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Machine learning is
transforming science

Halicin: structurally
new antibiotic

https://news.mit.edu/2020/artificial-intelligence-identifies-new-antibiotic-0220

Personalized

Exoskeletons
http://roams.caltech.edu/

CRISPR ML

https://www.microsoft.com/en-us/research/project/crispr/
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But something is missing...

DDPG with Hopper Environment, Actor Network Size

3000
TOUCH X’ WING THREAT s
‘. el S 2500
-~ n
-— £ 2000 |
AT 3 | ‘\
~ *\ & 1500 i
8 1000 i R T
5 AN || "“.l"‘““
9 = il Ly | AL !
500 [
< R I | —— Actor Network Size = 64 x 64
TUSSLE WING EXTENSION 0 L A S Actor Network Size = 100 x 50 x 25
5000 == Actor Network Size = 400 x 300

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps x10°

Data Efficiency
https://arxiv.org/abs/1709.06560
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https://arxiv.org/abs/1611.00094
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Domain
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A revolution in formal methods

Feature Story'

Internet Telephony Magazine Table of Contents

A Matter of Integrity: Tools That Deliver Software Assurance Go

Mainstream

By: Paula Bernier (News - Alert)

The failure of the levees in New Orleans and the collapse of the
1-35W bridge in Minneapolis gave many of us a greater
appreciation for the importance of ensuring vital infrastructure is
sound. Businesses and organizations would do well to apply
these lessons to the area of sofiware development. And many
already have

Software that hasn't been thoroughly vetted can result in lapses
in safety and security, customer-affecting performance issues
and lost revenue — some of the most catastrophic problems a
business can face.

;J~

~ = P —— -
@ Firefox code gets vetted | - CNET News

cnet

—

|

@ http://news.cnet.com/8301-10784_3-6104463-7

FILED UNDER: NEWS BLOG
Firefox code gets vetted

By: Joris Evers
AUGUST 10, 2006 5:32 PM PDT
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Mozilla is now using technology that automates the bug-che
browser.

The company has licensed Coverity's Prevent to scan the s
software before its release, Ben Chelf, chief technology offic|

to jointly announce the arrangement on Monday, he said
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How Facebook Catches Bugs in Its 100
Million Lines of Code

For the past four years, Facebook has quietly used a homegrown tool called Zoncolan to
find bugs in its massive codebase.

f ¥y ™

Even though the announcement isn't coming until Monday, Mozilla actually licensed the Coverity tool about a year
and a half ago, Chelf said. The companies held off on the announcement until Mozilla felt comfortable with the

product and it actually yielded some results, he said.
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Program Synthesis

/Behavioral Constraints\

Input/Output examples

Safety properties

Distribution over
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Scientific knowledge is code

E=w\.c?



Scientific knowledge is code

Understanding Morpho-phonology

(/open/, [root:0PEN])  (/d/, [tense:PAST])

N

(/opend/, [root:OPEN;tense:PAST))

/wokd/ —— [wokt]

Underlying form Surface form

https://dspace.mit.edu/handle/1721.1/113870

Synthesis of biological models

https://dl.acm.org/doi/10.1145/2480359.2429125
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Example in Behavior Analysis

Goal: Classify “sniff” action
between two mice

map (fun z;.

if DistAffine; o217, 2785(Tt)
then ACCAﬁEZne[—.oook,.0055,.0051,—.0025];3.7426 (z¢) else DistAffine[_ 5143);1.822) (1))
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Neurosymbolic learning isn’t new...

...but it’s a good time to push on it!

* Respective revolutions in both fields
* Rapidly maturing tools

* New algorithms that can scale
 Computation (e.g., neural-guided search)
* Data (e.g., programmatic weak supervision)

* Demands by the domain experts & science applications
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Closing the loop between
/Neurosymbolic Models\ data and inSight

Query model
Extract insights Fit model to data
Inject domain knowledge K / Suggest experiments

"4

Domain Expert
Check model insights against data




The Basic Recipe

Inputs Algebraic Operators Parameterized Operators

l / / (6 are the parameters)

a == z|d(ai,...,ak) | Delaa,...,ax)
A if a; then a; else a3 | selg x | mapaverage (fun z;.a1) x
Program Structure

Domain Specific Language (DSL) -- “Family of programs”

Recall Earlier Example:

Exam les of
map (fun z; P Do

if DzstAﬁ‘ine[ 0217];—.2785 (z+) / \

then AccAffine;_ o007,.0055,.0051,—.0025);3.7426 (T¢) €lse DistAffine|_ 143);1 822 (%1)) &




The Basic Recipe
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Program Structure
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Inputs Algebraic Operators Parameterized Operators \

¢ / / (6 are the parameters)

&L | @(ala” °7ak) I EB19(0417' ..,Oék)
if a1 then as else a3 | sels z | mapaverage (fun z;.01)

Domain Specific Language (DSL) -- “Family of programs” /

A

Learning Objective
(“Loss Function”)

- Learning Algorithm i
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Observations:

* Fixed program structure a — train 0 via gradient descent

* Setting & as a neural network — standard deep learning

* Finding &t is analogous to neural architecture search
* Sometimes call & the “program architecture”

