

Neurosymbolic Al for Safety-Critical Agile Control

Yisong Yue

AI Paradigms

More Efficient Task-Specific Decoding

AI Paradigms

More Efficient Task-Specific Decoding

Can now build AI models for many tasks!

MIBI Tissue Fluorescence Cell culture

Science https://cellsam.deepcell.org/ tps://www.zuken.com/us/blog/how-are-satellites-bringing-low-latency-internet-to-autonomous-vehicles/

Knowledge Work

(Github Copilot)

Real Systems have Complex Requirements

"I want to use deep learning to optimize the design, manufacturing and operation of our aircrafts. But I need some guarantees."

- an Aerospace Director while visiting Caltech

Social & Behavioral Dynamics

AIRCANADA

Safe Exploration

Valid Inferences

https://urologyaustin.com/urology-specialties/da-vinci-robotic-surgery/

Unresolved Complexity → Engineering Overhead

Unresolved Complexity → Engineering Overhead

Strong Abstractions Enable Building Complex Systems

- Interfaces between components
- Contracts that should be satisfied
- Empowers debugging & verifying

Case Study: Agile Robotic Control

Boundary Conditions https://arxiv.org/abs/1811.08027

Dynamic Environments https://arxiv.org/abs/2205.06908

Sharp Disturbances
https://arxiv.org/abs/2409.06125

Multi-Agent Interactions

https://www.caltech.edu/about/news/mach ine-learning-helps-robot-swarms-coordinate

Standard Autonomy Stack (simplified)

1. Perception & Sensing

2. Trajectory Planning

... Deal With Other Agents ... Deal With Wind & Disturbances ... Precise Control Around Barriers

... Carrying Payload (eg. wobbly package) ... Etc.

Standard Autonomy Stack (simplified)

Research Questions

- How to define abstractions to capture system-level requirements
- How to constrain learning to (provably) satisfy requirements?
 - (certificates on behavior)
- How to exploit structure for faster learning?
 - (both computational & statistical)
- How to interpret as a unified neurosymbolic AI system?

Rest of Talk

Front view

Our method can also generalize to the challenging time-varying wind condition.

Neural Control Family

Guanya Shi

Neural Lander

Neural Swarm

<5 mm close to the ground [ICRA'19]

close-proximity heterogenous swarm [ICRA'20][T-RO'21] **Neural Fly**

precise flight in time-variant winds [NeurIPS'21][Science Robotics'22]

Where are the Challenges from?

- Uncertainty
 - Often nonlinear & nonstationary

Computational & Data Efficiency

- Certificates of "Good Behavior"
 - Neural networks are hard to analyze

Caltech CAST wind tunnel

Crazyflie, weight 34g

DNN landscape [Li et al., NeurIPS 2018]

Uncertain Boundary Interactions

Xichen

Shi

Guanya Shi Michael Wolfgang O'Connell Hoenig

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al. ICRA 2019 Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020 Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Guanya Shi et al., T-RO 1021

1. Perception & Sensing

3. Motor Control

2. Trajectory Planning

Model-Based Control

straightforward to model

Trajectory Planning	
Stability	Robustness
Nonlinear Controller	
Stability	Accuracy
Dynamics Model	
Symbolic Model	Residual Model

Very hard to model!

Model-Based Control

(Value Iteration is also contraction mapping)

Robust/Optimal Control (fancy contraction mappings)

- Stability guarantees (e.g., Lyapunov)
- Precision/optimality depends on error

Learning Residual Dynamics

f = nominal dynamics
g = learned dynamics

Leverage robust/optimal control (fancy contraction mappings)

- Preserve stability (even using deep learning)
- Requires g Lipschitz & bounded error

Control System Formulation

• Dynamics:

Symbolic Knowledge f

Control:

Unknown forces & moments:

Nonlinear Tracking Controller

• A simplified 1-d example

• Desired Certificate: guarantee stability and robustness if \widehat{g} is a NN

Simple Integration Doesn't Work!

