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Can now build AI 
models for many tasks!

Autonomy

Knowledge
Work

Science

https://www.zuken.com/us/blog/how-are-satellites-bringing-low-latency-internet-to-autonomous-vehicles/ 

(Github Copilot)https://cellsam.deepcell.org/ 

https://www.zuken.com/us/blog/how-are-satellites-bringing-low-latency-internet-to-autonomous-vehicles/
https://cellsam.deepcell.org/


Real Systems have Complex Requirements

“I want to use deep learning to optimize the design, 
manufacturing and operation of our aircrafts. But I need 
some guarantees.” 

– an Aerospace Director while visiting Caltech 

Precise 
Control

Safe 
Exploration Valid Inferences

Social & Behavioral Dynamics

https://urologyaustin.com/urology-specialties/da-vinci-robotic-surgery/ 

https://urologyaustin.com/urology-specialties/da-vinci-robotic-surgery/


Unresolved Complexity → Engineering Overhead

https://www.autonews.com/mobility-
report/autonomous-vehicle-reality-
check-after-160-billion-spent 

Example: 

$160B invested in Self-Driving *

(* 2022 Estimate)

Leaky Abstractions

Many Corner Cases

Heavily Engineered Systems

Core Cause:

https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent
https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent
https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent


Unresolved Complexity → Engineering Overhead

https://www.autonews.com/mobility-
report/autonomous-vehicle-reality-
check-after-160-billion-spent 

Example: 

$160B invested in Self-Driving

(2022 Estimate)

Leaky Abstractions

Many Corner Cases

Heavily Engineered Systems

Core Cause:

Strong Abstractions Enable 
Building Complex Systems

• Interfaces between components

• Contracts that should be satisfied

• Empowers debugging & verifying

https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent
https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent
https://www.autonews.com/mobility-report/autonomous-vehicle-reality-check-after-160-billion-spent


Human-Robot Interactions
http://roams.caltech.edu/ 

Multi-Agent Interactions https://www.caltech.edu/about/news/mach
ine-learning-helps-robot-swarms-coordinate 

Dynamic Environments
https://arxiv.org/abs/2205.06908 

Sharp Disturbances
https://arxiv.org/abs/2409.06125 

Boundary Conditions
https://arxiv.org/abs/1811.08027 

Case Study: Agile Robotic Control

http://roams.caltech.edu/
https://www.caltech.edu/about/news/machine-learning-helps-robot-swarms-coordinate
https://www.caltech.edu/about/news/machine-learning-helps-robot-swarms-coordinate
https://arxiv.org/abs/2205.06908
https://arxiv.org/abs/2409.06125
https://arxiv.org/abs/1811.08027


Standard Autonomy Stack (simplified)

1. Perception  & Sensing

2. Trajectory Planning

3. Motor Control

… Deal With Other Agents
… Deal With Wind & Disturbances
… Precise Control Around Barriers
… Carrying Payload (eg. wobbly package)
… Etc.
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Autonomy 
Stack 
(simplified)

Autonomous System

Certificate

Certificate

Certificate

Certificate

Certificate

Certificate

Focus of this talk

System-Level 
Design

Abstractions & 
Certificates

Component-Level 
Design

Can use AI to help optimize any aspect!

← Learning signal         
     (satisfy certificates)

→ Deduce what can be 
     certified

← Library Design

→ System Programming End-to-End Learning



Research Questions

• How to define abstractions to capture system-level requirements

• How to constrain learning to (provably) satisfy requirements?
• (certificates on behavior)

• How to exploit structure for faster learning?
• (both computational & statistical)

• How to interpret as a unified neurosymbolic AI system?
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<5 mm close to the ground
[ICRA’19] 

close-proximity heterogenous swarm
[ICRA’20][T-RO’21]

precise flight in time-variant winds
[NeurIPS’21][Science Robotics’22]

Guanya
Shi

Neural Control Family

Neural Lander Neural Swarm Neural Fly

Stability 
Requirements

Accuracy 
Achieved

Residual 
Model 

Learning

Controller 
Design & 
Trajectory 
Planning



Where are the Challenges from?

