Caltech

Towards Real-World Imitation Learning Animation, Sports Analytics, Robotics, and More

Yisong Yue

Policy/Controller Learning (Reinforcement & Imitation)

Non-learning approaches include: optimal control, robust control, adaptive control, etc.

Imitation Learning Tutorial

https://sites.google.com/view/icml2018-imitation-learning/

Yisong Yue

Hoang M. Le

yyue@caltech.edu

@YisongYue

<u>yisongyue.com</u>

Hoang.Le@Microsoft.com

@HoangMinhLe

hoangle.info

Example #1: Basketball Player Trajectories

- *s* = location of players & ball
- *a* = next location of player
- Training set: $D = \{(\vec{s}, \vec{a})\}$
 - \vec{s} = sequence of s
 - \vec{a} = sequence of a
- **Goal:** learn $h(s) \rightarrow a$

Example #2: Learning to Plan

- *s* = location of robots
- *a* = next location self robot
- Training set: $D = \{(\vec{s}, \vec{a})\}$
 - \vec{s} = sequence of s
 - \vec{a} = sequence of a
- **Goal:** learn $h(s) \rightarrow a$

Towards Real-World Applications

Speech Animation

Side Constraints (Smoothness)

Learning to Optimize

RCB

Towards Real-World Applications

Speech Animation

Research Goals:

- Abstractions for domain experts
- Better inductive bias
- Reductions to conventional learning
- Composable theoretical guarantees
- Works well in practice

Coordinated Learning

Learning to Optimize

盥をおめ柳すくといいはっぷとく依靠き事者る*ヤイスコ

Automatically generate high-frequency animations (lip syncing)

https://www.youtube.com/watch?v=9zL7qejW9fE

Prediction Task

https://www.youtube.com/watch?v=9zL7qejW9fE

Towards Real-World Applications

Data-Driven Ghosting

Hoang Le

English Premier League 2012-2013 Match date: 04/05/2013

Data-Driven Ghosting using Deep Imitation Learning Hoang Le et al. SSAC 2017

https://www.youtube.com/watch?v=WI-WL2cj0CA

Naïve Baseline

English Premier League 2012-2013

Match date: 04/05/2013

State Representation

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

But Who Plays Which Role?

- All we get are trajectories!
 - Don't know which belongs to which role.

- Need to solve a permutation problem
 - Naïve baseline ignores this!

Coordination Model

Hoang Le

Coordinated Multi-Agent Imitation Learning Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learned Roles

Towards Real-World Applications

Speech Animation

Side Constraints (Smoothness)

Learning to Optimize

Coordinated Learning

RCB

Naïve Approach

- Supervised learning of demonstration data
 - Train predictor per frame
 - Predict per frame

In practice, 2-step smoothing:

" I want to use deep learning to optimize the design, manufacturing and operation of our aircrafts. But I need some guarantees." -- Aerospace Director

Behavioral Guarantees

Possibly Others:

- Fairness
- Low-risk

Temporal logic

Blended Policy Class (solution concept)

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016 Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng, Abhinav Verma, et al. ICML 2019

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Our Results

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Qualitative Comparison

Learning Online Smooth P Operators to ha

Summary: Functional Regularization (cont.)

- Control methods => analytic guarantees
- Blend w/ learning => improve precision/flexibility
- Preserve side guarantees
- Interpret as functional regularization
- Other directions:

Batch Policy Learning under Constraints Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurIPS 2019 (side guarantees)

(real-world improvements)

(possibly relaxed)

(speeds up learning)

(offline learning)

(programmatic controllers)

Towards Real-World Applications

RCB

Coordinated Learning

Speech Animation

Side Constraints (Smoothness)

Optimization as Sequential Decision Making

- Many Solvers are Sequential
 - Tree-Search
 - Greedy
 - Gradient Descent
- Can view solver as "agent" or "policy"
 - State = intermediate solution
 - Find a state with high reward (solution)
 - Learn better local decision making

Optimization as Sequential Decision Making

Learning to Search/Plan

- Discrete Optimization (Tree Search), Sparse Rewards
- Learning to Search via Retrospective Imitation [arXiv]
- Co-training for Policy Learning [UAI 2019]
- GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]
- A General Large Neighborhood Search Framework for Solving Integer Programs [NeurIPS 2020]

Contextual Submodular Maximization

- Discrete Optimization (Greedy), Dense Rewards
- Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Infer

- Continuous Optimization (Gradient-style), Dense Rewards
- Iterative Amortized Inference [ICML 2018]
- A General Method for Amortizing Variational Filtering [NeurIPS 2018]
- Iterative Amortized Policy Optimization [arXiv]

Jialin Song Ben Riviere

Stephane Ross

Joe Marino

Optimization as Sequential Decision Making

Learning to Search/Plan

- Discrete Optimization (Tree Search), Sparse Rewards
- Learning to Search via Retrospective Imitation [arXiv]
- Co-training for Policy Learning [UAI 2019]
- GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]
- A General Large Neighborhood Search Framework for Solving Integer Programs [NeurIPS 2020]

Contextual Submodular Maximization

- Discrete Optimization (Greedy), Dense Rewards
- Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Infer

- Continuous Optimization (Gradient-style), Dense Rewards
- Iterative Amortized Inference [ICML 2018]
- A General Method for Amortizing Variational Filtering [NeurIPS 2018]
- Iterative Amortized Policy Optimization [arXiv]

Jialin Song Ben Riviere

Stephane Ross

Joe Marino

Ravi Lanka

Jialin Song

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Jialin Song

Ongoing: Integration with ENav

Shreyansh Hiro Daftry Ono

Olivier Neil Toupet Abcouwer

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., (under review)

Learned Decentralized Planner (enforcing safety)

Ben Riviere

GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning, Benjamin Rivière, et al., R-AL 2020

5. Deploy: Six robots navigating an obstacle course.

2x

Collaborators

Jialin

Song

Cameron Voloshin

Zhou

Lanka

Jimmy

Marino

Chen

Hoang

Le

Andrew Kang

Wolfgang

Hoenig

Shreyansh

Daftry

Milan Siddarth Cvitkovic Venkatraman

Taehwan

Kim

Alex Piche

Sarah

Taylor

Aadyot Bhatnagar

Albert

Zhao

Debadeepta

Alessandro lalongo

Carr

Soon-Jo Chung

Gabor Joel **Burdick** Orosz

Chaudhuri

lain Matthews

Stephan Mandt Bagnell

Hiro Ono

Jim Little

Olivier Toupet

Bistra Dilkina

Abhinav

Verma

Neil

Dey

Ben Riviere Abcouwer

Ross

References

A Decision Tree Framework for Spatiotemporal Sequence Prediction, Taehwan Kim et al., KDD 2015 A Deep Learning Approach for Generalized Speech Animation, Sarah Taylor et al., SIGGRAPH 2017` Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016 Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019 Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019 Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision Trees, Jianhui Chen, et al., CVPR 2016 Imitation-Projected Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020 GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning, Benjamin Rivière, et al., R-AL 2020

Learning Policies for Contextual Submodular Optimization, Stephane Ross et al., ICML 2013 Iterative Amortized Inference, Joe Marino et al., ICML 2018

A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018

Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., (under review)