
Learning for Reliable Control
in Dynamical Systems

Yisong Yue

Agent

Environment / World
“Dynamics”

Action at

st+1

State/Context st

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

Reinforcement Learning:
Optimize environmental reward

Policy/Controller Learning (Reinforcement & Imitation)

Learning-based Approach for
Sequential Decision Making

Non-learning approaches include: optimal control, robust control, adaptive control, etc.

Many Exciting Success Stories

Microsoft Azure
Personalizer

AlphaFold

“ I want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
I need some guarantees. ” -- Aerospace Director

Behavioral Guarantees

Stability

B(x)

Safe
Set

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.

7

Smoothness

Ideal Behavior

Unsmooth

Smooth Recovery

• Fairness
• Low-risk
• Temporal logic
• Etc…

Possibly Others:

Research Questions

• How to constrain learning to (provably) satisfy guarantees?

• How to integrate domain knowledge from physics & control theory?
• (Towards) a unified framework?

• How to exploit structure for faster learning?
• (both computational & statistical)

Behavioral Guarantees

Stability

B(x)

Safe
Set

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.

7

Smoothness

Ideal Behavior

Unsmooth

Smooth Recovery

• Fairness
• Low-risk
• Temporal logic
• Etc…

Possibly Others:

Integration of Learning at Varying Levels

• Integration in control/action

• Integration in dynamics modeling

• Integration in optimization problem

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Starting Point

𝑎𝑟𝑔𝑚𝑖𝑛!𝐿 ℎ

Standard IL/RL Objective

Side Constraint

s.t.				
𝑅 ℎ < 𝜅

• Model-Based/Free
• On/Off Policy
• Imitation/Reinforcement
• Optimal Control

Behavioral Guarantees

Stability

B(x)

Safe
Set

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.

7

Smoothness

Ideal Behavior

Unsmooth

Smooth Recovery

• Fairness
• Low-risk
• Temporal logic
• Etc…

Possibly Others:

In general, very hard
to verify/optimize!

(e.g., for all inputs, h is safe)

Functional Regularization
(to a certified controller)

𝑎𝑟𝑔𝑚𝑖𝑛!𝐿 ℎ
s.t.
∃𝑔 ∈ 𝐺: ℎ − 𝑔 " < 𝜅

𝑎𝑟𝑔𝑚𝑖𝑛!,$𝐿 ℎ + 𝜆 ℎ − 𝑔 "

Model-Based Controllers
(certified by construction)

Intractable?

Behavioral Guarantees

Stability

B(x)

Safe
Set

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.

7

Smoothness

Ideal Behavior

Unsmooth

Smooth Recovery

• Fairness
• Low-risk
• Temporal logic
• Etc…

Possibly Others:

Key idea: G encodes domain knowledge & guarantees

Blended Policy Class (solution concept)

Policy

Black Box Predictor Model-Based Controller

Hoang
Le

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng, Abhinav Verma, et al. ICML 2019

Richard
Cheng

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Test-Time Functional Regularization

Complex Predictors F

Certified Complex
Predictors H

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Hoang
Le

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Theoretical Guarantees

• By construction: h “close” to g
• Certifications on g => (relaxed) certifications on h

• Compatible with IL/RL
• New learning approaches

• Very data efficient

Run-time regularization

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Convergence analysis

Low-Variance Gradients

Comments on Certified by Construction

• Assumption: all 𝑔 ∈ 𝐺 are certified by construction
• Robust against disturbances
• Satisfied for many physical systems

• Disturbance: 𝑓 ∈ 𝐹 is a “disturbance” of g
• Worst-case disturbance depends max

!
𝑓(𝑠) and 𝜆

• Guarantees worsen as 𝜆 decreases

• Note: local per-state guarantee => global guarantee

ℎ(𝑠) = % & '($ &
)'(

Comments on Optimization/Learning

• Alternating optimization
• Hold g fixed, optimize f
• Hold h fixed, optimize g
• (see NeurIPS 2019 paper for clean treatment)

Reduces to “standard” approaches

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurIPS 2019

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Naïve Approach

• Supervised learning of demonstration data
• Train predictor per frame
• Predict per frame

Actual Human Movement
Supervised with Smooth RegularizationIn practice, 2-step smoothing:

