 𝑓)*+ 𝑦

Warm Up: ResNets

𝑓'"𝑥 ℎ(

𝑓!

ℎ! ℎ$ 𝑓)*+ 𝑦

𝑓$

ℎB = 𝑓C! 𝑥
ℎ! = ℎ!=> + 𝑓! ℎ!=>
	 𝑦 = 𝑓DEF(ℎG)

Functional Form:

ResNets => Continuous-in-Depth => Neural ODEs

𝑓'"𝑥 ℎ(

𝑓

ℎ! ℎ$ 𝑓)*+ 𝑦

𝑓

ℎ& = ℎ&'" + 𝛿𝑓 ℎ&'"

“Euler Integration Step Size”
lim
2→4 𝜕ℎ

𝜕𝑡
= 𝑓 ℎ

Neural Ordinary Differential Equations (NODEs)

ℎ(= 𝑓)& 𝑥

𝜕ℎ
𝜕𝑡

= 𝑓 ℎ, 𝑥

	 𝑦(𝑡) = 𝑓*+,(ℎ 𝑡)

WLOG: 𝑡 ∈ [0,1]
(“augmented” NODE since f depends on x -- https://arxiv.org/abs/1904.01681)

Comments:
• Forward pass requires ODE solve

• Can evaluate output at any time
• E.g., y(0.5)

• Includes continuous normalizing flows
& other generative models

Continuum of hidden layers
“Dynamics”

https://arxiv.org/abs/1806.07366

Input Layer

Output Layer

https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/1806.07366

Using Control Theory to Shape Learning

• Control can shape dynamical systems (most commonly ODEs)

Stability

B(x)

Safe
Set

Safety Adversarial Robustness

Images by Aaron Ames & Brett Lopez

Why Shape Dynamics of NODEs?

Unstable NODE
Standard BackProp

Our Approach
Lyapunov Loss

Ivan
Jimenez Rodriguez

Dynamics:
Trajectories

2D state space, Red Class is correct
Showing inference trajectories under perturbations

What dynamics can we shape?

• Full state space: ℎ 𝑡 ?
• (too unwieldy)

• Projection: 𝑉 ℎ(𝑡) ≡ 𝐿 𝑦 𝑡
• Dynamics of the training loss
• 1-D projection of state space

ℎ(= 𝑓)& 𝑥

𝜕ℎ
𝜕𝑡

= 𝑓 ℎ, 𝑥

	 𝑦(𝑡) = 𝑓*+,(ℎ 𝑡)

WLOG: 𝑡 ∈ [0,1]

“Dynamics”

“Potential function”

Exponential Stability

𝑉(ℎ 𝑡) ≤ 𝑉(ℎ 0)𝑒'-,Goal:

𝜕𝑉
𝜕ℎ

%

𝑓 ℎ ≤ −𝜅𝑉 ℎKey invariant:

Benefits: Fast convergence & Robustness

𝑉 𝑡 = 𝑐𝑒'-,

𝑠𝑙𝑜𝑝𝑒 = −𝜅𝑐𝑒'-,
 = −𝜅𝑉(𝑡)

Exponential Convergence in Action
B

E
T

T
E

R
Ivan

Jimenez Rodriguez
CIFAR-10

LyaNet is trained to optimize for
exponential convergence
https://arxiv.org/abs/2202.02526

https://arxiv.org/abs/2202.02526

Measuring Progress via Contraction Condition

One
trajectory

Violation:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ > −𝜅𝑉(ℎ)

Satisfaction:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ ≤ −𝜅𝑉(ℎ)

Contraction Satisfied Everywhere => Exponential Stability!

Lyapunov Loss

• Point-wise Lyapunov Loss

• Lyapunov Loss:

𝐿R 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉S
𝜕ℎ

-

𝑓 ℎ + 𝜅𝑉S(ℎ) 	

Contraction condition violation

𝐿R 𝜃 ≡ 𝑬T,S G
B

>
𝐿R 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability!
https://arxiv.org/abs/2202.02526

Violation:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ > −𝜅𝑉(ℎ)

Satisfaction:
𝜕𝑉
𝜕ℎ

,
𝑓 ℎ ≤ −𝜅𝑉(ℎ)

https://arxiv.org/abs/2202.02526

LyaNet
A Lyapunov Framework for Training Neural ODEs

1. Interpret training loss as potential function: 𝑉 ℎ(𝑡) ≡ 𝐿 𝑦 𝑡

2. Instantiate (point-wise) Lyapunov Loss:

3. Optimize Lyapunov Loss everywhere

Ivan
Jimenez Rodriguez

https://arxiv.org/abs/2202.02526

𝐿R 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉S
𝜕ℎ

-

𝑓 ℎ − 𝜅𝑉S(ℎ) 	

https://arxiv.org/abs/2202.02526

Optimization Considerations

• Evaluating integral exactly is hard

• Approximate by sampling (simplest is Monte Carlo)
• Sample (x,y,h) uniformly at random
• Backprop on point-wise Lyapunov Loss

𝐿7 𝜃 ≡ 𝑬",9 F
4

%
𝐿7 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

𝐿7 𝑥, 𝑦, ℎ ≡ max 0,
𝜕𝑉9
𝜕ℎ

&

𝑓 ℎ − 𝜅𝑉9(ℎ) 	

