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Goal-Oriented	Experiment	Design

Experiment	Designer Experiment	Platform

• Iterative	&	adaptive

• Utility	maximizing	(find	best	outcome)

Experiment

Measurement

self-tuning system



Robotics	&	Control
image	credit	@	mwfarmandfield Protein	Engineering

image	credit	@	creativebiomart

Material	Science	
image	credit	@	phys.org

Drug	Discovery
from	Slideshare

Many	Applications	(Goal-Oriented)



Hypothesis	Space

Nature	Paper

Useful	Result

$100M

AI	for	Goal-Oriented	Experiment	Design



Experiment	Design	as	Interactive	Learning

• Collect	data	on	the	fly
• Not	available	a	priori

• Limited	budget	on	data	collection

• How	to	choose?



Three	Modes	of	Interactive	Learning

Active	Learning Multi-Armed	Bandits(Bayesian)	Optimization

• Goal:	Discover	truth

• E.g.,	model	of	world

• Maximize	accuracy

• Goal:	Best	single	prediction

• E.g.,	best	protein	

• Maximize	final	utility

• Goal:	Utility	over	time

• E.g.,	recommender	systems

• Maximize	utility	over	time

Focus	of	Talk



Bayesian	Optimization	
Example

Frances
Arnold

X	=	space	of	proteins
F(x)	=	fitness	landscape

Image	Credit:	Frances	Arnold



Learning	Setup

Experiment	Designer Experiment	Platform

self-tuning system

Given: input	space	X
Unknown: fitness	F(x)=y
Maintain: posterior	P(F|D)				(D=measurements)

Measure	yt

Choose	xt
Add	(xt,yt)	to	D
Update	posterior	P(F|D)

t=t+1

Upper	Confidence	Bound:		argmaxx ! x + #$ x
Posterior	Sampling:														argmaxx f(x),			f~P(F|D)	



Algorithmic	&	Theoretical	Questions
(see	papers	for	details)

• Analyze	convergence	to	F(x*)?

• Guarantee	side	constraints	(e.g.,	safety)?

• Corrupted	or	indirect	measurements?

• Efficiently	search	combinatorial	design	spaces?

• Incorporate	domain	knowledge	such	as	physics?



Real-World	Bayesian	Optimization

Safety,	Preference Multi-Fidelity Combinatorial,	Physics,	…

self-tuning system
Photo	credit:	Yury Tokpanov



Treating	Lower	Spine	Injuries

49	mm

10	mm

Medtronic	
human	
array

Image	source:	
williamcapicottomd.com

SCI	Patient

Each	patient	is	unique

109	possible	configurations!Joel	
Burdick

Yanan
Sui



Apply	Stimulus	xt

Receive	Response	yt

Learning Setup

Electrode	Array SCI	PatientJoel	
Burdick

Yanan
Sui

t=t+1

Update	posterior	
P(F|D)



Challenges

• Many	actions
• 106	 to	109

• Measuring	utility	difficult

• Safety	



Modeling Correlations: Gaussian Processes

• Defined	by	%&(!, ))

• Sample	a	function:	+~%&(!, ))
• Expected	value	of	+ - is	!(-)
• Correlation	of	+ -/ &	+ -0 	is	) -/, -0

• Finite	input	domain:											(e.g.,	10	choices	of	x)
• Reduces	to	multivariate	Gaussian	distribution

Mean	function

Covariance	
“kernel”



Benefits of Gaussian Processes

• Reason	about	uncertainty
• What	is	the	spread	of	outcomes	for	f(x)?

• Correlations	over	input	space
• Measuring	f(x1)	gives	information	on	f(x2)

• Work	with	domain	experts	to	build	correlations



Measurements via Preference Feedback

?

Multi-dueling	Bandits	with	Dependent	Arms, Sui,	Zhuang,	 Burdick	&	Yue,	UAI	2017
Correlational	Dueling	Bandits	with	Application	to	Clinical	Treatment	in	Large	Decision	Spaces,	Sui,	Yue	&	Burdick,	 IJCAI	2017



Gaussian Process Safety Model

Safety	Threshold

Stagewise Safe	Bayesian	Optimization	with	Gaussian	Processes,	Sui,	Zhuang,	 Burdick	&	Yue,	ICML	2018



Multiple	Stimuli	xt

Preference	Response	yt

Full Learning Setup

Electrode	Array SCI	Patient

t=t+1

Update	posterior	
P(F|D)

Multi-dueling	Bandits	with	Dependent	Arms, Sui,	Zhuang,	 Burdick	&	Yue,	UAI	2017
Correlational	Dueling	Bandits	with	Application	to	Clinical	Treatment	in	Large	Decision	Spaces,	Sui,	Yue	&	Burdick,	 IJCAI	2017
Stagewise Safe	Bayesian	Optimization	with	Gaussian	Processes,	Sui,	Zhuang,	 Burdick	&	Yue,	ICML	2018

**While	guaranteeing	safety**



Algorithmic Insights

Hypothesis	Space

Initial	Safe	Action

Safe	Region Very	Safe!

Almost	Unsafe!

Very	Safe!

