Caltech

Learning to Optimize
as Policy Learning

Yisong Yue

Optimization is a Fundamental Challenge

Inverse Problems Planning

Design
Mirror _|
Tasks reint

F Film
T — Thickness
Mirror Spacing

https://doi.org/10.1021/acsphotonics.8b01634

Optimization is Hard!

* High Dimensional / Combinatorial
* Real-Time Resource Constraints
* Poorly Conditioned / Poorly Initialized

* Tuning of Optimizers

. - 4 CIRCE IR
Learning to Optimize

(Dynamic Constraint) xyy+1 = Axt + Bug,

(Safety Constraints) hiTxt < gé.

[1 — Side of the obstacle

- Compiled as Combinatorial
Qistribution of Planning ProblemS/ \ Search Problems /

* Many Solvers are Sequential
* Tree-Search / Greedy

* Gradient / Coordinate Descent

* Can view solver as “agent” or “policy” making decisions

Many Other People Work on this Topic!

CSC 2547 Fall 2019: Learning to Search

CS 159: Data-Driven

Workshop on Automated ST e

Algorithm Design

Spring 2020
This workshop focuses on new machine leamning
techniques for automatically designing algorithms.
Algorithms are central to modem computing, and

RESEARCH HIGHLIGHTS they have lots of applications in our life. Yet, writing

correct, efficient algorithms is a time-consuming

Overview Data‘ D rlve n AI go rlth m Des |g n Aug 7 — Aug and difficult task. It also often requires intuition and What is Data-Driven Algorithm Design?

9 2019 expertise to tailor algorithmic choices to specific
e b Hetive e Toyota instances that arise in particular applic ===~ fhibanashacuaiahieaitniiasbinadeaiinaarincreasingly used to (semi-)automatically
n planning, search, active learnir ' However, there have been a number i ems. Canonical examples include:
face a series of similar tasks. We By Rishi Gupta, Tim Roughgarden Jegoioacal : Learn I ng Meets P

" advancements that have allowed algc
even combine parts of previous s Communications of the ACM, June 2020, Vol. 63 No. 6, Pages 87-94 Institute g

lected or designed ific al . g 5 '
foundotionsl Hous, racent work,; 10-14513394625 eaedordesned enseecic sk Combinatorial Algorithms B2

Comments families automatically, often leading to))
self-improving tree-search methc v , ‘ v , , , , , 7 of-the-art empirical performance or pr LM C A br than gradient descent) for continuous
self-tuning gradient estimators, & VIEWAS: E| D @ .@ SHARE = & @ @ performance guarantees on observec
planning in POMDPs. Evaluation\ | ; : ; ; Sl ; i : Hi— distributions. In this workshop, we tak rs to get the best performance.
research by the students. Studen view of the problem and seek to bring ksh

: g Workshop at NeurlPS 2020 Orkshop.
learning such as linear algebra, o researchers with different viewpoints ¢ P

The best algorithm for a comput
approaches to the general challenge. order to learn well. There are two ways

depends on the "relevant inputs
application domain and often de
Although there is a large literature on empirical approaches to Why this Workshop?
selecting the best algorithm for a given application domain, there
has been surprisingly little theoretical analysis of the problem.

5 to learn from, and assume that future
ning instances.

Machine learning algorithms have been shown to generalize poorly on combinatorially \stance.
demanding tasks. Recent research has demonstrated that merging combinatorial
optimization with machine learning methods enables solving problems that require non-

We model the problem of identifying a good algorithm from data trivial combinatorial generalization beyond pattern matching. In this spirit, this workshop
fofbt = aims to bring the communities (machine learning and combinatorial optimization,

as a statistical]earnlng problenL Our framework captures several operations research) together in order to motivate further research at the intersection. This

state-of-the-art empirical and theoretical approaches to the involves:

problem and our results identify conditions under which these = Machine learning approaches aimed at improving combinatorial algorithms/solvers.
3

approaches are guaranteed to perform well. We interpret our = Machine learning techniques to directly learn solvers for combinatorial problems.

