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Optimization is a Fundamental Challenge
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Optimization is Hard!

• High Dimensional / Combinatorial

• Real-Time Resource Constraints

• Poorly Conditioned / Poorly Initialized

• Tuning of Optimizers



Learning to Optimize

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Distribution of Planning Problems

Background: Determinitic Path Planning as a MIP

Mixed-Integer Programming Formulation for a deterministic Path
Planning problem.

min
U

J(U, X)

subject to,

(Dynamic Constraint) xt+1 = Axt + But ,

(Safety Constraints) hiTt xt  git 8 0  t  T � 1

8 0  i  N � 1

X = [x0, x1 · · · xt ]T State vector

U = [u0, u1 · · · ut ]T Control Inputs

J ! Cost Function (e.g. fuel consumption)
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Compiled as Combinatorial 
Search Problems

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Branch and Bound Approach:

Standard technique to solve MIP.
Iteratively adds constraints to each time-step.
Use lower-bound estimate of the objective value to direct the
search problem.
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• Many Solvers are Sequential
• Tree-Search / Greedy
• Gradient / Coordinate Descent

• Can view solver as “agent” or “policy” making decisions



Many Other People Work on this Topic!



Research Questions

• How do we formalize the learning problem?
• Is the formulation novel or standard?

• Do we need new algorithms?

• How do we measure progress?
• Speedup in wall-clock time?
• Savings in memory?
• Final solution quality?

• Can we integrate into real systems?

More
Theoretical

More 
Applied



This Talk

★
Learning to Search

Continuous 
Optimization

Practical 
Applications



Agent

Environment / World

Action at

st+1

State/Context st

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

Reinforcement Learning:
Optimize environmental reward

Policy Learning  (Reinforcement & Imitation)

Learning-based Approach for
Sequential Decision Making
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Basic Formulation

• Policy: 𝜋 𝑠 → 𝑃(𝑎)

• Roll-out: τ = 𝑠!, 𝑎!, 𝑠", 𝑎", 𝑠#, …

• Objective: ∑$ 𝑟(𝑠$ , 𝑎$)

State Action

Transition Function: P(s’|s,a)

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)

(Typically a Neural Net)

(aka trace or trajectory)



Example: Learning to Search

★

Sparse Reward
@ feasible solution

State = partial search tree
(need to featurize)

Action = variable 
selection or branching

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]

• Deterministic State Transitions
• Massive State Space
• Sparse Rewards

Integer Program Tree-Search (Branch and Bound)



Learning to Optimize for Tree Search

• Idea #1: Treat as Standard RL

• Randomly explore for high rewards
• Very hard exploration problem!

• Issues: massive state space & sparse rewards ★



Learning to Optimize for Tree Search

• Idea #2: Treat as Standard IL

• Convert to Supervised Learning
• Assume access to solved instances

• Training Data: 𝐷! = ,

• Basic IL: argmin
%∈'

𝐿(!(𝜋) ≡ 𝐸 ),+ ~(! ℓ(𝑎, 𝜋 𝑠 )

★

Behavioral Cloning

“Demonstration Data”



Challenges w/ Imitation Learning

• Issues with Behavioral Cloning
• Minimize 𝐿!! … implications?
• If 𝜋 makes a mistake early, subsequent state distribution ≈ 𝐷" ??
• Some extensions to Interactive IL  [He et al., NeurIPS 2014]

• Demonstrations not Available on Large Problems
• How to (formally) bootstrap from smaller problems?
• Bridging the gap between IL & RL

Our Approach is also Interactive IL

Our Approach gives one solution



Retrospective Imitation
(Bridging IL & RL)

• Given: 
• Family of Distributions of Search problems

• Family is parameterized by size/difficulty
• Solved Instances on the Smallest/Easiest Instances

• “Demonstrations”

• Goal:
• Interactive IL approach
• Can Scale up from Smallest/Easiest Instances
• Formal Guarantees

Jialin
Song

Ravi
Lanka

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Connections to Curriculum Learning 
& Transfer Learning