• Uncertainty 
• Often nonlinear & nonstationary 

• Computational & Data Efficiency

Crazyflie, weight 34g

• Certificates of “Good Behavior”
• Neural networks are hard to analyze

DNN landscape [Li et al., NeurIPS 2018]

Caltech CAST wind tunnel



Uncertain Boundary Interactions

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al.  ICRA 2019
Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020
Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Guanya Shi et al., T-RO 1021

Guanya
Shi

Michael
O’Connell

Xichen
Shi

Ground effect

Downwash effect

Wolfgang
Hoenig



Model-Based Control

Nonlinear Controller

Trajectory Planning

Dynamics Model

Residual 
Model

Symbolic 
Model

Stability Accuracy

Stability Robustness

straightforward to model Very hard to model!



Model-Based Control

ሶ𝑥 ≡
𝜕𝑥

𝜕𝑡
= 𝑓 𝑥, 𝑢 + 𝜖

Change in State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

Robust/Optimal Control (fancy contraction mappings)
• Stability guarantees (e.g., Lyapunov)
• Precision/optimality depends on error

(Value Iteration is also contraction mapping)



ሶ𝑥 ≡
𝜕𝑥

𝜕𝑡
= 𝑓 𝑥, 𝑢 + 𝑔(𝑥, 𝑢) + 𝜖(𝑥, 𝑢)

Learning Residual Dynamics

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

𝑓 = nominal dynamics
𝑔 = learned dynamics

Leverage robust/optimal control (fancy contraction mappings)
• Preserve stability (even using deep learning)
• Requires g Lipschitz & bounded error

Change in State



• Dynamics:

• Control:

• Unknown forces & moments:

Learn the 
Residual g

Learn the Residual g

Control System 
Formulation

Symbolic Knowledge f



Nonlinear Tracking Controller
• A simplified 1-d example 

𝑡

actual robot trajectory 𝑥

desired trajectory 𝑥𝑑

height

tracking error 𝑥 − 𝑥𝑑 

unknown ground effect 𝑔 𝑥, 𝑢

0m (ground)

𝑢 = −𝐾 𝑥 − 𝑥𝑑
nominal

feedforward +
learned

feedforward ො𝑔 

depends on 𝑓, ሶ𝑥𝑑 compensate for 
boundary interaction

• Desired Certificate: guarantee stability and robustness if ෝ𝒈 is a NN 

feedback

+



Simple Integration Doesn’t Work!

• Train ො𝑔 using standard learning protocols
• Drone crashed! 

𝑢 = 𝜋(𝑥, 𝑥𝑑 , 𝑓 + ො𝑔 𝑥, 𝑢old )

learned dynamics

Nonlinear tracking controller (sketch):

desired trajectory

ො𝑔 𝑥, 𝑢  has local “steepness”ො𝑔 𝑥, 𝑢  can not generalize

𝑡

height

training set

Violate Stability & Accuracy Certificates!



Stability Certificate using Lipschitz NNs

“Exponential Stability” Theorem (informal) [ICRA’19]

Suppose ො𝑔 is 𝑳-Lipschitz. If 𝐿 < 𝛾, then:

𝑥 − 𝑥𝑑 →
𝜖

𝜆−𝐿𝜌
 exponentially fast

approximation error ( 𝑔 − ො𝑔 ∞) 

• 𝛾: a system-dependent threshold. 𝐿 < 𝛾 is necessary!

• Idea: show 𝑢𝑘+1 = 𝜋(⋅,⋅, 𝑓 + ො𝑔 ⋅, 𝑢𝑘 ) is a contraction

time delaycontrol gain

𝛾1 𝛾2 

𝑢 = 𝜋(𝑥, 𝑥𝑑 , 𝑓 + ො𝑔 𝑥, 𝑢old )

learned dynamics

Nonlinear tracking controller (sketch):

desired trajectory



Lipschitz Constrained Dynamics Learning

compare with fluid dynamics model 

2D heatmap of the learned ො𝑔

Lipschitz constrained 

• Spectral Normalization → 𝐿 < 𝛾 
• Applicable for arbitrarily large DNNs
• Graceful generalization

w/o constraint

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al.  ICRA 2019







Story so Far

Lipschitz constraint is necessary: 𝛾 ≈ 16

𝐿 < 16
𝐿 ≈ 8000

w/o
w/ constraint

Drone crashed!