PP . g p : - I'p = Hybrid architectures; pipelines containing both algorithmic/combinatorial and standard
results in the contexts of learning greedy heuristics, instance NN building blocks.
Credit: Getty Images feature-based algorithm selection, and parameter tuning in = Applications of the above.

machine learning.

Research Questions

More
Theoretical

* How do we formalize the learning problem?
* |s the formulation novel or standard?

* Do we need new algorithms?

* How do we measure progress?
* Speedup in wall-clock time?
* Savings in memory?
* Final solution quality?

More

° l i P
Can we |ntegrate into real SyStemS. Applied

This Talk

Learning to Search

_

! 334

4 Continuous

S
Optimization
332
Direct Policy Network
—+o— Tterative Policy Network 331
* Optimal Estimate
330
—0.5 0.0 0.5 1.0
tanh (u)
Practical

Applications

PO“CV Learning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

Reinforcement Learning:
Optimize environmental reward

Learning-based Approach for
Sequential Decision Making

State/Context s,

St+1

>

Agent

Environment / World

Action a,

Imitation Learning Tutorial (cmL 2018)

https://sites.google.com/view/icm|2018-imitation-learning/

Yisong Yue Hoang M. Le

yyue@caltech.edu hmle@caltech.edu
s 4 @YisongYue @HoangMinhlLe
@ yisongyue.com hoangle.info

http://www.yisongyue.com/
http://hoangle.info/
https://sites.google.com/view/icml2018-imitation-learning/

State/Context s,

Basic Formulation Agent

Action a,
(oru,)

(Typically a Neural Net)
* Policy: m(s) = P(a)

i, St+1

A

Environment/ World

K

/ 1

State Action

* Roll-out: T = (sy, ay, S1, A1, Sy, ...) (aka trace or trajectory)

VoV

Transition Function: P(s’|s,a)

* Objective:),; 7(s;, a;)

Example: Learning to Search

Integer Program Tree-Search (Branch and Bound)

)

State = partial search tree

max — Z €T, (need to featurize)
=1 Oy [awaaas Y YY) s
subject to:
r1 + 1o > 1. »
Ty + a3 2> 1, Action = variable
Ty 4+ xg4 > 1, selection or branching

e Deterministic State Transitions
* Massive State Space /

 Sparse Rewards Sparse Reward
@ feasible solution

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]

Learning to Optimize for Tree Search

e |dea #1: Treat as Standard RL

 Randomly explore for high rewards
* Very hard exploration problem!

* Issues: massive state space & sparse rewards / ;i

Learning to Optimize for Tree Search

e |dea #2: Treat as Standard IL

* Convert to Supervised Learning
e Assume access to solved instances

“Demonstration Data” Q
* Training Data: Dy = {(,?ﬁ)}
A A

* Basic IL: argmin LDO (m) = E(S,a)NDO [£(a, m(s))]

l tell ,

Behavioral Cloning

Challenges w/ Imitation Learning

* Issues with Behavioral Cloning
* Minimize Lp, ... implications?
* If T makes a mistake early, subsequent state distribution = Dy ??
* Some extensions to Interactive IL [He et al., NeurIPS 2014]

Our Approach is also Interactive IL

 Demonstrations not Available on Large Problems
* How to (formally) bootstrap from smaller problems?
* Bridging the gap between IL & RL

Our Approach gives one solution

Retrospective Imitation
(Bridging IL & RL)

Jialin Ravi

: Song Lank
* Given: ane
* Family of Distributions of Search problems Difficulty levels: k=1,...,K

* Family is parameterized by size/difficulty

* Solved Instances on the Smallest/Easiest Instances
* “Demonstrations”

e Goal:
* Interactive IL approach
* Can Scale up from Smallest/Easiest Instances
* Formal Guarantees