Stagewise Safe	Bayesian	Optimization	with	Gaussian	Processes,	Sui,	Zhuang,	 Burdick	&	Yue,	ICML	2018

Yanan
Sui

Vincent
Zhuang



Algorithmic Insights

Hypothesis	Space

Safe	Region

Stagewise Safe	Bayesian	Optimization	with	Gaussian	Processes,	Sui,	Zhuang,	 Burdick	&	Yue,	ICML	2018

Standard	Bayesian	Optimization

Yanan
Sui

Vincent
Zhuang



Algorithmic Insights

Hypothesis	Space

Safe	Region

Stagewise Safe	Bayesian	Optimization	with	Gaussian	Processes,	Sui,	Zhuang,	 Burdick	&	Yue,	ICML	2018

Standard	Bayesian	Optimization

First	Maximize	Safety	Region
• Optimistic	in	the	face	of	uncertainty
• Identify	reachable	safety	region
• Approximately	maximal	w/	convergence	guarantees

Meta-Framework
• Leverage	any	Bayesian	Optimization	alg.	
• Inherit	guarantees

Yanan
Sui

Vincent
Zhuang



Clinical Experiments



Real-World	Bayesian	Optimization

Safety,	Preference Multi-Fidelity

self-tuning system
Photo	credit:	Yury Tokpanov

Combinatorial,	Physics,	…



Nano-photonics Structure Design

Harry
Atwater

Yury
Tokpanov

Jialin
Song

Yuxin
Chen Fleischman	et	al.:	https://doi.org/10.1021/acsphotonics.8b01634



https://doi.org/10.1016/B978-0-444-63638-6.00006-1

Hyperspectral

Imaging



Maxwell’s	equations	
FDTD	solver

Fitness Function (Figure of Merit)

Image	Credit:	Yury Tokpanov

Fitness	Function:



Multi-Fidelity Simulations

• Solve	Maxwell’s	equations

• Fidelity	depends	on	temporal	and	spatial	resolution

• Do	we	need	to	accurately	simulate	bad	structures?

1nm	x	1nm 2nm	x	2nm 3nm	x	3nm

Electric	field	profiles	at	550nm	for	different	mesh	sizes

Image	Credit:	Yury Tokpanov





Choose	Design	xt &	
Fidelity	Level	ℓt

Measure	
Response	yt

Learning Setup

t=t+1

Update	posterior	
P(F|D)

1nm	x	1nm 2nm	x	2nm 3nm	x	3nm

A	General	Framework	for	Multi-fidelity	
Bayesian	Optimization	with	Gaussian	
Processes,	Jialin Song	et	al.,	AISTATS	2019

Jialin
Song

Yuxin
Chen



Algorithmic Insights

Hypothesis	Space

A	General	Framework	for	Multi-fidelity	Bayesian	Optimization	with	Gaussian	Processes,	Jialin Song	et	al.,	AISTATS	2019
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Algorithmic Insights

Hypothesis	Space

A	General	Framework	for	Multi-fidelity	Bayesian	Optimization	with	Gaussian	Processes,	Jialin Song	et	al.,	AISTATS	2019
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Meta-Framework
• Use	coarse	level	as	much	as	possible	
• Periodically	check	fine	level	to	calibrate
• Switch	to	fine	level	only	at	end

• Can	use	any	Bayesian	Opt.	algorithm
• Cost-Weighted	Value	of	Information

Jialin
Song

Yuxin
Chen



Optimizing Photonic Nanostructures via
Multi-fidelity Gaussian Processes
Jialin Song†, Yury S. Tokpanov†, Yuxin Chen†, Dagny Fleischman†

Kate T. Fountaine†‡, Harry A. Atwater†, Yisong Yue†
† California Institute of Technology ‡NG Next, Northrop Grumman Corporation

The Problem: Optimize Photonic Nanostructures
• Goal: design compact integrated color fil-

ters with ultra-narrow bandwidth.

• Application: multispectral and hyperspec-
tral imaging.

• Challenge: non-convex optimization prob-
lem with large parameter space.

Figure 1: Hyperspectral imaging.

Background
Nanophotonics Optimization
• We use finite-difference time-domain (FDTD) method to simulate the transmission spectra of a

plasmonic color filter design.
• We extract observable scalar figures of merit (FOM) corresponding to the goodness of the spectrum

such as transmission peak amplitude, offset from designed wavelength.
• We use the FOM to formulate a minimization problem over a 5 dimensional geometric parameter

space.
• FOM is computationally expensive to obtain for a design so we want to find the best design with a

limited number of evaluations.

Blackbox Optimization
• Heuristics: particle swarm optimization (PSO) is a widely used method in nanophotonics commu-

nity to find approximate solutions of a blackbox optimization.
• Gaussian process: a popular model for Bayesian optimization of an unknown function.

Multi-fidelity Gaussian Process Optimization
• A general framework that captures the trade-off between cheap low-quality and expensive high-

quality data.
• Example: we can choose to conduct a real experiment or choose to run a simulation.
• Potential benefits in relating multiple information sources can lead to much more efficient opti-

mization.

