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PoIicy/ControIIer Lea rning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy
State/Context s,
>
Imitation Learning: Agent
Optimize imitation loss
Reinforcement Learning: Action a,
Optimize environmental reward
St+1 | Environment / World
€ <

“Dynamics”

Learning-based Approach for
Sequential Decision Making

Non-learning approaches include: optimal control, robust control, adaptive control, etc.
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Many Exciting Success Stories
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“1 want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
| need some guarantees.” -- Aerospace Director
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Stability

e Fairness

Behavioral Guarantees  possibly others: | * Low-risk

 Temporal logic
* Etc..

Ideal Behavior

Unsmooth

Smooth|Recovery
>

Safety Smoothness



Research Questions

Smooth|Recover %

Stability Safety Smoothness

* How to constrain learning to (provably) satisfy guarantees?

* How to integrate domain knowledge from physics & control theory?
* (Towards) a unified framework?

* How to exploit structure for faster learning?
e (both computational & statistical)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I
. . . . . Model-Based Planner
* Integration in optimization problem O




Starting Point

Standard IL/RL Objective -

/

argminy,L(h)
S.L.
R(h) < k

In general, very hard \ i
to verify/optimize!

Side Constraint -
(e.g., for all inputs, h is safe)

Model-Based/Free
On/Off Policy
Imitation/Reinforcement

Optimal Control




Functional Regularization

(to a certified controller)

argminyL(h)

S.t. @) argmin, ,L(h) + Ak — gl
g € G: ||h — g|I* < k

‘ ‘  Intractable?

Model-Based Controllers
(certified by construction)

— Key idea: G encodes domain knowledge & guarantees




Blended PO'ICV Class (solution concept) A “.

Richard
Cheng

Black Box Predictor Model-Based Controller

argming_(rL(h)  s.t. h(s) = argming, (f(s) — a’)? + A(g(s) — a')?

_ f(s)+Ag(s)
B 142

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng, Abhinav Verma, et al. ICML 2019



Test-Time Functional Regularization

Hoang
Le

Certified Complex
Predictors H

Complex Predictors F

argming=cs »HL(R)  s.t. h(s) = argming (f(s) — a)? + A(g(s) — a’)?

_ f(s)+Ag(s)
B 142

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Theoretical Guarantees

argminp—r,gL(h) s.t. h(s) = argming (f(s) — a)? + 2(g(s) — a')?

_ f(s)+Ag(s)
B 142

* By construction: h “close” to g

Run-time regularization
 Certifications on g => (relaxed) certifications on h

e Compatible with IL/RL

* New learning approaches

Convergence analysis

* VVery data efficient Low-Variance Gradients



Comments on Certified by Construction

f(s)+Ag(s)
h(s) = =15

* Assumption: all g € G are certified by construction

* Robust against disturbances
 Satisfied for many physical systems

* Disturbance: Black box predictor f € F is a “disturbance” of g
» Worst-case disturbance depends max f(s) and A
S

* Guarantees worsen as A decreases

* Note: local guarantee at the per-state level



Comments on Optimization/Learning

argminp—r,gL(h) s.t. h(s) = argming (f(s) — a)? + 2(g(s) — a')?

_ f(s)+Ag(s)
B 142

* Alternating optimization

* Hold g fixed, optimize f >
a ”» h
+ Hold h fixed, optimize g Reduces to “standard” approaches

e (see NeurlPS 2019 paper for clean treatment)

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurlIPS 2019



Realtime Player Detection and Tracking

sS3¥NLV3d

h

Ground Truth Pan N
Predicied Pan

w
g \
2 =10} .
§ \ ‘
[ . |
| {l
-20
i J
: “.'-_ J “",;A:vv—-}
e ™ i
-30
40 ‘ L
0 1000 1500 2000 2500 3000 3500
Index Number

Learned Regressor

Human Operated Camera




Naive Approach

* Supervised learning of demonstration data
* Train predictor per frame

* Predict per frame
In practice, 2-step smoothing:
20

Camera Angle
S
Camera Angle
=)

Time Frame Time Frame



Smooth Policy Class

Black Box Predictor Smooth Model

argminp—r.yL(h) s.t.  h(s) = argming (f(s) —a)* + A(g(s) — a’)?
_ f(s)+2g(s)

Smooth Imitation Learning for Online Sequence Prediction 1+A4
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Test-Time Functional Regularization

Hoang
Le

Smooth Complex
Predictors H

Complex Predictors F

argming=cs »HL(R)  s.t. h(s) = argming (f(s) — a)? + A(g(s) — a’)?