Nonlinear tracking controller (sketch):

- Train \hat{g} using standard learning protocols
- Drone crashed!

Stability Certificate using Lipschitz NNs

Nonlinear tracking controller (sketch):

"Exponential Stability" Theorem (informal) [ICRA'19] Suppose \hat{g} is *L*-Lipschitz. If $L < \gamma$, then: $\|x - x_d\| \rightarrow \frac{\epsilon}{\lambda - L\rho}$ approximation error $(\|g - \hat{g}\|_{\infty})$ exponentially fast control gain time delay

- γ : a system-dependent threshold. $L < \gamma$ is **necessary**!
- Idea: show $u_{k+1} = \pi(\cdot, \cdot, f + \hat{g}(\cdot, u_k))$ is a contraction

Lipschitz Constrained Dynamics Learning

- Spectral Normalization $\rightarrow L < \gamma$
- Applicable for arbitrarily large DNNs
- Graceful generalization

2D heatmap of the learned \hat{g}

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al. ICRA 2019

Neural-Fly

• g is governed by the environment condition c(t):

Key Idea: Meta-Adaptive Control

Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds, O'Connell, Shi, et al., Science Robotics 2022 Meta-Adaptive Nonlinear Control: Theory and Algorithms, Shi et al., NeurIPS 2021 Hierarchical Meta-learning-based Adaptive Controller, Xie et al., ICRA 2024

Stable and Robust Adaptive Control

Theorem (informal) [O'Connell* & Shi* et al., Science Robotics'22] $||x - x_d|| \rightarrow \sup_{t} O(||\epsilon(t)|| + ||\dot{a}^*(t) + \lambda a^*(t)||)$ exponentially imperfect learning

Our method can also generalize to the challenging time-varying wind condition.

Front view

Aside: Residual Policy Learning

Residual Model Learning

Residual Policy Learning

https://arxiv.org/abs/1905.05380 https://arxiv.org/abs/1907.05431

Rest of Talk

Motivation: Underactuated Agility

Actuated vs Unactuated Dynamics

Key Challenge

If always on the controllable manifold \rightarrow standard policy optimization

I.e., ignore the uncontrollable parts (null space of controllable manifold)

Key idea: "cancel out" the null space

Requirement: Cancel out effect of unactuated component

Treat Policy as Continuous-time Map

- Assume dynamics model is known
- Learn policy that satisfies specification

Policy as Neural Ordinary Differential Equation

Capture Requirements via Potential Function

Exponential Stability & Contraction

Certification via Contraction Condition

Contraction Satisfied Everywhere => Exponential Stability!

Types of Contraction

Lyapunov Loss

• Point-wise Lyapunov Loss

$$L_{V}(h) \equiv \max\left\{0, \frac{\partial V^{T}}{\partial h}f(h) + \kappa V(h)\right\}$$

Contraction condition violation

• Lyapunov Loss:

$$L_V(\theta) \equiv \boldsymbol{E}_{h_0} \left[\int L_V(h(t)) dt \right]$$

Achieving zero Lyapunov Loss (almost) everywhere implies exponential stability! https://arxiv.org/abs/2202.02526

Satisfaction:

3. Optimize Lyapunov Loss everywhere

Instantiate (point-wise) Lyapunov Loss:

LyaNet

2.