Nonlinear Controller

Trajectory Planning

Dynamics Model

Residual 
Model

Symbolic 
Model

Stability Accuracy

Stability Robustness

Challenges Tackled:

Uncertainty:

Learn residual 
models 𝑔 𝑥, 𝑢

Efficiency:

𝑔 𝑥, 𝑢  is tiny (4-layer NN)
5 minutes of training data

Certificates:

Lipschitz on 𝑔 𝑥, 𝑢  → Lyapunov Stability Certificate



Neural-Fly
• 𝑔 is governed by the environment condition 𝑐(𝑡):

ሶ𝑥 = 𝑓 𝑥, 𝑢 + 𝑔 𝑥, 𝑐(𝑡)

• Baseline’s performance:
unknown Kármán vortex street



Key Idea: Meta-Adaptive Control 

𝑔 𝑥, 𝑐 ≈ 𝜙 𝑥 𝑎(𝑐)

shared representations 
(NOT depend on 𝑐)

environment-specific 
linear coefficients

Domain Invariant 
Meta-Learning

Adaptive Control

Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds, O’Connell, Shi, et al., Science Robotics 2022
Meta-Adaptive Nonlinear Control: Theory and Algorithms, Shi et al., NeurIPS 2021
Hierarchical Meta-learning-based Adaptive Controller, Xie et al., ICRA 2024



Stable and Robust Adaptive Control 

Theorem (informal) [O’Connell* & Shi* et al., Science Robotics’22]

𝑥 − 𝑥𝑑 → sup
𝑡

 𝑂( 𝜖 𝑡 + ሶ𝑎∗ 𝑡 + 𝜆𝑎∗ 𝑡 ) exponentially

imperfect learning

based on 𝑥 − 𝑥𝑑

based on 𝑔measure − ො𝑔



Agile Flight in Time-variant Strong Wind



Neural Control Family

Lipschitz constraint is necessary: 𝛾 ≈ 16

𝐿 < 16
𝐿 ≈ 8000

w/o
w/ constraint

Drone crashed!

Nonlinear Controller

Trajectory Planning

Dynamics Model

Residual 
Model

Symbolic 
Model

Stability Accuracy

Stability Robustness

Uncertainty:

Learn residual 
models 𝑔 𝑥, 𝑢

Efficiency:

𝑔 𝑥, 𝑢  is tiny (4-layer NN)
5 minutes of training data

Certificates:

Lipschitz on 𝑔 𝑥, 𝑢  → Lyapunov Stability Certificate

Meta-learning 
for general 
representation

Adaptive control for
varying environments

Neural-Fly



Aside: Residual Policy Learning

Nonlinear Controller

Trajectory Planning

Dynamics Model

Residual 
Model

Symbolic 
Model

Stability Accuracy

Stability Robustness

Residual Model Learning

Nonlinear Controller

Trajectory Planning

Dynamics Model

Stability Robustness

Policy

Stability Robustness

Residual Policy Learning

https://arxiv.org/abs/1606.00968 
 

https://arxiv.org/abs/1905.05380 

https://arxiv.org/abs/1903.08738

https://arxiv.org/abs/1907.05431

https://arxiv.org/abs/1606.00968
https://arxiv.org/abs/1905.05380
https://arxiv.org/abs/1905.05380
https://arxiv.org/abs/1905.05380


Rest of Talk
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Motivation: 
Underactuated Agility

Controller 
Reduction

Underactuated 
Controller

Requirements
Policy 

Optimization



Actuated vs Unactuated Dynamics

Actuated 𝜼

Unactuated 𝒛
(Null space of control matrix)

(Not Emphasized in this Talk)



Key Challenge

If always on the controllable manifold → standard policy optimization

I.e., ignore the uncontrollable parts 
(null space of controllable manifold)

Key idea: “cancel out” the null space



Requirement: 
Cancel out effect of unactuated component

Controller 
Reduction

Underactuated 
Controller

Requirements
Policy 

Optimization

Torso Angle

Swing Foot

Example:

Conservative Specification
(sufficient conditions)



Treat Policy as Continuous-time Map

• Assume dynamics model is known

• Learn policy that satisfies specification

Torso Angle

Swing Foot



Policy as Neural Ordinary Differential Equation

𝜕𝜂

𝜕𝑡
= 𝜋 𝜂, 𝑥

Extra Context
(optional)Current state

(actuated)