Connections to Curriculum Learning
& Transfer Learning

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Retrospective Imitation

* Two-Stage Algorithm

* Core Algorithm
* Fixed problem difficulty Interactive IL w/ Sparse Environmental Rewards

* Reductions to Supervised Learning

* Full Algorithm w/ Scaling Up

* Uses Core Algorithm as Subroutine

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Retrospective Imitation (core Algorithm)

Roll-out Trace
Expert Trace

Repeat

@ Retrospective Oraclel
(Algorithm 2)

(D Initial Learning

Imitation
Learning
Policy

Supervised Learning
Reduction

@ Policy Update with Further Learning

i i
;o ;o
/ \ 7
’ \ , \
J
A
R
/ \
. AR
[, \
S S
PR PEERY

Reoion A 7\

State s Action a Derived from Sparse

Environmental Rewards
(?@ , ?m
4 /L

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Retrospective Imitation (rull Aigorithm)

Problem e i
Difficulty k | Instances & Core Algorithm

Initialize k=1

Demonstrations

Initialize l

) Retrospective Or: el
(Algorithm 2)
(D Initial Learning o e
P T o N T
@ o] L] @ SRR

1 @ Policy Up:
Poli gon A7 £+ 17

. Base Solver A ok
Gurobi/SCIP/CPlex N o A

Region B)

k=k+1
Use trained 1T

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Core Algorithm
* Does this converge?

Roll-out Trace

Expert Trace

. . |* Convergestowhat? | " Qe QY e
/ \ r/ \ o
7
B Retrospective Oraclel
(Algorithm 2)
(D Initial Learning

Q ('j\

A h \\‘ (L

Imitation @ Policy Update with Further Learning
Learning [« VI

Policy J Region A A A
Retrospective Oracle Feedback ./

Region B

,,,,,,,

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Retrospective Oracle
71 Policy Rollout

% : best solution found by 77

Retrospective Oracle
Retrospective Oracle Feedback

Feedback: (red > white)
for all (red, white) pairs
in the trajectory

Retrospective Oracle
79 Policy Rollout

Retrospective Oracle
Retrospective Oracle Feedback

Feedback: (red > white)
for all (red, white) pairs
in the trajectory

Retrospective Oracle
73 Policy Rollout

Core Algorithm Summary & Guarantees

e Sequence of Learning Reductions

* Leverages Retrospective Oracle to Define “Correct”
* Relies on sparse environmental rewards

e Converges to near-optimal policy in class
* Offloads computational challenges to Supervised Learning Oracle

* For su perVised lea rning error &. (caveats apply, see paper)

H* _ Optimal Search Length
(typically # integer variables)

Expected Search Length =

1-2¢

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Guarantees for Full Algorithm

* Run 1t on problems of difficulty k+1

* |Initial demonstrations for the harder problem instances

* Suppose: we could have run external solver on harder instances
Gurobi/SCIP/CPlex/Etc...

* Suppose: search trace includes feasible solution of external solver

 Then * is as good as using original external solver!

* (might take longer to converge)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Retrospective DAgger vs Heuristics for More experiments
MILP based Path Planning (budget=2k) in paper

Retrospective DAgger
(select only)

| —— Gurobi
1504 P \
SCIP

Gurobi

——

BETTER

Optimality Gap (%)
o
~J o
w o

pproach

N

w
@)
=
>

r— /
04 -~— ——

10 11 12 13 14
Initial demonstrations (400) (440) (480) (520) (560)
only at smallest size! Way points (# binary variables)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

. . . Problem b N
Retrospective Imitation Difultyk | 7, | Core Algorithm
Base Solver — “‘:‘55;' = ()

* Two-Stage Algorithm
* Leverages Supervised Learning Oracle

k=k+1
Use trained

* Initial demonstrations on small problems

* Exploits sparse environmental reward Blends Imitation &

* “Retrospective Oracle” Reinforcement Learning

* lteratively scale up to harder problems A Formal Notion of
Curriculum Learning

Co-Training for Policy Learning
(Multiple Views)