Lyapunov Loss

Point-wise
Lyapunov Loss

https://arxiv.org/abs/2202.02526

https://arxiv.org/abs/2202.02526

Benefits of Sampling

• Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

• Similar idea used in Score-Based Generative Models & Moser Flows

𝐿R 𝜃 ≡ 𝑬T,S G
B

>
𝐿R 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

Achieving 𝐿- 𝜃 = 0 under uniform measure implies 𝐿- 𝜃 = 0 in original measure

https://arxiv.org/abs/2202.02526

https://arxiv.org/abs/2202.02526

Connection to Control Theory

• V is an Exponentially-Stabilizing Control Lyapunov Function (ES-CLF)
for a controllable ODE if for all states ℎ ∈ 𝐻:

• Can we find a controller 𝜃 that makes V an ES-CLF?
• In control, f has uncontrolled dynamics and 𝜃 is low-dim

• Connection between controllability & learnability
• Can we find a 𝜃 that achieves zero Lyapunov Loss?
• For NODEs, f is fully controlled and over-parameterized

min
*

𝜕𝑉
𝜕ℎ

-

𝑓 ℎ; 𝜃 + 𝜅𝑉(ℎ) ≤ 0	

https://ieeexplore.ieee.org/document/6709752

Equivalent to Lyapunov Loss
“controller”

https://ieeexplore.ieee.org/document/6709752

Comments & Extensions

• Stabilize to sets rather than points
• E.g., under adversarial perturbations, can still stabilize to a region of low loss
• Sets need not be convex

• Combinations of conditions (multiple invariances)

• Other invariances:

Forward-Invariance
(never leaves “safe” set)

Motivating Application: Continuous Control

Stability/Safety Specification

Torso Angle

Swing Foot

min
)

𝜕𝑉
𝜕ℎ

*

𝑓 ℎ; 𝜃 + 𝜅𝑉(ℎ) ≤ 0	

Sample States
Compile Loss

Deploy Controller

Note: Dynamics of Control System included in Neural ODE

Neural Gaits
Ivan

Jimenez Rodriguez
Noel

Csomay-Shanklin

https://arxiv.org/abs/2204.08120

Torso Angle

Swing Foot

Learn policy to satisfy composition of continuous-time conditions
Implies indefinite walking (forward-invariance)

Example Barriers

https://arxiv.org/abs/2204.08120

Certified Forward-Invariance in NODEs
Ivan

Jimenez Rodriguez
Yujia

Huang

https://arxiv.org/abs/2210.16940

Certified Robust Forward Invariance
(First Ever Result)

https://arxiv.org/abs/2210.16940

Summary:
Control-Theoretic
Shaping of Neural ODEs

Aside: Symbolic Music Generation
 via Stochastic Control

Yujia
Huang

Symbolic Music Generation with Non-Differentiable Rule-Guided Diffusion
Yujia Huang, et al., arXiv https://scg-rule-guided-music.github.io/

https://scg-rule-guided-music.github.io/

Towards Structure-Aware Theory of Deep Learning

• Neural Nets are not arbitrary black-box functions
• Analyzing structure can lead to more nuanced theory
• Can unlock new connections

Per-Layer Perturbation Analysis
Contraction Analysis

& Control Theory

𝑉(𝐻)

Jeremy
Bernstein

Ivan
Jimenez Rodriguez

Yujia
Huang

Kevin
Huang

Yang
Liu

Noel
Csomay-Shanklin

Ming-Yu
Liu

Arash
Vahdat

Markus
Meister

Anima
Anandkumar

Aaron
Ames

Yuanyuan
Shi

Chris
Mingard

Navid
Azizan

Will
Compton

Jiawei
Zhao

Ziniu
Hu

Eric
Ambrose

Siddharth
Gururani

Adishree
Ghatare

Qinsheng
Zhang

Chandramouli
Sastry

Yuanzhe
Liu

Sageev
Oore

Huan
Zhang

• Optimisation & Generalisation in Networks of Neurons, Jeremy Bernstein, PhD Thesis, Caltech, 2022

• On the distance between two neural networks and the stability of learning, Jeremy Bernstein et al., NeurIPS
2020

• Learning compositional functions via multiplicative weight updates, Jeremy Bernstein et al., NeurIPS 2020

• Learning by Turning: Neural Architecture Aware Optimisation, Yang Liu*, Jeremy Bernstein*, et al., ICML 2021
• LyaNet: A Lyapunov Framework for Training Neural ODEs, Ivan Jimenez Rodriguez et al., ICML 2022

• FI-ODE: Certified and Robust Forward Invariance in Neural ODEs, Yujia Huang*, Ivan Jimenez Rodriguez*, et al.,
arxiv

• Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, Ivan
Jimenez Rodriguez*, Noel Csomay-Shanklin*, et al., L4DC 2022

• Robust Agility via Learned Zero Dynamics Policies, Noel Csomay-Shanklin*, Will Compton*, Ivan Jimenez
Rodriguez*, et al., (arxiv soon)

• Automatic Gradient Descent: Deep Learning without Hyperparameters, Jeremy Bernstein*, Chris Mingard*, et
al. arxiv

• Symbolic Music Generation with Non-Differentiable Rule Guided Diffusion, Yujia Huang, et al., arxiv

References

Thanks!
http://www.yisongyue.com @yisongyue

𝑉(𝐻)

http://www.yisongyue.com/