Difficulty levels: k=1,…,K



Retrospective Imitation

• Two-Stage Algorithm

• Core Algorithm
• Fixed problem difficulty
• Reductions to Supervised Learning

• Full Algorithm w/ Scaling Up
• Uses Core Algorithm as Subroutine

Interactive IL w/ Sparse Environmental Rewards

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Supervised Learning 
Reduction
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Region A

Region B

Imitation
Learning

Policy

Retrospective Oracle Feedback

1� Initial Learning

2� Policy Roll-out (optional exploration)

3� Retrospective Oracle
(Algorithm 2)

4� Policy Update with Further Learning

Figure 1. A visualization of retrospective imitation learning depicting components of Algorithm 1. An imitation learning policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle as in Figure 2. This process is repeated until some termination condition is met.

E

F

· · ·

· · · · · · G

· · ·

H

...

I

· · ·

M

? · · · N

· · ·

Figure 2. Zoom-in views of Region A and B in Figure 1. At node
E , the retrospective feedback indicates selecting node H over F , G
and I . At node M , the ? node is preferred over N .

4. Retrospective Imitation Learning
We now describe the retrospective imitation learning ap-
proach. It is a general framework that can be combined
with a variety of imitation learning algorithms. For clar-
ity of presentation, we instantiate our approach using the
data aggregation algorithm (DAgger) (Ross et al., 2011; He
et al., 2014) and we call the resulting algorithm Retrospec-
tive DAgger. We also include the instantiation with SMILe
(Ross & Bagnell, 2010) in Appendix A. In Section 6, we em-
pirically evaluate retrospective imitation with both DAgger
and SMILe to showcase the generality of our framework.

We decompose our general framework into two steps. First,
Algorithm 1 describes our core procedure for learning on
fixed size problems with a crucial retrospective oracle sub-
routine (Algorithm 2). Algorithm 3 then describes how to
scale up beyond the fixed size. We will use Figure 1 as a
running example. The ultimate goal is to enable imitation

Algorithm 1: Retrospective DAgger for Fixed Size
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained on expert traces
4 Æ: mixing parameter
5 {P j }: a set of training problem instances
6 D0: expert traces dataset
7 initialize D = D0
8 for i √ 1 to N do
9 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)

10 run º̂i on {P j } to generate a set of search traces {ø j }
11 for each ø j , compute º§(ø j , s) for each terminal state s

(Algorithm 2)
12 collect new dataset Di based on each º§(ø j , s)
13 update D with Di (i.e., D √ D [Di )
14 train ºi+1 on D
15 end
16 return best ºi on validation

learning algorithms to scale up to problems much larger
than those for which we have expert demonstrations, which
is a significant improvement since conventional imitation
learning cannot naturally accomplish this.

Core Algorithm for Fixed Problem Size. We assume ac-
cess to an initial dataset of expert demonstrations to help
bootstrap the learning process, as described in Line 3 in
Algorithm 1 and depicted in step 1� in Figure 1. Learning
proceeds iteratively. In Lines 9-10, the current policy (po-

Retrospective Imitation (Core Algorithm)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Derived from Sparse
Environmental Rewards

Repeat

,
State s Action a



Retrospective Imitation (Full Algorithm)

Initialize k=1

Initialize
Gurobi/SCIP/CPlex

k=k+1
Use trained 𝝅

Problem 
Difficulty k

Base Solver

Instances &
Demonstrations

Core Algorithm

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Core Algorithm
• Does this converge?
• Converges to what?