Example: Minimum Vertex Cover Jialin Ravi
Song Lanka

D

max — E X,

i=1
subject to:
r1 + a9 > 1,
To + I3 Z 1
T3 + Xy Z].
ry3 + x5 > 1,

T rs > 1,
r; € {0,1},Vi e {1,--- .5}

Graph View Integer Program View
(Branch & Bound View)

[Khalil et al., 2017] [He et al., 2014]

Co-Training for Policy Learning
(Multiple Views)

Ravi
Lanka

Example: Different Types of Integer Programs

T
I r >
hlr =g >

ILP QCQP

Co-Tralning [Blum & Mitchell, 1998]

* Many learning problems have different sources of information

* Webpage Classification: Words vs Hyperlinks

Prof. Avrim Blum My Advisor Prof. Avrim Blum My Advisor
e e

Avrim Blum's home page Page 1of | Avrim Blum's home page Page 1of |

Avrim Blum
Professor of Computer Science

Avrim
Professor of Computer Sciel

N

Department of Computer Science
Carnegic Mellon Univer
Pittsburgh, PA 15213-3891
avrim at es.cmu.edu

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

avrim at es.cmu.edu

Office: Wean 4130
Te

576
Nicole Stenger, Wean 4116, 268-3779
ulty members Ryan O'Donnell and Luis von Ahn.

76
cole Stenger, Wean 4116, 268-3779

Cheek out our new faculty members Ryan O'Donnell and Luis Check out our new

My main research interests are machine learning theory, approximation algorithms, on-line algoriths, My main research interests are machine learning theory, approximation algorithms, on-line algoriths,

and algorithmic game theory. | was/am on the Program Committees for FOCS 2008 (Symp. Foundations and algorithmic game theory. | was/am on the Program Committees for FOCS 2008 (Symp. Foundations
of Computer Science), ACM-EC 2008 (Electronic Commerce), and COLT 2007 (Conference on of Computer Science), ACM-EC 2008 (Electronic Commerce), and COLT 2007 (Conference on
Learning Theory), and was recently local organizer for COLT 2006 and FOCS 2005. I also co-organized Learning Theory), and was recently local organizer for COLT 2006 and FOCS 2005. I also co-organized
the 2005 Foundaions of Computational Mathematics Warkshop on Algorithmic Game Theory and the 2005 Foundaions of Computational Mathematics Warkshop on Algorithmic Game Theory and
Metric Embeddings. A while back I served as Program Chair for FOCS 2000 and I've done some work Metric Embeddings. A while back I served as Program Chair for FOCS 2000 and I've done some work
in A Planning. For more information on my research, see the publications and research interests links in A Planning. For more information on my research, see the publications and research interests links
below. T am also afliliated with the Machine Learning department below. T am also afliliated with the Machine Learning department
Tam currently (Spring 2008) teaching 15-859(B) Machine Learing Theory Tam currently (Spring 2008) teaching 15-859(B) Machine Learning Theory

< Publications @ ALADDIN, Algorithms and Complexity Group < Publications @ ALADDIN, Algorithms and Complexity Group

© Research Interesis @ ACO Program Home Page © Research Interesis @ ACO Program Home Page

9 Survey Talks @ Theory Seminars, Theory lunch ML lunch 9 Survey Talks @ Theory Seminars, Theory lunch ML lunch

@ Courses @ Family pictures, Other pictures, My Startup Page 9 Courses @ Family pictures, Other pictures, My Startup Page

@ My Tutorial on Machine Learning Theory given at FOCS 2003 and a short essay @ My Tutorial on Machine Learning Theory given at FOCS 2003 and a short essay

My advisees: Aaron Roth, Katrina Ligett, Nina Balcan, Mugizi Robert Rwebangira, Shobha My advisees: Aaron Roth, Katrina Ligett, Nina Balcan, Mugizi Robert Rwebangira, Shobha

x - Link info & Text info X;- Link info X,- Text info

(Taken from Nina Balcan’s slides)

What's Different about Policy Co-Training?