Change in state
(sent to lower-level controller)

Trajectory Planning

Stability Robustness

Dynamics

Controller 
Reduction

Underactuated 
Controller

Policy 
Optimization

Controller

Policy 
Optimization

Requirements



Capture Requirements via Potential Function

Torso Angle

Swing Foot

𝑉 𝜂

Large if requirements are being violated

E.g., Torso angle destabilizing



Exponential Stability & Contraction

𝑉(ℎ 𝑡 ) ≤ 𝑉(ℎ 0 )𝑒−𝜅𝑡Goal:

𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ ≤ −𝜅𝑉 ℎKey invariant:

Benefits: Fast convergence & Robustness

𝑉 𝑡 = 𝑐𝑒−𝜅𝑡

𝑠𝑙𝑜𝑝𝑒 = −𝜅𝑐𝑒−𝜅𝑡

            = −𝜅𝑉(𝑡) 
          



Certification via Contraction Condition

One 
trajectory

Violation:
𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ > −𝜅𝑉(ℎ)

Satisfaction:
𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ ≤ −𝜅𝑉(ℎ)

Contraction Satisfied Everywhere => Exponential Stability!



Types of Contraction

B(x)

Safe 
Set      

Stability 
Towards a Set

Forward Invariance
Never Leave a Set

“Barrier Functions”
“Lyapunov Functions”



Lyapunov Loss

• Point-wise Lyapunov Loss

• Lyapunov Loss:

𝐿𝑉 ℎ ≡ max 0,
𝜕𝑉

𝜕ℎ

𝑇

𝑓 ℎ + 𝜅𝑉(ℎ)

Contraction condition violation

𝐿𝑉 𝜃 ≡ 𝑬ℎ0
න𝐿𝑉 ℎ 𝑡 𝑑𝑡

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability!

https://arxiv.org/abs/2202.02526 

Violation:
𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ > −𝜅𝑉(ℎ)
Satisfaction:

𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ ≤ −𝜅𝑉(ℎ)

https://arxiv.org/abs/2202.02526


LyaNet 
A Lyapunov Framework for Training Neural ODEs

1. Interpret requirements as potential function: 𝑉 ℎ(𝑡)

2. Instantiate (point-wise) Lyapunov Loss:

3. Optimize Lyapunov Loss everywhere

Ivan
Jimenez Rodriguez

https://arxiv.org/abs/2202.02526 

𝐿𝑉 ℎ ≡ max 0,
𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ − 𝜅𝑉(ℎ)

[ICML 2022]

https://arxiv.org/abs/2202.02526


Optimization Considerations

• Evaluating integral exactly is hard

• Approximate by sampling (simplest is Monte Carlo)
• Sample h0 uniformly at random

• Backprop on point-wise Lyapunov Loss

𝐿𝑉 𝜃 ≡ 𝑬ℎ0
න𝐿𝑉 ℎ 𝑡 𝑑𝑡

𝐿𝑉 ℎ ≡ max 0,
𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ − 𝜅𝑉(ℎ)

Lyapunov Loss

Point-wise
Lyapunov Loss

https://arxiv.org/abs/2202.02526 

https://arxiv.org/abs/2202.02526


Benefits of Sampling

• Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

• Similar idea used in Score-Based Generative Models & Moser Flows

𝐿𝑉 𝜃 ≡ 𝑬ℎ0
න𝐿𝑉 𝑥, 𝑦, ℎ 𝑡 𝑑𝑡

Achieving 𝐿𝑉 𝜃 = 0 under uniform measure implies 𝐿𝑉 𝜃 = 0  in original measure

https://arxiv.org/abs/2202.02526 

https://arxiv.org/abs/2202.02526


Back to Application: Underactuated Control

Stability/Safety Specification

Torso Angle

Swing Foot

min
𝜃

𝜕𝑉

𝜕ℎ

𝑇

𝜋 ℎ; 𝜃 + 𝜅𝑉(ℎ) ≤ 0 

Sample States
Compile Loss

Deploy Controller

Note: Dynamics of Control System included in Neural ODE



Neural Gaits
Ivan

Jimenez Rodriguez

Noel
Csomay-Shanklin

https://arxiv.org/abs/2204.08120 

Torso Angle

Swing Foot

Learn policy to satisfy composition of continuous-time conditions
Implies indefinite walking (forward-invariance)