Smooth Policy Class

Policy

Black Box Predictor Smooth Model

Hoang
Le

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Test-Time Functional Regularization

Complex Predictors F

Smooth Complex
Predictors H

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Hoang
Le

𝑎𝑟𝑔𝑚𝑖𝑛%&(',))𝐿 ℎ s. t. ℎ 𝑠 =
𝑓 𝑠 + 𝜆𝑔 𝑠

1 + 𝜆

Our Results

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Time

Ca
m

er
a

An
gl

e

2-Step Baseline

Qualitative Comparison

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016

Our Approach

Control Regularization

• f is black box
• g is “control prior” (e.g., H-infinity controller)

• Learn f using any RL method

ℎ 𝑠 = % & '($ &
)'(

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng

Control Regularization

• (Relaxed) Lyapunov stability bounds:

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Control Regularization for Reduced Variance Reinforcement Learning

Algorithm 1 Control Regularized RL (CORE-RL)
1: Compute the control prior, uprior using the known

model fknown(s, a) (or other prior knowledge)
2: Initialize RL policy ⇡✓0

3: Initialize array D for storing rollout data
4: Set k = 1 (representing k

th policy iteration)
5: while k < Episodes do

6: Evaluate policy ⇡✓k�1 at each timestep
7: if Using Adaptive Mixing Strategy then

8: At each timestep, compute regularization weight �
9: for the control prior using the TD-error from (11).

10: else

11: Set constant regularization weight �
12: end if

13: Deploy mixed policy ⇡k�1 from (5) to obtain
14: rollout of state-action-reward for T timesteps.
15: Store resulting data (st, at, rt, st+1) in array D.
16: Using data in D, update policy using any policy
17: gradient-based RL algorithm (e.g. DDPG, TRPO)
18: to obtain ✓k.
19: k = k + 1
20: end while

21: return Policy ⇡✓k , uprior B Overall controller

• For a given policy iteration, compute the regularization
weight, �, at each time step using the strategy described
in Section 4.3 (Lines 7-9). The algorithm also allows
using fixed regularization weight, � (Lines 10-11).

• Deploy the mixed policy (5) on the system, and record
the resulting states/action/rewards (Lines 13-15).

• At the end of each policy iteration, update the policy
based on the recorded state/action/rewards (Lines 16-18).

4.2. Bias-Variance Tradeoff

The following theorem formally expresses that mixing the
policy gradient-based controller ⇡✓k with the control prior,
uprior, decreases learning variability but introduces a bias
into the learned policy that is proportional to (a) the mixing
parameter �, and (b) the sub-optimality of the control prior.
Theorem 1. Consider the mixed policy (5) where ⇡✓k is an
RL controller learned through policy gradients, and sup-
pose that ⇡✓k converges to ⇡✓opt as k ! 1. The variance
(4) of the mixed policy arising from the policy gradient is
reduced by a factor (1

1+�)
2 when compared to the RL policy

with no control prior. However, the mixed policy has bias
proportional to the sub-optimality of the control prior:

DTV (⇡✓opt ,E[⇡k])

=
�

1 + �
DTV (⇡✓opt ,⇡prior) as k ! 1

(9)

where DTV (·, ·) represents the total variation distance be-
tween two probability measures (i.e. policies).

Note that ⇡prior is the (contrived) stochastic analogue to the
deterministic control prior uprior, such that ⇡prior(a|s) =
(a = uprior(s)) where is the indicator function.

The results in Section 6 validate this expected variance
reduction, and also demonstrate the benefits of regulariza-
tion on learning performance – see Fig. 4b. Note that the
bias/variance results apply to the policy – not the accumu-
lated reward.

Intuition: Using Figure 2, we provide some intuition for the
control regularization discussed above. Note the following:

• The difference between the control prior trajectory and
the optimal trajectory can be thought of as proportional
to the bias of the policy (e.g DTV (⇡✓opt ,⇡prior)). Note
this correspondence is not exactly correct, since Fig. 2 is
in the state space, but it provides good intuition.

• The explorable region of the state space is denoted by the
set Sst, which grows as � decreases and vice versa. This
illustrates the constrained policy search interpretation of
regularization, though again this correspondence is not
exact since Fig. 2 looks at the state space.