* Sequential Decisions vs 1-Shot Decisions

* (Sparse) Environmental Feedback
* Can collect more “labels” (Not always applicable)

5
max — E T,

i=1

e Different Action Spaces
* Graph vs Branch-and-Bound

subject to:

r1+axo > 1,
To +x3 > 1,
r3+ x4 > 1,
r3+ x5 > 1,
g4+ x5 > 1,

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

x; € {0,1},Vie {1, --- !

Intuition

MVC Instance

E.g., [1]

E.g., [2,3]

[1] “Learning combinatorial optimization algorithms over graphs” [Khalil et al., 2017]
[2] “Learning to Search in Branch and Bound Algorithms” [He et al., 2014]
[3] “Learning to Search via Retrospective Imitation” [Song et al., 2019]

5

max — E T,

i=1

subject to:
€T+ X9 Z 1,
To + X3 Z 1,

v

r3+ax4 > 1,
r3+ x5 > 1,
Ty +x5 > 1,
r; €4{0,1},Vie {1,--- .5}

171:0
.’132:].
333:1
.’134:1
Ty —

Demonstration

Better!

Theoretical Insight

* Different representations differ in hardness
e Goal: quantify improvement

(),: representation 2 easier

();: representation 1 easier

Q: all problems

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

(Towards) a Theory of Policy Co-Training

e Two MDP “views”: M1 & M?

H subject to:
« f17%2(71) = 1% (and vice versa) B
To + X3 Z 1,
“Trajectory” / “Rollout” oyt > 1,
T3+ Ty Z 1,
e Realizing ! on M! < realizing 2 on M? vyt as > 1

* Question: when does having two views/policies help?

* Policy Improvement (next slide)
e Builds upon [Kang et al., ICML 2018]

* Optimality Gap for Shared Action Spaces (in paper)
* Builds upon [DasGupta et al., NeurlPS 2002]

r; €{0,1},Vie {1,---,5

Jialin Ravi
Song Lanka

* Minimizing ,85222 - low disagreement between 1 vs 7’

* Maximizing 55222 - high performance gap 2 over ! on some MDPs

Builds upon theoretical results from [Kang et al., ICML 2018]

CoPIEr A|g0 rithm (Co-training for Policy Learning)

‘ Sample M~} » Rollout

Run 1 — 1 Run 2 — 2
Update (only showing 1 view) unm t unm t
Augmented Obj: (") = (") — AL(7', T") max — 3 i,
1=1
Take gradient step subject to:

r1+axo > 1,
. To +x3 > 1,
Trs + X4 Z 1,
T3 + T Z 1,
Excha Nge (only showing 1 version) xy+as > 1,

xr; € {0,1},Vie {1,---,5}

If ! better: t'4 = f17%(eY), 71 =@ «

If 72 better: 't = f271(1%), 7 = ¢

MZ

Co-training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

BETTER

<

Performance gap compared to CoPiEr Final

S
)

p—
N

—
#

—
o

—
-

o
o0

S
o

&
#

Performance comparison for Minimum Vertex Cover

Strong vs Baselines === Gurobi BN Graph (CoPiEr) f{ggsggg?/\élrtices)
(W/O Co-Training) B Graph (R'L) . B ILP (Retrospective imitation)

BN non-CoPiEr Final ~ mmmm ILP (CoPiEr) RL on Graph View
/ BN [LP (DAgger) B CoPiEr Final [Khalil et al., 2017]

/

100-200

IL on MILP View

CoPiEr Final Outperforms [He et al., 2014]

Individual Views
Strong vs Gurobi

More experiments
in paper

200-300 300-400 400-500
#vertices in the graph

This Talk

Learning to Search

! 334

333
332
¢ Direct Policy Network
—+o— Tterative Policy Network 331
* Optimal Estimate
330