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Policy Rollout 

★★: best solution found by

Retrospective Oracle



Retrospective Oracle Feedback

Feedback: (red > white) 
for all (red, white) pairs 
in the trajectory

★

Retrospective Oracle



Policy Rollout

★

Retrospective Oracle



Retrospective Oracle Feedback

★

Retrospective Oracle

Feedback: (red > white) 
for all (red, white) pairs 
in the trajectory



Policy Rollout

★

Retrospective Oracle



Core Algorithm Summary & Guarantees

• Sequence of Learning Reductions

• Leverages Retrospective Oracle to Define “Correct”
• Relies on sparse environmental rewards

• Converges to near-optimal policy in class
• Offloads computational challenges to Supervised Learning Oracle

• For supervised learning error 𝜀:           (caveats apply, see paper)

Expected Search Length = .∗

"/#0
Optimal Search Length
(typically # integer variables)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Guarantees for Full Algorithm

• Run 𝜋1 on problems of difficulty k+1
• Initial demonstrations for the harder problem instances

• Suppose: we could have run external solver on harder instances

• Suppose: search trace includes feasible solution of external solver

• Then 𝜋1 is as good as using original external solver! 
• (might take longer to converge)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Gurobi/SCIP/CPlex/Etc…



(a) (b) (c)

Figure 4: (left) Retrospective imitation versus off-the-shelf methods. The RL baseline performs very poorly due to sparse
environmental rewards. (middle, right) Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 5: Retrospective DAgger (“select only” policy class) with off-the-shelf branch-and-bound solvers using various search
node budgets. Retrospective DAgger consistently outperforms baselines.

the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of compar-
ison, the next closest solver, Gurobi, has optimality gaps
ª 50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables).

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 char-
acterizes experimental results. Figure 4b and 4c presents
the optimal move error rates for the maze experiment,
which validates Proposition 1 that retrospective imitation
is guaranteed to result in a policy that has lower error rates
than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that
a lower error rate leads to shorter search time. This result
is also verified by Figure 2a and 2d, where Retrospective
DAgger/SMILe, having the lowest error rates, explores the
fewest number of squares at each problem scale.

7 Conclusion & Future Work
We have presented the retrospective imitation approach
for learning combinatorial search policies. Our approach
extends conventional imitation learning, by being able to
learn good policies without requiring repeated queries to
an expert. A key distinguishing feature of our approach is

the ability to scale to larger problem instances than con-
tained in the original supervised training set of demonstra-
tions. Our theoretical analysis shows that, under certain
assumptions, the retrospective imitation learning scheme
is provably more powerful and general than conventional
imitation learning. We validated our theoretical results on
a maze solving experiment and tested our approach on the
problem of risk-aware path planning, where we demon-
strated both performance gains over conventional imita-
tion learning and the ability to scale up to large problem
instances not tractably solvable by commercial solvers.

By removing the need for repeated expert feedback, ret-
rospective imitation offers the potential for increased appli-
cability over imitation learning in search settings. However,
human feedback is still a valuable asset as human computa-
tion has been shown to boost performance of certain hard
search problems [Le Bras et al., 2014]. It will be interesting
to incorporate human computation into the retrospective
imitation learning framework so that we can find a balance
between manually instructing and autonomously reason-
ing to learn better search policies. Retrospective imitation
lies in a point in the spectrum between imitation learning
and reinforcement learning; we are interested in exploring
other novel learning frameworks in this spectrum as well.

B 
E 

T 
T 

E 
R

Our Approach

Gurobi

SCIP

Initial demonstrations
only at smallest size!

More experiments
in paper

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation

• Two-Stage Algorithm
• Leverages Supervised Learning Oracle

• Initial demonstrations on small problems

• Exploits sparse environmental reward
• “Retrospective Oracle”

• Iteratively scale up to harder problems

Blends Imitation & 
Reinforcement Learning

A Formal Notion of
Curriculum Learning



Co-Training for Policy Learning
(Multiple Views)

Graph View Integer Program View
(Branch & Bound View)

Example: Minimum Vertex Cover

[Khalil et al., 2017] [He et al., 2014]

Jialin
Song

Ravi
Lanka



Co-Training for Policy Learning
(Multiple Views)

Example: Different Types of Integer Programs

ILP QCQP

Jialin
Song

Ravi
Lanka



Co-Training [Blum & Mitchell, 1998]

• Many learning problems have different sources of information

• Webpage Classification: Words vs Hyperlinks
My AdvisorProf. Avrim Blum My AdvisorProf. Avrim Blum

x2- Text infox1- Link infox - Link info & Text info

(Taken from Nina Balcan’s slides)



What’s Different about Policy Co-Training?