• If the optimal trajectory is in the explorable region, then
we can learn the corresponding optimal policy – otherwise
we cannot.

The second and third points above will be rigorously ad-
dressed in Section 5.

Figure 2. Illustration of optimal trajectory vs. control-theoretic
trajectory with the explorable set Sst. (a) With high regularization,
set Sst is small so we cannot learn the optimal trajectory. (b) With
lower regularization, set Sst is larger so we can learn the optimal
trajectory. However, this also enlarges the policy search space.

4.3. Computing the mixing parameter �

A remaining challenge is automatically tuning �, especially
as we acquire more training data. While setting a fixed
� can perform well, intuitively, � should be large when
the RL controller is highly uncertain (little data), and it
should decrease as we become more confident in our learned
controller (de-emphasizing the control prior).

Consider the multiple model adaptive control (MMAC)

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng

Control Regularization

• Theorem (informal):
• Variance of policy gradient decreases by factor of: *

*+,

-

• Bias converges to: ,
*+,

𝐷./(ℎ∗, 𝑔)

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

ℎ 𝑠 = % & '($ &
)'(

Implies much faster learning!

Richard
Cheng

Control Regularization
Richard
Cheng

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Control Regularization for Reduced Variance Reinforcement Learning

Figure 4. Learning results for CartPole, Car-Following, and TORCS RaceCar Problems. (a) Reward improvement over control prior
using DDPG with different set values for � or an adaptive �. The right plot is a zoomed-in version of the left plot without variance
bars for clarity. Values above the dashed black line signify improvements over the control prior. (b) Performance and variance in the
reward as a function of the regularization �, across different runs of the algorithm using random initializations/seeds. Dashed lines show
the performance (i.e. reward) and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs.
Adaptive � and intermediate values of � exhibit best learning. Again, performance is baselined to the control prior, so any performance
value above 0 denotes improvement over the control prior.

ization. Figure 4b reinforces that intermediate values of �
exhibit optimal performance. In all curves, we plot laptime
improvement over the control prior so that values above
zero denote improved performance over the prior.

It is important to note that using the adaptive strategy
for setting � in the TORCS setting gives us the highest-
performance policy that improves upon the control prior.
The variance with the adaptive strategy is significantly lower
than for the DDPG baseline, which again shows that the
learning process reliably learns a good controller.

7. Conclusion

This paper shows, through theoretical results and experimen-
tal validation, that our method of functional regularization
with a control prior enables significant variance reduction
and performance improvements in reinforcement learning.
This regularization can be interpreted as constraining the
explored action space during learning. Our method also
allows us to capture dynamic stability properties of a robust
control prior to guarantee stability during learning. A signif-
icant criticism of RL is that random initializations/seeds can
produce vastly different learning behaviors, limiting applica-
tion of RL to physical systems. Our framework substantially
alleviates this problem, allowing reliable learning of high-
performance, stable controllers with minimal variability.

B E T T E R

Baseline RL Method
has High Variance!

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Summary: Functional Regularization

𝑎𝑟𝑔𝑚𝑖𝑛%𝐿 ℎ
s.t.

𝑅 ℎ < 𝜅
𝑎𝑟𝑔𝑚𝑖𝑛%𝐿 ℎ + 𝜆𝑅 ℎ

IL/RL Objective

Side Guarantees

Regularization ↔
Constrained Learning

Hybrid Policy
Solution Concept ℎ 𝑠 = % & '($ &

)'(

Summary: Functional Regularization (cont.)
• Control methods => analytic guarantees

• Blend w/ learning => improve precision/flexibility

• Preserve behavioral guarantees

• Interpret as functional regularization

• Other directions:

(side guarantees)

(possibly relaxed)

(speeds up learning)

(real-world improvements)

Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurIPS 2019

(offline learning)

(neurosymbolic policies)

Integration of Learning at Varying Levels

• Integration in control/action

• Integration in dynamics modeling

• Integration in optimization problem

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Model-Based Control

𝑠&'(= 𝐹 𝑠& , 𝑢& + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

Robust/Optimal Control (fancy contraction mappings)
• Stability guarantees (e.g., Lyapunov)
• Precision/optimality depends on error

(Value Iteration is also contraction mapping)