Example Barriers

https://arxiv.org/abs/2204.08120


Certified Forward-Invariance in NODEs
Ivan

Jimenez Rodriguez

Yujia
Huang

https://arxiv.org/abs/2210.16940  

Certified Robust Forward Invariance
(First Ever Result)

https://arxiv.org/abs/2210.16940


Recall Requirement: 
Cancel out effect of unactuated component

Controller 
Reduction

Underactuated 
Controller

Requirements
Policy 

Optimization

Torso Angle

Swing Foot

Example:

Conservative Specification
(sufficient conditions)

NOT OPTIMAL!





True Specification: 
Cancel Out Effect on (Null) Unactuated Space

https://arxiv.org/abs/2409.06125 
https://arxiv.org/abs/2408.14749 

Robust Agility via Learned Zero Dynamics Policies, IROS 2024
Constructive Nonlinear Control of Underactuated Systems via Zero Dynamics Policies, CDC 2024

Ivan
Jimenez Rodriguez

Noel
Csomay-Shanklin

Will
Compton

Invariance: Stays on Manifold Stability: Converges to Optimality

https://arxiv.org/abs/2409.06125
https://arxiv.org/abs/2408.14749


Policy Learning for Specification Satisfaction

Trajectory Planning

Stability Robustness

Dynamics

Controller 
Reduction

Underactuated 
Controller

Policy 
Optimization

Controller

Policy 
Optimization

Requirements Many Specifications are Combinations of:
• Stability
• Invariance
• Optimality
• Robustness

Can Directly 
Learn to Satisfy!



Moving Forward

High Level Decisions

Medium Level Decisions

Low Level Decisions Low Level Perception

Medium Level Perception

High Level Perception

Sensory InputsAction/Control Outputs

Autonomous System

Certificate

Certificate

Certificate

Certificate

Certificate

Certificate

System Programming 
(using Foundation Models) 

Focus of this talk
(in robotics)

Perception with Certificates



Aside: Symbolic Music 
Generation via Stochastic Control

Yujia
Huang

Symbolic Music Generation with Non-Differentiable Rule-Guided Diffusion
Yujia Huang, et al., ICML 2024              https://scg-rule-guided-music.github.io/ 

https://scg-rule-guided-music.github.io/


Perception: Scientific Imaging

ALGORITHM

SENSING
SYSTEM

Collaboration with
 Katie Bouman’s Group

Requirements include: 

• Consistent with known physics

• Proper posterior inference 
• (uncertainty calibration)

Imaging Algorithm 
is Neurosymbolic!



Plug-and-Play Bayesian Inversion
(Diffusion Model + Physics)

https://arxiv.org/abs/2405.18782 

Ray Wu

Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors, NeurIPS 2024

https://arxiv.org/abs/2405.18782


Neural Control
Neural Lander: Stable Drone Landing Control using Learned Dynamics, Shi, et al., ICRA 2019

Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Shi et al., ICRA 2020

Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Shi et al., T-RO 2021.

Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds, O’Connell, Shi, et al., Science Robotics 2022
Meta-Adaptive Nonlinear Control: Theory and Algorithms, Shi et al., NeurIPS 2021
Hierarchical Meta-learning-based Adaptive Controller, Xie et al., ICRA 2024

Residual Policy Learning
Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016

Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019

Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019

Policy Learning for Specification Satisfaction
Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, L4DC 2022

Robust Agility via Learned Zero Dynamics Policies, Csomay-Shanklin*, Compton*, Jimenez Rodriguez*, et al., IROS 2024

Constructive Nonlinear Control of Underactuated Systems via Zero Dynamics Policies, CDC 2024

LyaNet: A Lyapunov Framework for Training Neural ODE, , Jimenez Rodriguez, et al., ICML 2022

FI-ODE: Certifiably Robust Forward Invariance in Neural ODEs, Huang, et al., arxiv

Misc
Symbolic Music Generation with Non-Differentiable Rule-Guided Diffusion, Huang et al., ICML 2024

Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors, Wu et al., NeurIPS 2024



Thanks!
http://www.yisongyue.com 

@yisongyue

http://www.yisongyue.com/
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