• Sequential Decisions vs 1-Shot Decisions

• (Sparse) Environmental Feedback
• Can collect more “labels”

• Different Action Spaces
• Graph vs Branch-and-Bound

(Not always applicable)

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019



Intuition

MVC Instance
Demonstration

𝜋#

𝜋$

E.g., [1]

E.g., [2,3]

[1] “Learning combinatorial optimization algorithms over graphs” [Khalil et al., 2017]
[2] “Learning to Search in Branch and Bound Algorithms” [He et al., 2014]
[3] “Learning to Search via Retrospective Imitation” [Song et al., 2019]

Better!



Theoretical Insight

• Different representations differ in hardness
• Goal: quantify improvement

Ω: all problems

Ω#: representation 1 easier

Ω$: representation 2 easier

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019



(Towards) a Theory of Policy Co-Training

• Two MDP “views”: 𝑀" & 𝑀#

• 𝑓#→$ 𝜏# ⟹ 𝜏$ (and vice versa)

• Realizing 𝜏# on 𝑀#⟺ realizing 𝜏$ on 𝑀$

• Question: when does having two views/policies help?
• Policy Improvement (next slide) 

• Builds upon [Kang et al., ICML 2018]
• Optimality Gap for Shared Action Spaces (in paper)

• Builds upon [DasGupta et al., NeurIPS 2002]

“Trajectory” / “Rollout”



Policy Improvement Bound (Summary)

• Minimizing 𝛽2#
# → low disagreement between 𝜋# vs 𝜋"

• Maximizing 𝛿2#
# → high performance gap 𝜋# over 𝜋" on some MDPs

𝐽 𝜋′! ≥ 𝐽"! 𝜋′! −
2𝛾 𝛼#! 𝜀#! + 4𝛽#"

$ 𝜀#"
$

1 − 𝛾 $ + 𝛿#"
$

Builds upon theoretical results from [Kang et al., ICML 2018]

Jialin
Song

Ravi
Lanka



CoPiEr Algorithm (Co-training for Policy Learning)

𝑀# 𝑀$

Run 𝜋# → 𝜏# Run 𝜋$ → 𝜏$
Sample 𝑀~Ω

Exchange (only showing 1 version)

If 𝜋# better: 𝜏′$ = 𝑓#→$(𝜏#), 𝜏′# = ∅
If 𝜋$ better: 𝜏′# = 𝑓$→#(𝜏$), 𝜏′$ = ∅

Rollout

Update (only showing 1 view)

Augmented Obj: 2𝐽 𝜋& = 𝐽' 𝜋& − 𝜆𝐿 𝜋&, 𝜏&

Take gradient step

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019
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Erdős–Rényi
(100-500 vertices)

RL on Graph View
[Khalil et al., 2017]

IL on MILP View
[He et al., 2014]

More experiments 
in paper

Strong vs Baselines 
(w/o Co-Training)

CoPiEr Final Outperforms 
Individual Views

Strong vs Gurobi
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Optimization as a Computation Graph

𝜃!

∇"𝐿(𝜃!)

Iterative Amortized Inference

Figure 1. Visualizing the amortization gap. Optimization surface of L (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface of L defined by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate, q(z|x) = �(µq), where
µq = (µ1, µ2) is the estimate and � is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better final
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering significant benefits in computational effi-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings from x to q(z|x)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question: can we retain the computational efficiency of in-
ference models while incorporating more powerful iterative
estimation capabilities? Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them as iterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justification for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where an optimizer model learns to optimize
the parameters of an optimizee model. The optimizer re-
ceives the optimizee’s parameter gradients and outputs up-
dates to these parameters to improve the optimizee’s loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do not learn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a unified method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.