Learning Residual Dynamics

𝑠&'(= 𝐹 𝑠& , 𝑢& + (𝐹 𝑠& , 𝑢& + 𝜖 𝑠& , 𝑢&

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

𝐹 = nominal dynamics
(𝐹 = learned dynamics

Leverage robust/optimal control (fancy contraction mappings)
• Preserve stability (even using deep learning)
• Requires (𝐹 Lipschitz & bounded error

Boundary Conditions

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al. ICRA 2019
Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020
Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Guanya Shi et al., T-RO 1021

Ground effect

Guanya
Shi

Michael
O’Connell

Xichen
Shi

Control System Formulation

• Dynamics:

• Control:

• Unknown forces & moments:

Learn the Residual

Learn the Residual

Data Collection (Manual Exploration)

• Learn ground effect:

• (s,u): height, velocity, attitude and four control inputs

8𝐹 𝑠, 𝑢 → Spectral-Normalized
4-Layer Feed-Forward

Ensures !𝑭 is Lipshitz
[Bartlett et al., NeurIPS 2017]
[Miyato et al., ICLR 2018]

Notable Extension:
Safe Exploration

Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019.

Height (m)

Gr
ou

nd
 E

ffe
ct

 (N
)

Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019.

Vertical Velocity (m/s)

He
ig

ht
 (m

)

Ground Effect (N
)

Spectral Normalized Conventional DNN

Controller Design (simplified)

• Nonlinear Feedback Linearization:

• Cancel out ground effect (𝐹(𝑠, 𝑢#$%):

𝑢&#'(&)$ = 𝐾*𝜂

Feedback Linearization (PD control)

𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired Trajectory
(tracking error)

𝑢 = 𝑢&#'(&)$ + 𝑢,-*(%.)$

Requires Lipschitz & small time delay

Guanya
Shi

Michael
O’Connell

Xichen
Shi

Controller Design (simplified)

• Nonlinear Feedback Linearization:

• Cancel out ground effect (𝐹(𝑠, 𝑢#$%):

𝑢&#'(&)$ = 𝐾*𝜂 𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired Trajectory
(tracking error)

𝑢 = 𝑢&#'(&)$ + 𝑢,-*(%.)$

(time delay)

Feedback Linearization (PD control)

Requires Lipschitz & small time delay

Stability Guarantee:
(simplified)

𝜂(t) ≤ 𝜂(0) exp −
𝜆!"# 𝐾 − 7𝐿𝜌

𝐶
𝑡 +

𝜖
𝜆!"# 𝐾 − 7𝐿𝜌

⟹ 𝜂(t) →
𝜖

𝜆!"# 𝐾 − 7𝐿𝜌 Exponentially fast

Unmodeled
disturbance

Lipschitz of NN

Time delay

Guanya
Shi

Michael
O’Connell

Xichen
Shi

Aside: Robust Regression for Safe Exploration

Angie
Liu

Yashwanth
Nakka

Robust Regression for Safe Exploration in Control,
Angie Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, L4DC 2020
Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems,
Yashwanth Kumar Nakka, Angie Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, Soon-Jo Chung, R-AL 2021

Spectral Normalized Conventional

Robust regression guarantees extrapolation!
Enables safe exploration!

Aside: Safe ExploraNon in Dynamical Systems
• Neural-Lander/Swarm/Fly needs pre-collected data
• How to safely achieve an aggressive goal from scratch?

Robust control and planning: Robust learning:
Safety bound given generalization error Generalization error under domain shift

• Key idea:

• End-to-end guarantees for sequential learning and control [Liu et al., L4DC'20, Nakka et al., RA-L’20]

applies to Lipschitz-constrained DNN

Aside: Learning Control Lyapunov/Barrier Functions

• CLFs & CBFs encode low-dim projection of
dynamics

• Learn CLF/CBFs?
• Stability/safety under uncertainty?

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, Aaron D. Ames. IROS 2019.
A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
Andrew J. Taylor, Victor D. Dorobantu, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, Aaron D. Ames. CDC 2019.
Learning for Safety-Critical Control with Control Barrier Functions
Andrew Taylor, Andrew Singletary, Yisong Yue, Aaron Ames. L4DC 2020.
A Control Barrier Perspective on Episodic Learning via Projection-to-State Safety
Andrew J. Taylor, Andrew Singletary, Yisong Yue, Aaron D. Ames. L-CSS 2020.