 $L_V(h) \equiv \max\left\{0, \frac{\partial V'}{\partial h} \pi(h) - \kappa V(h)\right\}$

- 1. Interpret requirements as potential function: V(h(t))
- A Lyapunov Framework for Training Neural ODEs

Ivan Jimenez Rodriguez

Optimization Considerations

$$L_V(\theta) \equiv \boldsymbol{E}_{h_0} \left[\int L_V(h(t)) dt \right]$$

Lyapunov Loss

- Evaluating integral exactly is hard
- Approximate by sampling (simplest is Monte Carlo)
 - Sample h₀ uniformly at random
 - Backprop on point-wise Lyapunov Loss

$$L_V(h) \equiv \max\left\{0, \frac{\partial V^T}{\partial h}\pi(h) - \kappa V(h)\right\}$$

Point-wise Lyapunov Loss

https://arxiv.org/abs/2202.02526

Benefits of Sampling

Avoids expensive ODE solve

• Goal is to minimize Lyapunov Loss everywhere

$$L_V(\theta) \equiv \boldsymbol{E}_{h_0} \left[\int L_V(x, y, h(t)) dt \right]$$

Achieving $L_V(\theta) = 0$ under uniform measure implies $L_V(\theta) = 0$ in original measure

• Similar idea used in Score-Based Generative Models & Moser Flows

Back to Application: Underactuated Control

Note: Dynamics of Control System included in Neural ODE

Neural Gaits

Learn policy to satisfy composition of continuous-time conditions Implies indefinite walking (forward-invariance)

lvan Jimenez Rodriguez Noel Csomay-Shanklin

https://arxiv.org/abs/2204.08120

Certified Forward-Invariance in NODEs

Yujia Ivan Huang Jimenez Rodriguez

Certified Robust Forward Invariance (First Ever Result)

https://arxiv.org/abs/2210.16940

Recall Requirement: Cancel out effect of unactuated component

True Specification: Cancel Out Effect on (Null) Unactuated Space

Invariance: Stays on Manifold

Stability: Converges to Optimality

Will Compton

Noel Csomay-Shanklin

Ivan Jimenez Rodriguez

Robust Agility via Learned Zero Dynamics Policies, IROS 2024 **Constructive Nonlinear Control of Underactuated Systems via Zero Dynamics Policies,** CDC 2024

https://arxiv.org/abs/2409.06125 https://arxiv.org/abs/2408.14749

Policy Learning for Specification Satisfaction

Many Specifications are Combinations of:

- Stability
- Invariance
- Optimality
- Robustness
- Can Directly Learn to Satisfy!

Moving Forward

System Programming

Perception with Certificates

Aside: Symbolic Music Generation via Stochastic Control

Yujia Huang

Symbolic Music Generation with Non-Differentiable Rule-Guided DiffusionYujia Huang, et al., ICML 2024https://scg-rule-guided-music.github.io/

Perception: Scientific Imaging

Collaboration with Katie Bouman's Group

Requirements include:

- Consistent with known physics
- Proper posterior inference
 - (uncertainty calibration)

Plug-and-Play Bayesian Inversion (Diffusion Model + Physics)

Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors, NeurIPS 2024 https://arxiv.org/abs/2405.18782

Neural Control

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Shi, et al., ICRA 2019 Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Shi et al., ICRA 2020 Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Shi et al., T-RO 2021. Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds, O'Connell, Shi, et al., Science Robotics 2022 Meta-Adaptive Nonlinear Control: Theory and Algorithms, Shi et al., NeurIPS 2021 Hierarchical Meta-learning-based Adaptive Controller, Xie et al., ICRA 2024

Residual Policy Learning

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016

Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019

Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019

Policy Learning for Specification Satisfaction

Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, L4DC 2022 Robust Agility via Learned Zero Dynamics Policies, Csomay-Shanklin*, Compton*, Jimenez Rodriguez*, et al., IROS 2024 Constructive Nonlinear Control of Underactuated Systems via Zero Dynamics Policies, CDC 2024 LyaNet: A Lyapunov Framework for Training Neural ODE, , Jimenez Rodriguez, et al., ICML 2022 FI-ODE: Certifiably Robust Forward Invariance in Neural ODEs, Huang, et al., arxiv

Misc

Symbolic Music Generation with Non-Differentiable Rule-Guided Diffusion, Huang et al., ICML 2024 Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors, Wu et al., NeurIPS 2024

Thanks!