Computation
(“g”)

+ 𝜃!#$

Current 
“State”

Gradient

New “State”

In Gradient Descent:
𝑔 𝜃, ∇!𝐿 𝜃 = −𝜂∇!𝐿 𝜃

t=t+1



Example: Gradient Descent w/ Momentum

Iterative Amortized Inference

Figure 1. Visualizing the amortization gap. Optimization surface of L (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface of L defined by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate, q(z|x) = �(µq), where
µq = (µ1, µ2) is the estimate and � is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better final
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering significant benefits in computational effi-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings from x to q(z|x)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question: can we retain the computational efficiency of in-
ference models while incorporating more powerful iterative
estimation capabilities? Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them as iterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justification for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where an optimizer model learns to optimize
the parameters of an optimizee model. The optimizer re-
ceives the optimizee’s parameter gradients and outputs up-
dates to these parameters to improve the optimizee’s loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do not learn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a unified method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.

𝑔 𝜃, ∇"𝐿 𝜃 = −𝜂(∇"𝐿 𝜃 + 𝑚)
𝑚 = 𝛾 𝑚 + ∇"𝐿 𝜃

𝜃!

∇"𝐿(𝜃!)

+ 𝜃!#$

Current 
“State”

Gradient

New “State” t=t+1

−𝜂

∗

𝑚!Momentum

∗

𝛾

+

𝑚!#$
New 
Momentum



(Differentiable) Learning to Optimize

𝜃!

∇"𝐿(𝜃!)
Iterative Amortized Inference

Figure 1. Visualizing the amortization gap. Optimization surface of L (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface of L defined by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate, q(z|x) = �(µq), where
µq = (µ1, µ2) is the estimate and � is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better final
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering significant benefits in computational effi-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings from x to q(z|x)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question: can we retain the computational efficiency of in-
ference models while incorporating more powerful iterative
estimation capabilities? Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them as iterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justification for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where an optimizer model learns to optimize
the parameters of an optimizee model. The optimizer re-
ceives the optimizee’s parameter gradients and outputs up-
dates to these parameters to improve the optimizee’s loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do not learn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a unified method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.
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Recall: Recurrent Neural Networks

!X

to mirror the sequential structure of the data, 
we can process the data sequentially

maintain an internal representation during processing

potentially infinite effective input window
fixed number of parameters

t
each set of colored arrows denotes shared weights
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Material from Joe Marino



Recall: Recurrent Neural Networks

!X

a recurrent neural network (RNN) can be expressed as

Hidden State

ht = �(W|
h[ht�1,xt])

Output

yt = �(W|
yht)

Material from Joe Marino



Backpropagation Through Time

!X

therefore, we can use standard backpropagation to train, 
resulting in backpropagation through time (BPTT)

Gradient

Material from Joe Marino



Learning to Optimize as (Recurrent) Deep Learning
(backprop learning signal)
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Figure 1. Visualizing the amortization gap. Optimization surface of L (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface of L defined by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate, q(z|x) = �(µq), where
µq = (µ1, µ2) is the estimate and � is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better final
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering significant benefits in computational effi-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings from x to q(z|x)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question: can we retain the computational efficiency of in-
ference models while incorporating more powerful iterative
estimation capabilities? Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them as iterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justification for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where an optimizer model learns to optimize
the parameters of an optimizee model. The optimizer re-
ceives the optimizee’s parameter gradients and outputs up-
dates to these parameters to improve the optimizee’s loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do not learn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a unified method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.
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Gating Update Rule

• 𝜃:;" = 𝑔"⊙𝜃: + (1 − 𝑔") ⊙ 𝑔#
• 𝑔# and 𝑔$ are neural nets (might be recurrent)
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Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018
Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

Joe Marino

Iterative Amortized Inference

Figure 1. Visualizing the amortization gap. Optimization surface of L (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this difficult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface of L defined by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate, q(z|x) = �(µq), where
µq = (µ1, µ2) is the estimate and � is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better final
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering significant benefits in computational effi-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings from x to q(z|x)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question: can we retain the computational efficiency of in-
ference models while incorporating more powerful iterative
estimation capabilities? Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them as iterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justification for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where an optimizer model learns to optimize
the parameters of an optimizee model. The optimizer re-
ceives the optimizee’s parameter gradients and outputs up-
dates to these parameters to improve the optimizee’s loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do not learn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a unified method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.