_ f(s)+Ag(s)
B 142

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Our Results

Camera Angle

Time

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Qualitative Comparison

Our Approach
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Control Regularization
Richar:.
Cheng

(s)+Ag(
h(9) = Lt

* fis black box
e gis “control prior” (e.g., H-infinity controller)

e Learn f using any RL method

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



L2
A

Control Regularization

i
Richard
Cheng

* (Relaxed) Lyapunov stability bounds:

High Regularization Low Regularization

— Control Prior Traj.
— Optimal Trajectory

—— Control Prior Traj.
— Optimal Trajectory

Dl
-

State Space, S State Space, S

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Control Regularization %
Richar:-
_ f()+2g(s) chene
h(s) = 1+
* Theorem (informal):
* Variance of policy gradient decreases by factor of: (1—1/1)2

. Implies much faster learning!
* Bias converges to: (m) Dry(h*, g)

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Control Regularization
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Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019






Summary: Functional Regularization

IL/RL Objective

Regularization & argming, L(h) \
Constrained Learning st ﬁ argminyL(h) + AR(h)

R(h) <k /
\ Side Guarantees

Hybrid Policy h(s) = argming, (f(s) —a’)* + A(g(s) — a')?

Solution Concept _ f(s)+Ag(s)
B 1+




Summary: Functional Regularization (cont.)

Control methods => analytic guarantees

Blend w/ learning => improve precision/flexibility
Preserve side guarantees

Interpret as functional regularization

Other directions:

Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurlIPS 2019

(side guarantees)

(real-world improvements)

(possibly relaxed)

(speeds up learning)

(offline learning)

(programmatic controllers)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I
. . . . . Model-Based Planner
* Integration in optimization problem O




Model-Based Control

New State Current Action (aka control input)

\ /

Sts1 = F(sp,up) + €

/ Unmodeled Disturbance / Error

Current State

(Value lteration is also contraction mapping)

Robust/Optimal Control (fancy contraction mappings)
e Stability guarantees (e.g., Lyapunov)
* Precision/optimality depends on error




Learning Residual Dynamics £ =nominal dynamics

F =learned dynamics

Current Action (aka control input)
New State

. /

St+1 — F(Stlut) T F(Stlut) T E(Strut)

\ / Unmodeled Disturbance / Error

Current State

Leverage robust/optimal control (fancy contraction mappings)
* Preserve stability (even using deep learning)
 Requires F Lipschitz & bounded error




Stable Drone Landing l cuom ichen sl

Shi Shi  Q’Connell

Ground effect

AR
AN

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019



Control System Formulation

Dynamics:

Control:

Unknown forces & moments:

{

/“

Learn the Residual

p=v, mv = mg + Rf, + £,
R=RS(w), Jw=JwXw+T,+ T,
f. =0, O,T]T
_ i
Ty = [Txa Ty, Tz]
p— 2 —
J & Ci cT cT cr 4T
T _ 0 CTlarm 0 _CTlarm ng
Ty T _CTlarm 0 CTla,rm 0 TL2
Tz —CQ CQ —CQ cQ g
Ny

[fa,xa fa,ya fa,z]T

]T Learn the Residual

[Ta,xa Ta,ys Ta,z



Data Collection (Manual Exploration)

position (m)

N
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time (s)
Learn ground effect: F(s,u) - f, = [fa,x,fa,y,fa,z]T

(s,u): height, velocity, attitude and four control inputs

Notable Extension:
Safe Exploration

Ensures F is Lipshitz
[Bartlett et al., NeurlPS 2017]
[Miyato et al., ICLR 2018]

|

Spectral-Normalized
4-Layer Feed-Forward



Prediction Results

—— RelLU Network prediction
——— Ground effect physical model with different u
e Ground truth

Ground Effect (N)
V N
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Height (m)

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 20109.



Prediction Results

Spectral Normalized Conventional DNN
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019.



Controller Design (simplified)

Shi Shi  O’Connell

* Nonlinear Feedback Linearization:

_ — K _ Desired Trajectory
Unominal = Bsl] n= v — p*l  (tracking error)

\

Feedback Linearization (PD control)

* Cancel out ground effect F(s,uUy14): U = Unominal T Uresidual

/

Requires Lipschitz & small time delay



Controller Design (simplified)

Shi Shi  O’Connell

* Nonlinear Feedback Linearization:

_ — K . Desired Trajectory
Unominal = As] n= _ (tracking error)
1% v*

Stability Guarantee: Time delay Unmodeled
(simplified) / - disturbance
Il < lin(o)llexp {A’"i”‘(’{) P t} o

¢ Amin(K) o LP
N
Lipschitz of NN
€
= |[n()ll - —  Exponentially fast
Amin(K) o Lp P Y
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Aside: Robust Regression for Safe Exploration

* Robust regression for provable extrapolation => Safe Exploration!