—0.5 0.0 0.5 1.0
tanh (u)

)

~

Continuous
Optimization

/

Practical
Applications

Optimization as a Computation Graph

ﬂ——n New IIState”

In Gradient Descent:
g(6,VgL(6)) = —nVuL(6)

Current
“State”

Gradient VoL(6,)

Computation

(“g”)

Example: Gradient Descent w/ Momentum

g(6,VoL(6)) = —n(VoL(8) + m)
n——n New “State” 1 t=t+1 F

m =y(m+ V4L(0))

“State” \
ew
Momentum
Gradient VoL(6;)

(Differentiable) Learning to Optimize

ﬂ——n New IIState”

Current
“State”
Updated
“Memory”
. VoL(6;) Computation
Gradient

(“g”)

“Memory”

Material from Joe Marino

Recall: Recurrent Neural Networks

OUTPUT

HIDDEN

INPUT

each set of colored arrows denotes shared weights

Material from Joe Marino

Recall: Recurrent Neural Networks

Hidden State

h; = o(Wy [hs_1,x¢])

Output

Yt — O'(W;,ht)

Material from Joe Marino

Backpropagation Through Time

= === (Gradient

Learning to Optimize as (Recurrent) Deep Learning

(backprop learning signal)

Current
“State”
Updated
: “Memory”
. VoL(6;) Computation
Gradient (“g”)
“Memory” This is a Recurrent Neural Network!

(essentially same architecture design)

Gating Update Rule

Joe Marino
*0ib1= 01060 +(1—91) © g,
* g1 and g, are neural nets (might be recurrent) t=t+1
! 8

New “State”

\4

\
Current
“State”
VoL(6
\ /

Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018
Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

Setup More Complicated

(Variational Inference)

Joe Marino

* Blue part is the learned optimizer Dicr(a(z0)Ip(@)|e(p(z))

* Due to the complexities of

variational inference

Eq(z|x) [lng(XIZ)]

Iterative Amortized Inference, Joe Marino et al., ICML 2018 é}
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurlPS 2018

Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

lterative Amortized Inference
(for Deep Probabilistic Models)

Joe Marino

—100
N\ Y
el 300
w| Z
<
| £ 100
Wl — SGD
o —500 — SGD + Momentum
_— —— RMSProp
—600 —— AdaM
—— Iterative Inference Model (VL)
—700

0 50) 100 150 200 250 300
Inference Iterations

Iterative Amortized Inference, Joe Marino et al., ICML 2018

Related Work

The Differentiable Cross-Entropy Method
* [Amos & Yarats] https://arxiv.org/abs/1909.12830

Learning to Learn
* [Andrychowicz et al.] https://arxiv.org/abs/1606.04474

Differentiable MPC
* [Amos et al.] https://arxiv.org/abs/1810.13400

Deep MRI Reconstruction
* [Liang et al.] https://arxiv.org/abs/1907.11711

RNA Secondary Structured Prediction
* [Chen et al.] https://arxiv.org/abs/2002.05810

And Many More!

https://arxiv.org/abs/1909.12830
https://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1810.13400
https://arxiv.org/abs/1907.11711
https://arxiv.org/abs/2002.05810

Aside: Amortization Gap

4 ..
o “Amortization”

 Learn a NN to predict solution
 Spend compute on (pre-)training
333 * Run-time optimization is fast.

“Amortization Gap”
332 e 1-shot amortization (aka “Direct”)
* Cannot accurately predict solution

Direct Policy Network
[terative Policy Network
Optimal Estimate

331
330

This Talk

Learning to Search

! 334

4 Continuous

S
Optimization
332
¢ Direct Policy Network
—+o— Tterative Policy Network 331
* Optimal Estimate
330

10 —0.5 0.0 0.5 1.0
tanh (u)

4 A

Practical
Applications

/

What Matters in Practice?

* Story so far: solution quality vs #iterations
* Baseline solver might be very fast per iteration
* Baseline solver might have smart pre-conditioner
* Baseline solver might generalize better
* Etc...