Setup More Complicated
(Variational Inference)

• Blue part is the learned optimizer

• Due to the complexities of 
variational inference

Iterative Amortized Inference

Figure 2. Computation graph for a single-level latent variable
model with an iterative inference model. Black components eval-
uate the ELBO. Blue components are used during variational in-
ference. Red corresponds to gradients. Solid arrows denote deter-
ministic values. Dashed arrows denote stochastic values. During
inference, �, the distribution parameters of q(z|x), are first initial-
ized. z is sampled from q(z|x) to evaluate the ELBO. Stochastic
gradients are then backpropagated to �. The iterative inference
model uses these gradients to update the current estimate of �. The
process is repeated iteratively. The inference model parameters, �,
are trained through accumulated estimates of r�L.

3.3. Iterative Inference Models

We denote an iterative inference model as f with parame-
ters �. With L(i)

t ⌘ L(x(i),�(i)
t ; ✓) as the ELBO for data

example x(i) at inference iteration t, the model uses the
approximate posterior gradients, denotedr�L(i)

t , to output
updated estimates of �(i):

�(i)
t+1  ft(r�L(i)

t ,�(i)
t ;�), (6)

where �(i)
t is the estimate of �(i) at inference iteration t.

Eq. 6 is in a general form and contains, as special cases,
the linear update in eq. 4, as well as the residual, non-
linear update used in (Andrychowicz et al., 2016). Figure
2 displays a computation graph of the inference procedure,
and Algorithm 1 in Appendix B describes the procedure
in detail. As with standard inference models, the parame-
ters of an iterative inference model can be updated using
estimates ofr�L, obtained through the reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014) or
through score function methods (Gregor et al., 2014; Ran-
ganath et al., 2014). Model parameter updating is performed
using stochastic gradient techniques with r✓L and r�L.

4. Iterative Inference in Latent Gaussian
Models

We now describe an instantiation of iterative inference mod-
els for (single-level) latent Gaussian models, which have
a Gaussian prior density over latent variables: p(z) =
N (z;µp, diag�2

p). Although the prior is typically a stan-
dard Normal density, we use this prior form for general-
ity. Latent Gaussian models are often used in VAEs and
are a common choice for continuous-valued latent vari-
ables. While the approximate posterior can be any prob-
ability density, it is typically also chosen as Gaussian:
q(z|x) = N (z;µq, diag�2

q ). With this choice, �(i) cor-
responds to {µ(i)

q ,�2(i)
q } for example x(i). Dropping the

superscript (i) to simplify notation, we can express eq. 6
for this model as:

µq,t+1 = f
µq

t (rµqLt,µq,t;�), (7)

�2
q,t+1 = f

�2
q

t (r�2
q
Lt,�

2
q,t;�), (8)

where f
µq

t and f
�2

q

t are the iterative inference models for
updating µq and �2

q respectively. In practice, these models
can be combined, with shared inputs and model parameters
but separate outputs to update each term.

In Appendix A, we derive the stochastic gradients rµqL
and r�2

q
L for the cases where p✓(x|z) takes a Gaussian

and Bernoulli form, though any output distribution can
be used. Generally, these gradients are comprised of
(1) errors, expressing the mismatch in distributions, and
(2) Jacobian matrices, which invert the generative map-
pings. For instance, assuming a Gaussian output density,
p(x|z) = N (x;µx, diag�2

x), the gradient for µq is

rµqL = J|"x � "z, (9)

where the Jacobian (J), bottom-up errors ("x), and top-
down errors ("z) are defined as

J ⌘ Ez⇠q(z|x)


@µx

@µq

�
, (10)

"x ⌘ Ez⇠q(z|x)[(x� µx)/�
2
x], (11)

"z ⌘ Ez⇠q(z|x)[(z� µp)/�
2
p]. (12)

Here, we have assumed µx is a function of z and �2
x is

a global parameter. The gradient r�2
q
L is comprised of

similar terms as well as an additional term penalizing ap-
proximate posterior entropy. Inspecting and understanding
the composition of the gradients reveals the forces pushing
the approximate posterior toward agreement with the data,
through "x, and agreement with the prior, through "z. In
other words, inference is as much a top-down process as
it is a bottom-up process, and the optimal combination of
these terms is given by the approximate posterior gradients.
As discussed in Section 4.1, standard inference models have
traditionally been purely bottom-up, only encoding the data.

Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018
Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

Joe Marino



Iterative Amortized Inference 
(for Deep Probabilistic Models)

Iterative Amortized Inference, Joe Marino et al., ICML 2018
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Related Work

• The Differentiable Cross-Entropy Method
• [Amos & Yarats] https://arxiv.org/abs/1909.12830

• Learning to Learn
• [Andrychowicz et al.] https://arxiv.org/abs/1606.04474

• Differentiable MPC
• [Amos et al.] https://arxiv.org/abs/1810.13400

• Deep MRI Reconstruction 
• [Liang et al.] https://arxiv.org/abs/1907.11711

• RNA Secondary Structured Prediction
• [Chen et al.] https://arxiv.org/abs/2002.05810

• And Many More!
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Aside: Amortization Gap

“Amortization”
• Learn a NN to predict solution
• Spend compute on (pre-)training
• Run-time optimization is fast.

“Amortization Gap”
• 1-shot amortization (aka “Direct”) 
• Cannot accurately predict solution
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What Matters in Practice?

• Story so far: solution quality vs #iterations
• Baseline solver might be very fast per iteration
• Baseline solver might have smart pre-conditioner
• Baseline solver might generalize better
• Etc…

• Next Step: solution quality vs wall-clock time



Many Solvers Can be Very Fast….

• … if you know some key structural properties of the problem.

• Paradigm 1: Predict the key variables that are hard
• E.g., backdoor variables [https://www.cs.cornell.edu/gomes/pdf/2009_dilkina_cpaior_backdoors.pdf]

• Set backdoor variables first, then run solver.

• Paradigm 2: Predict a decomposition
• E.g., Large Neighborhood Search [https://arxiv.org/abs/2004.00422]

• Run solver on smaller problems (should be fast)

https://www.cs.cornell.edu/gomes/pdf/2009_dilkina_cpaior_backdoors.pdf
https://arxiv.org/abs/2004.00422


Large Neighborhood Search

1. Partition variables into X1, X2, X3, …, Xm

2. Freeze all variables except one partition at a time
• Run solver on partition

3. Repeat from Step 1

• How to partition?
• Use learning to predict!

Jialin
Song

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020



Large Neighborhood Search

1. Partition variables into X1, X2, X3, …, Xm

2. Freeze all variables except one partition at a time
• Run solver on partition

3. Repeat from Step 1

• How to partition?
• Use learning to predict!

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020

Benefits:
1. Can leverage state-of-the-art solvers & their implementations

2. Can be competitive in wall-clock time

Drawbacks:
1. Reliant on existing solver being good for sub-problems

2. Reliant on being able to find those sub-problems

Jialin
Song



Some Empirical Results
(a) Combinatorial auction of 2000
items and 4000 bids from the regions
distribution.

(b) Combinatorial auction of 2000
items and 4000 bids from the arbitrary
distribution.

(c) Risk-aware path planning for
navigating through 30 obstacles.

Figure 1: Improvements of objective values as more iterations of LNS are applied. In all three cases, imitation learning
methods, BC-LNS and FT-LNS, outperform the Random-LNS.

(a) Combinatorial auction of
2000 items and 4000 bids
from regions distribution.

(b) Combinatorial auction
of 2000 items and 4000 bids
from arbitrary distribution.

(c) Risk-aware path
planning for navigating
through 30 obstacles.

(d) Maximum cut over a
Barabási-Albert random
graph with 500 vertices.