Figure 2: Single-fidelity Gaussian Process Optimization Figure 3: Multi-fidelity Gaussian Process Optimization

Multi-fidelity Mutual Information Greedy Optimiza-
tion (MF-MI-Greedy) [? ]
• Exploration: MF-MI-Greedy favors selections that maximize the information gain per unit cost.
• Exploitation: at the end of the exploration phase, MF-MI-Greedy updates the posteriors and uses

a single-fidelity GP optimization sub-routine to exploit in the target fidelity.
• Flexibility: the framework is flexible so we can use any single-fidelity GP algorithm in the ex-

ploitation step.
• Theoretical Guarantee: [? ] shows that MF-MI-Greedy enjoys low regret guarantee and if the

optimization algorithm in exploitation phase is no regret, then MF-MI-Greedy is also no regret with
properly chosen budget on exploration phase.

Figure 4: The MF-MI-Greedy Algorithm

Experiments
Experiment Setup
• Task: we consider three design tasks, each targeting filtering light with wavelengths of 550nm,

650nm and 750nm, respectively.

• Fidelity: we use two sets of fidelity level construct. One varies the conformal mesh size
(3nm⇥3nm, 2nm⇥2nm, 1nm⇥1nm). The other varies the time-domain solver time (40fs, 70fs,
100fs).

• Model: we model the relationship between a low fidelity function fi and the target fidelity function
fm as fi = fm + ✏i where ✏i is an unknown error function. We use GPs to model fi, fm, ✏i with
squared exponential kernels.

• Budget: the total evaluation budget is 100 times the cost of the evaluating the target fidelity func-
tion.

• Compared Methods: GP-UCB [? ], MF-GP-UCB [? ], Particle Swarm Optimization [? ].

Experiment Results

Fidelity: Mesh Size
(3nm⇥3nm, 2nm⇥2nm, 1nm⇥1nm)

Fidelity: Simulation Time
(40fs, 70fs, 100fs)

Figure 5: Experiment results for optimizing a 5 dimensional photonic nanostructure. From the first to the third row, the
target wavelength is 550nm, 650nm and 750nm, respectively.

Future Directions
• Data sharing: can we jointly optimize multiple designs?

• Fidelity mixing: can we meaningfully mix fidelity data from different sources?
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Optimizing	Photonic	Nanostructures	via	Multi-fidelity	Gaussian	Processes
Song,	 Tokpanov,	Chen,	Fleischman,	Fountaine,	Atwater,	Yue,	2018
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Results

• 3	fidelities

• Balances	different	costs

• State-of-the-art	performance



Real-World	Bayesian	Optimization

Safety,	Preference Multi-Fidelity

self-tuning system
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Combinatorial,	Physics,	…



Batched Stochastic Bayesian Optimization

• Start	with	initial	amino	acid	sequence

• Choose	with	sites	to	mutate

• Mutations	are	probabilistic

• Combinatorial	structure	in	experiment	design

Frances
Arnold

Kevin
Yang

Yuxin
Chen

B	E	T	T	E	R

Batched	Stochastic	Bayesian	Optimization,	Yang,	Chen,	Lee,	Yue,	AISTATS	2019



Any Many More…
(physics, non-Bayesian)

Temperature Dynamics for the Melt Pool as a 
Spatial-temporal GP

Ufuk
Topcu

Yuxin
Chen

Angie
Liu

Guanya
Shi

…
Interactive	Controller	Calibration

Robust	Regression	for	Safe	Exploration	in	Control,	Angie	Liu,	Guanya Shi,	et	al.,	arxiv



Any Many More…
(subjective & dynamical)

…

Gait	Experiments

Feedback

Exoskeleton	PlatformsExperiment	Designer

Ellen
Novoseller

Yanan
Sui

Maegan
Tucker

Claudia
Kann

Dueling	Posterior	Sampling	for	Preference-Based	Reinforcement	Learning,	Ellen	Novoseller et	al.,	arxiv



Any Many More…
(human cognitive factors)

Yuxin
Chen

…

Connecticut	Warbler MacGillivray's Warbler

Oisin
Mac	Aodha

Near-Optimal	Machine	Teaching	via	Explanatory	Teaching	Sets,	Yuxin Chen,	Oisin Mac	Aodha,	 et	al.,	AISTATS	2018
Teaching	Categories	to	Human	Learners	with	Visual	Explanations,	Oisin Mac	Aodha,	et	al.,	CVPR	2018
Teaching	Multiple	Concepts	to	Forgetful	Learners,	Anette	Hunziker,	 Yuxin Chen,	et	al.,	arxiv

Interpretable	Teaching Teaching	Forgetful	Learners

Anette	
Hunziker

Shihan	
Su



AI for Adaptive Experiment Design

• Experimental	Platforms	Increasingly	Automated
• Motivates	using	Active	Learning	/	Bayesian	Optimization	/	Bandits

• Real-World	Considerations

• Cool	Applications!

• Indirect	measurements	
• Preference	feedback
• Multi-fidelity

• Constraints
• Safety
• Physical	constraints

• Domain	Knowledge
• Dynamics
• Human	factors

self-tuning system
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