* Next Step: solution quality vs wall-clock time

Many Solvers Can be Very Fast....

e ... if you know some key structural properties of the problem.

* Paradigm 1: Predict the key variables that are hard
¢ Eg, backdoor variables [https://www.cs.cornell.edu/gomes/pdf/2009 dilkina cpaior backdoors.pdf]
* Set backdoor variables first, then run solver.

* Paradigm 2: Predict a decomposition
* E.g., Large Neighborhood Search [nttps://arxiv.org/abs/2004.00422]
* Run solver on smaller problems (should be fast)

https://www.cs.cornell.edu/gomes/pdf/2009_dilkina_cpaior_backdoors.pdf
https://arxiv.org/abs/2004.00422

Large Neighborhood Search

1. Partition variables into X4, X,, X3, ..., X,

2. Freeze all variables except one partition at a time
* Run solver on partition

3. Repeat from Step 1

* How to partition?
e Use learning to predict!

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020

Large Neighborhood Search

1. Partition variables into X4, X,, X3, ..., X,

2. Freeze all variables except one partition at a time
* Run solver on partition

3. Repeat from Step 1

Benefits:
1. Can leverage state-of-the-art solvers & their implementations
2. Can be competitive in wall-clock time

* How to partitic
e Use learning t

Drawbacks:

1. Reliant on existing solver being good for sub-problems
2. Reliant on being able to find those sub-problems

A General Large Neighborhood

Some Empirical Results

Jialin

1000x Faster in Wall-Clock Time! Song
Objective Values with Wall-clock Time Objective Values with Wall-clock Time Objective Values with Wall clack Time Objective Values with Wall-clock Time
10 — - I - -
p— 0 —— Random-LNS 01 : :ZT:;“_LNS — ?&Tﬁ? e ° —_— gznl_dr\?gn e
—— BCLNS — mins — FTLNS 5001 — FT-LNS
— FT-LNS : i
—~20000 - —— Gurobi —— Gurobi 81 —— Gurobi —— Gurobi
~20000 ~1000
. —40000 - v g 6 ¥ -1500
£ g ~40000 - il §
02} 5 60000) 5,] 5 2000
L ~2500
- ~80000 1 ~60000
- L I — O
w) | % ‘ﬁ
o 100000 E@_ﬁ‘:—_‘i oo ‘__‘—|_‘__‘_‘ T —3500 1 _L—"L'\
0
0 1 2 3 3 5 6 0 1 2 3 2 5 6 7 0 2 4 6 8 10 0 2 3 6 8
Wall-clock Time (s) Wall-clock Time (s) Wall-clock Time (s) Wall-clock Time (s) in Log Scale
(a) Combinatorial auction of (b) Combinatorial auction (c) Risk-aware path (d) Maximum cut over a

N/ 2000 items and 4000 bids of 2000 items and 4000 bids planning for navigating Barabasi-Albert random
from regions distribution. from arbitrary distribution. through 30 obstacles. graph with 500 vertices.

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, et al., NeurIPS 2020

: o

2
f'] \ 4 N
(k27

Shreyansh Hiro Olivier Neil
Daftry Ono Toupet Abcouwer

Ongoing: Integration with ENav

The Problem with ENav o i o

Daftry Ono Toupet Abcouwer

Local Planner ACE

"9 = (Approx. Clearance Est.)

~_— /

G/ Bvaii!
.-]—6\\@ , ACE Evaluation

is Expensive!