Figure 2: We compare LNS methods on how the objective values improve as more wall-clock time is spent for some
representative problem instances. We also include Gurobi in the comparison. All LNS methods find better solutions
than Gurobi early on and the advantage is maintained even though Gurobi is given more time for each instance. In Fig
2d, after running for 2 hours, Gurobi is unable to match the quality of solution found by Random-LNS in 5 seconds.

Per-Iteration Comparison. We use a total of 10 iter-
ations of LNS, and it is natural to ask how the solu-
tion quality changes after each iteration. Fig 1 shows
objective value progressions of variants of our LNS ap-
proach on three datasets. For the two combinatorial auc-
tion datasets, BC-LNS and FT-LNS achieve substantial
performance gains over Random-LNS after just 2 itera-
tions of LNS, while it takes about 4 for the risk-aware
path planning setting. These results show that learning
a decomposition method for LNS can establish early ad-
vantages over using random decompositions.

Running Time Comparison. Our primary benchmark
comparison limited all methods to roughly the same time
limit. We now investigate how the objective values im-
prove over time. Figure 2 shows four representative in-
stances. We see that BC-LNS achieves the best perfor-
mance profile of solution quality vs. wall-clock.

How Long Does Gurobi Need? Figure 2 also allows
us to compare with the performance profile of Gurobi
In all cases, LNS methods find better objective values

than Gurobi early on and maintain this advantage even as
Gurobi spends significantly more time. Most notably, in
Figure 2d, Gurobi was given 2 hours of wall-clock time,
and failed to match the solution found by Random-LNS
in just under 5 seconds (the time axis is in log scale).

5.3 Comparison with Domain-Specific Heuristics

We also compare with strong domain-specific heuristics
for three classes of problems: MVC, MAXCUT and
CATS. We do not compare in the risk-aware path plan-
ning domain, as there are no readily available heuristics.
Overall, we find that our LNS methods are competitive
with specially designed heuristics, and can sometimes
substantially outperform them. These results provide ev-
idence that our LNS approach is a promising direction
for the automated design of solvers that avoids the need
to carefully integrate domain knowledge while achieving
competitive or state-of-the-art performance.

For MVC, we compare with a 2-OPT heuristic based on
local-ratio approximation (Bar-Yehuda and Even, 1983).
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1000x Faster in Wall-Clock Time!

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020
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Ongoing: Integration with ENav
Hiro
Ono

Olivier
Toupet
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The Problem with ENav

Local PlannerGlobal Planner

•Gives cost from the 
end of tree to goal

•Routes computed on 
200m x 200m map

•1 m resolution
•Considers slope, 
roughness, KOZ, KIZ

ACE
(Approx. Clearance Est.)

•Evaluates 
clearance using 
approx. kinematics

•Run every 25cm
•Also checks tilt, 
wheel drop, etc

•Selects best path for the next 6m 
from finite # of options

ACE Evaluation 
is Expensive!

Hiro
Ono

Olivier
Toupet

Neil
Abcouwer

Shreyansh
Daftry





Preliminary Results

Baseline ENav (Cycle Time(s)) MLNav (Cycle Time(s))

x

Hiro
Ono
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Abcouwer

Shreyansh
Daftry

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., (under review)



Learned 
Decentralized 
Planner
(enforcing safety)

GLAS: Global-to-Local Safe Autonomy 
Synthesis for Multi-Robot Motion 
Planning with End-to-End Learning, 
Benjamin Rivière, et al., R-AL 2020

Wolfgang
Hoenig

Ben
Riviere





Summary: Learning to Optimize

• Optimization as Sequential Decision Making

• Formulate New Learning Problems
• Builds upon RL/IL

• Interesting Algorithms
• Theoretical Analysis/Guidance
• Good Empirical Performance

• Exciting Applications!
★

Imitation	&	Reinforcement	Learning

Agent

Environment	/	World

Action	at
(or	ut)

st+1

State/Context	st
Goal:	Find	“Optimal”	Policy

Imitation	Learning:
Optimize	imitation	loss

Reinforcement	Learning:
Optimize	environmental	reward

(Known	Dynamics	=>	Optimal	Control)
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