Machine Teaching for Human Learners

> Yisong Yue Caltech

Machine Teaching vs Machine Learning

Data Selector

Learner

	Learner Type	Data Selector	Know True Model?
Passive Learning	We Control	IID Sampling	No
Active Learning	We Control (sometimes)	We Control	No
Teaching	Given to Us	We Control	Yes

An Overview of Machine Teaching: <u>https://arxiv.org/abs/1801.05927</u>

Simple Example

- 1 feature
- Noise free & realizable
- Learn threshold function

Passive Learning Sample IID from distribution

Simple Example

- 1 feature
- Noise free & realizable
- Learn threshold function

Active Learning Binary Search to Reduce Uncertainty

Simple Example

- 1 feature
- Noise free & realizable
- Learn threshold function

Teaching Choose examples knowing true model

Comparison (Simple Example)

• # samples to be within ϵ of true model

Machine Teaching vs Machine Learning

	Learner Type	Data Selector	Know True Model?
Passive Learning	We Control	IID Sampling	No
Active Learning	We Control (sometimes)	We Control	No
Teaching	Given to Us	We Control	Yes

An Overview of Machine Teaching: <u>https://arxiv.org/abs/1801.05927</u>

Why is Teaching Important?

- Understanding data poisoning
- Teaching non-experts
- Onboarding at a new organization
- Debugging & testing
- Etc...

Teaching Human Learners

- Tailored to humans
 - Explanations
 - Forgetfulness

- Algorithmic questions
 - Structured prediction
 - Interactive algorithms

Design Choices

Learner Model

Interaction Protocol

Teaching Algorithm

Teaching with Explanations

Near-Optimal Machine Teaching via Explanatory Teaching Sets Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, Yisong Yue, AISTATS 2018

Teaching Categories to Human Learners with Visual Explanations Oisin Mac Aodha, Shihan Su, Yuxin Chen, Pietro Perona, Yisong Yue, CVPR 2018

Connecticut Warbler or MacGillivray's Warbler

Connecticut Warbler

MacGillivray's Warbler

Instance-Level Labels (conventional teaching)

Teaching with Explanations

Bayesian Learner Model

Index over entire dataset Suppressing X for brevity

1,125 images, 3 classes

Chinese Characters

717 images, 3 classes

Ε

Y

Χ

Greedy Teaching Algorithm (non-interactive)

• **Prior:** P(H = h)

Our belief over the learner's hypothesis

• Teaching set: S

Set of (y,e) tuples (x implicit)

- **Posterior:** $P(H = h|Y_S, E_S)$ Our belief over learner's hypothesis after teaching her with S
- Goal: Choose S

(to minimize posterior error)

Greedy algorithm!

Analysis: reduction to submodular set cover*

*Generalizes previous work on submodular teaching [Singla et al., ICML 2014]

User Study

performance)

Teaching w/ Explanations

- Redefine teacher/learner interface
 - Humans don't learn from only labels
- First formalization of explainable teaching
- Rigorously developed approach
- Good empirical results

Teaching Forgetful Learners

Teaching Multiple Concepts to Forgetful Learners

Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla, *(in submission)*

Modeling Forgetfulness

Half-life Regression (HRL) model [Settles & Meeder, ACL 2016]

Interactive Teaching Protocol

- For t = 1...T
 - Teacher chooses concept $i \in \{1, ..., m\}$ (e.g., a flashcard) \rightarrow
 - Learner tries to recall concept (success or fail)
 - Teacher reveals answer

toy

Goal: maximize

$$f(\text{history}) = \frac{1}{m} \frac{1}{T} \sum_{i=1}^{m} \sum_{t=1}^{T} p_i(t|\text{history}_{1:t-1})$$

"Area Under Curve"

(e.g., "Spielzug")

Naive Approaches

- Round Robin
 - Doesn't adapt to new estimates of learner recall probabilities
 - Over-teaches easy concepts
 - Under-teaches hard concepts
- Lowest Recall Probability
 - Doesn't consider change to recall probability

Greedy Teaching Algorithm (interactive)

• Choose concept i to maximize

*Theoretical analysis in paper based on submodular ratio

Simulation Results

Greedy

User Study

- 150 participants from Mechanical Turk platform
- T=40, m=15, total study time is about 25 mins

Teaching Human Learners

- Tailored to humans
 - Explanations
 - Forgetfulness

- Algorithmic questions
 - Structured prediction
 - Interactive algorithms

Online learning platforms: German vocabulary: <u>https://www.teaching-german.cc/</u> Species names: <u>https://www.teaching-biodiversity.cc/</u>

Yuxin Chen

Oisin Mac Aodha

Anette Hunziker

Shihan Su

Adish Singla

Pietro Perona

Manuel Gomez Rodriguez

Andreas Krause

Near-Optimal Machine Teaching via Explanatory Teaching Sets

Yuxin Chen, Oisin Mac Aodha, Shihan Su, Pietro Perona, Yisong Yue, AISTATS 2018

Teaching Categories to Human Learners with Visual Explanations

Oisin Mac Aodha, Shihan Su, Yuxin Chen, Pietro Perona, Yisong Yue, CVPR 2018

Teaching Multiple Concepts to Forgetful Learners

Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla, *(in submission)*

Online Platforms:

German vocabulary: <u>https://www.teaching-german.cc/</u> Species names: <u>https://www.teaching-biodiversity.cc/</u>