Global Planner

/
*Gives cost from the
end of tree to goal V
*Routes computed on *Evaluates
200m x 200m map : . : clearance using
*1 m resolution 1 - approx. kinematics

*Considers slope, *Run every 25cm

roughness, KOZ, KIZ -?elec}:}s_:)ezt pfathtfor the next 6m - Also checks tilt,
rom finite # of options wheel drop, etc

Behind Rover Camera | —

Overhead Camera =

Left Camera Right Camera

— - —

SOK: 1,478810,216 7¢0850

Preliminary Results

Baseline ENav (Cycle Time(s))

7%
20deg. 145
15deg. 100
10deg. 099
5deg. 077
Odeg 098

10%

3.38
249
2.39
2.38
257

12%
n/a

15%

n/a

Shreyansh Hiro Olivier Neil
Daftry Ono Toupet Abcouwer

MLNav (Cycle Time(s))

7% 10% 12% 15%

20deg. 080 099 nla n/a
15deg. 048 099
10deg. 047 120
S5deg 054 093
Odeg. 047 1.11

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., (under review)

Learned e e e ~ LTI

'L ------------------------------ 5 ‘| ¢": ------------------------------ s~
. Globally Planned Examples E E f Local Observations att =4 s
Decentralized 1.
.
Planner LR N
t

S
NG
I
<
—~
dﬂ.
|
N

(enforcing safety)

~w------------------------------'
‘---------------'

'---------------.
~\------------------------------'

: : 1
1 1 |
L 1
1 @
: " : ..
1 - e B
' ! : .- ® > b
L 1
L 1
K 1 [| ®
r’ .
U -’ L S .
[Imltatlon Learning] {
Jili S8 e ymmmmmm=s==cse u.izﬂixf:\:\'_if{{i'{{i'{ Y '\'\' :'x'g TV TV VIS I 272820727,
[——— e, —~ e e e e
. . . 1 —h— T — S . :
Riviere Hoenig ; . V“\::::::::. :::}Qaii \ ;;;};;555;/, . .},/:j :
: e S S NN \\\\\\\\\ //Itl}[////(<-’ Yo ooY4 :
. ‘ . ~—— D e e e N NN W 2 VIALY : o KEass s]
; Rttt § 4 A4 Sololslylslyla
: —‘ \—r‘““ B e S ® : VY ey | Z P :
: — —v;' ’ S S Y . VY I e L A A A A AT A A :
e — e dC N oo e i b M e . NS e
GLAS: Global-to-Local Safe Autonomy : e & =5 iy, :
. . . 1 —r () 4 1 > T AT A 'y *\\\‘v—\\\\ A W 1
Synthesis for Multi-Robot Motion ; v 7 o s . ZALESS NS N NN Rty :
. . . ' S e Ll A AA . ® 4 PY ; ; .* ?‘\\\\\\\\\\\\\\\\ A 'I
Planning with End-to-End Learning, “ammmma- SRR TEIII I e e L L L A A N N I e e ;

Benjamin Riviere, et al., R-AL 2020

= e —— : W Oprilrac 0

) Deploy SIX robots navugatmg an obstacle course.

Summary: Learning to Optimize

* Optimization as Sequential Decision Making

* Formulate New Learning Problems
* Builds upon RL/IL

* Interesting Algorithms
* Theoretical Analysis/Guidance
* Good Empirical Performance

* Exciting Applications!

State/Context s,

Agent

Environment/ World

Action a,
(or uy)

Ben Wolfgang Jialin Ravi Joe Alex Milan Shreyansh Siddarth
Riviere Hoenig Song Lanka Marino Piche Cvitkovic Abcouwer Daftry Venkatraman

=
AN

n”\s\ : W7 1: y I
Alessandro Soon-Jo Stephan Hiro Tyler Bistra Olivier Aadyot Albert
lalongo Chung Mandt Ono del Sesto Dilkina Toupet Bhatnagar Zhao

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

A General Large Neighborhood Search Framework for Solving Integer Programes, Jialin Song, et al., NeurlPS 2020

Iterative Amortized Inference, Joe Marino et al., ICML 2018

A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018

Iterative Amortized Policy Optimization, Joe Marino et al., arXiv

Machine Learning Based Path Planning for Improved Rover Navigation, Neil Abcouwer et al., (under review)

GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning, Ben Riviere et al., R-AL 2020