* Classic program synthesis focuses on &, with 8 being very simple

-

(
map (fun z;.
Example if DistAffine| o217),— 2785 (Tt)
Program: ’ _
then ACCAﬁne[—.ooo7,.0055,.0051,—.0025];3.7426 (z¢) else DzstAﬁ‘Zne[_.2143];1_822) (z¢)) z
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Remainder of Talk

0.08 +0.55 0.02 + .40
0.03 +0.45 0.04 + .49
Map(F2)
Algorithm Vignette

(Computational Scalability)

Inputs

Trajectory
Data

- \

Outputs

Temporal
Annotator 1 - I

Filter Program
t
| Program : Filterj AccelerationSelec(
Synthesls weight | MorletFilter())
I|'.‘ ]
— | BN e et
\." 4
Annotator 3 'II I—‘ SPyl':tgr::;\l‘; = :2:;:[ Acc;:leratlonSelect(
orletFilter())
Beha;r::: lact:(els per frame Fra—’me 4

User Study Vignette (Interpretability)

—+|

—

Domain Expert
Task Programming Data Annotation
dist_nose(x1, y1, x2, y2):
- Y e ED - W
b y_diff=y2-y1
I dist = norm(x_diff, y_diff)
Examine trajectory data Select behavior attributes Write programs

Add decoder task

Mount Sniff  Other

Classifier

behavior

\ 4
\ an
Training

Annotate frame-level

Feature
Extraction

Model

Training
Data Augmentation Vignette (Data Efficiency)




Top-Down Induction

[ Az. foldl & (Azy. h*)[]]

Exponentially large search space!

Popular approaches (e.g., A*)
require admissible heuristic



Motivating Observation/Assumption:
Functional Representational Power

Neurosymbolic Models

“Large” Neural Models

“Neural Relaxation” Every neurosymbolic model can be (approximately) represented by some “large” neural model.



i |
Ameesh Eric Jennifer
Shah Zhan Sun

Ax.mapx g* | [ Az foldl z (Azy. h*)[]]

If a large neural network cannot fit this
hole, then a program also cannot

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah*, Eric Zhan*, et al., NeurIPS 2020
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NEAR: Neural Admissible Relaxations

Neural Relaxation as Admissible Heuristic!
Usable in any informed search (e.g., A*)

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah*, Eric Zhan*, et al., NeurIPS 2020
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Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah*, Eric Zhan*, et al., NeurIPS 2020
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Behavior categorization &
definitions are ambiguous!

challenge:
motifs built from basis set walk + sniff = walk+sniff e R e i

i y 4 -
compositional behaviors are unique ﬂ - :

time —» or challenge:
most behavior is 3D

AN @\“/‘V\d/wp\

-

challenge: walk turn walk walk sniff walking sniff eat sleep challenge:
labeling, linear
“splitting” or VS.
“lumping” thigmotaxis kil :at_ hierarchical
awake asleep

https://www.sciencedirect.com/scien
ce/article/pii/S0896627319308414
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Understanding annotator differences
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Megan Tjandrasuwita, Jennifer J. Sun, Ann Kennedy, Swarat Chaudhuri, Yisong Yue
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Data Augmentation, Self Supervision, Weak Supervision,
etc...

Example: image transformations that preserve “meaning”

s o IR
Rt _1 ' ;8‘.'
- S8 i o

Labeled data is expensive

Use augmentations to reduce

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)
label burden

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

https://arxiv.org/abs/2002.05709
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Auxiliary Supervision via Programmed Decoding Tasks

Jennifer
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Task Programming: Learning Data Efficient Behavior Representations,
Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue, Pietro Perona, CVPR 2021 ***Best Student Paper Award



Follow-up Work:
Automatically Synthesizing Decoding

Ta S k P rog Famm | N g Tasks via Unsupervised Program Learning
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Task Programming: Learning Data Efficient Behavior Representations,
Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue, Pietro Perona, CVPR 2021 ***Best Student Paper Award



LUNGE

Close Collaboration
with Domain Experts
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Neurosymbolic Survey
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***Coming out soon!

Neurosymbolic Programming
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ABSTRACT

Neurosymbolic programming is an emerging research area at the
interface of deep learning and program synthesis. Like in classic
machine learning, the goal here is to learn functions from data. How-
ever, these functions are represented as programs that use symbolic
primitives, often in conjunction with neural network components,
and must, in some cases, satisfy certain additional behavioral con-
straints. The programs are induced using a combination of symbolic
search and gradient-based optimization.

Neurosymbolic programming can offer multiple advantages over
end-to-end deep learning. Programs can sometimes naturally rep-
resent long-horizon, procedural tasks that are difficult to perform
using deep networks. Neurosymbolic representations are also, com-

idea here is to represent ML models as programs of the sort humans
would write. Sometimes, these programs are built entirely from
symbolic primitives. Sometimes, they use a mix of symbolic code
and neural modules. The learning problem in this area is to simul-
taneously induce a program’s symbolic and neural components, and
this problem is solved using a mix of symbolic and statistical tech-
niques. We call this literature neurosymbolic programming (Nsp),
and this article is an introduction to this area.

Mathematically, a program @y in Nsp consists of a program archi-
tecture o that defines the way in which a program’s symbolic and
neural modules are composed, and a vector 0 of parameters of these
modules. The program architectures are required to follow the syn-
tax of a domain-specific language (DSL). The learning problem is to
induce « and 6 so as to minimize an empirical loss function L(a, 6).
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Thanks!
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