Spectral Normalized  Conventional

(©) 1.4 2.0

- . Provably safe
Robust. - ||| trajectory
regression = os . planning for
guarantees T S exploration!
low error! -

’ 0.0

0.2

0.0 -0.5

vz (m/s)

Robust Regression for Safe Exploration in Control,
Angie Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, L4DC 2020
Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems,

Yashwanth
Nakka

Yashwanth Kumar Nakka, Angie Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, Soon-Jo Chung, R-AL 2021



Aside: Learning Control Lyapunov/Barrier Functions

* CLFs & CBFs encode low-dimensional projection of dynamics
* DOF of action space rather than state space
e Can be easier to learn than full dynamics

* How to learn CLF/CBF for controller design?

* How to analyze stability/safety under uncertainty? |
Andrew Victor

i . . ) . Taylor Dorobantu
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, Aaron D. Ames. IROS 2019.

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability

Andrew J. Taylor, Victor D. Dorobantu, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, Aaron D. Ames. CDC 20109.
Learning for Safety-Critical Control with Control Barrier Functions

Andrew Taylor, Andrew Singletary, Yisong Yue, Aaron Ames. L4DC 2020.

A Control Barrier Perspective on Episodic Learning via Projection-to-State Safety

Andrew J. Taylor, Andrew Singletary, Yisong Yue, Aaron D. Ames. L-CSS 2020.



Summary: Dynamics Learning

* Learn residual dynamics (data efficient)
* Control Lipschitz constant (imposes compatible structure)
* Standard controller design (inherits guarantees)

* Robust regression for safe exploration (provable limited extrapolation)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I

Model-Based Planner
* Integration in optimization problem { O }




Model-Based Planning

* Environment model is given Sep1 = F(sp,up) + €

* Design global plan (aka trajectory)

e Satisfy global constraints
* Previous topics only ensured local constraints
* E.g., Lyapunov stability, smoothness

* NP-Hard optimization problem!



Optimization as Sequential Decision Making

* Many Solvers are Sequential
* Tree-Search
* Greedy
* Gradient Descent

* Can view solver as “agent” or “policy”
 State = intermediate solution
* Find a state with high reward (solution)
* Learn better local decision making



Optimization as Sequential Decision Making

Learning to Search/Plan

* Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

* GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]

* A General Large Neighborhood Search Framework for Solving Integer Programs [Neur|PS 2020]

Submodular Maximization

* Learning Policies for Contextual Submodular Prediction [ICML 2013]

* Learning to Make Decisions via Submodular Regularization [ICLR 2021] ‘3 i - o '

Learning to Infer

* [terative Amortized Inference [ICML 2018]
* A General Method for Amortizing Variational Filtering [NeurIPS 2018]

* Iterative Amortized Policy Optimization [arXiv]
Joe Marino



Optimization as Sequential Decision Making

Learning to Search/Plan

* Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

iy
e
\ ’;

Jialin Song Ben Riviere

* GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]

* A General Large Neighborhood Search Framework for Solving Integer Programs [Neur|PS 2020]

Submodular Maximization

* Learning Policies for Contextual Submodular Prediction [ICML 2013]

* Learning to Make Decisions via Submodular Regularization [ICLR 2021]

Learning to Infer

* [terative Amortized Inference [ICML 2018]
* A General Method for Amortizing Variational Filtering [NeurIPS 2018]

* Iterative Amortized Policy Optimization [arXiv]

Joe Marino
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Retrospective DAgger vs Heuristics for
MILP based Path Planning (budget=2k)

200
Retrospective DAgger
175 - P (select only) 0 . |ﬁ
Ravi Lanka o —e— Gurobi Jialin Song
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only at smallest size! Way points (# binary variables)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
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Ongoing: ENav Integration




Overhead Camera  —|

Left Camera

Right Camera

SOLK: 1,878810,216 76050




Preliminary Results ol ol

Daftry Ono  Toupet Abcouwer Venkatraman

Baseline ENav (Cycle Time(s)) MLNav (Cycle Time(s))
7% 10% 12% 15% 7% | 10% | 12% | 15%
20deg. 145 338 nha n/a 20deg 080 099 nfa n/a

15 deg. 100 249
10deg. 0989 239
5 deg. 077 238
0 deg. 098 257

1Sdeg 048 099
10deg. 047 120
5 deg. 054 083
Odeg 047 1.11

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., IEEE AeroConf 2021.
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5. Deploy: Six robots navigating an obstacle course. i— m
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Blending Models/Rules & Black-Box Learning
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