Andrew
Taylor

Victor
Dorobantu

Img: https://arxiv.org/abs/1903.11199

https://arxiv.org/abs/1903.11199

Dynamic Environments
[Neural-Fly, Science Robotics 2022]

Meta-learning + Adaptive Control

Sharp Non-Linearities
https://arxiv.org/abs/2103.04548 [IROS 2021]

Learn Continuous-time Models

Guanya
Shi

Michael
O’Connell

Ivan
Jimenez
Rodriguez

Ugo
Rosolia

https://arxiv.org/abs/2103.04548

Summary: Dynamics Learning

• Learn residual dynamics

• Control Lipschitz constant

• Standard controller design

• Extend to complex settings

• Robust regression for safe exploration

(data efficient)

(imposes compatible structure)

(inherits guarantees)

(multi-agent, meta-learning,
continuous-time, etc.)

(provable limited extrapolation)

Integration of Learning at Varying Levels

• Integration in control/action

• Integration in dynamics modeling

• Integration in optimization problem

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Model-Based Planning

• Environment model is given

• Design global plan (aka trajectory)

• Satisfy global constraints
• Previous topics only ensured local constraints
• E.g., Lyapunov stability, smoothness

• NP-Hard optimization problem!

𝑠*') = 𝐹 𝑠* , 𝑢* + 𝜖Info-SNOC (Information Stochastic Optimal Control)

6/24/2020 JPL-CAST Sw arm Autonomy 30

Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems. Y. K.
Nakka, A. Liu, G. Shi, A. Anandkumar, Y. Yue, and S-J. Chung, IEEE RA-L (Under Review)

Info-SNOC (Scalable, Stable, Robust and Safe)

Optimization as Sequential Decision Making

• Many Solvers are Sequential
• Tree-Search
• Greedy
• Gradient Descent

• Can view solver as “agent” or “policy”
• State = intermediate solution
• Find a state with high reward (solution)
• Learn better local decision making

Optimization as Sequential Decision Making
Learning Search Policy
• Learning to Search via Retrospective Imitation [arXiv]

• Co-training for Policy Learning [UAI 2019]

• GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]

• A General Large Neighborhood Search Framework for Solving Integer Programs [NeurIPS 2020]

Learning Value Function
• MLNav: Learning to Safely Navigate on Martian Terrains [R-AL 2022]

• Learning to Make Decisions via Submodular Regularization [ICLR 2021]

Learning to Infer
• Iterative Amortized Inference [ICML 2018]

• A General Method for Amortizing Variational Filtering [NeurIPS 2018]

• Iterative Amortized Policy Optimization [NeurIPS 2021]

Joe Marino

Jialin Song Ben Riviere

U
nd

er
re

vi
ew

as
a

co
nf

er
en

ce
pa

pe
ra

tI
C

LR
20

18

Fi
gu

re
1:

O
pt

im
iz

at
io

n
su

rf
ac

e
of

L
(in

na
ts

)
fo

r
a

2-
D

la
te

nt
G

au
ss

ia
n

m
od

el
an

d
a

pa
rti

cu
la

r
M

N
IS

T
da

ta
ex

am
pl

e.
Sh

ow
n

on
th

e
pl

ot
ar

e
th

e
M

A
P

(o
pt

im
al

es
tim

at
e)

,t
he

ou
tp

ut
of

a
st

an
da

rd
in

fe
re

nc
e

m
od

el
(V

A
E)

,a
nd

an
ex

pe
ct

at
io

n
st

ep
tra

je
ct

or
y

of
va

ria
tio

na
lE

M
us

in
g

st
oc

ha
st

ic
gr

ad
i-

en
ta

sc
en

t.
Th

e
pl

ot
on

th
e

rig
ht

sh
ow

s
th

e
es

tim
at

es
of

ea
ch

in
fe

re
nc

e
sc

he
m

e
ne

ar
th

e
op

tim
um

.
Th

e
ex

pe
ct

at
io

n
st

ep
ar

riv
es

at
a

be
tte

rfi
na

li
nf

er
en

ce
es

tim
at

e
th

an
th

e
st

an
da

rd
in

fe
re

nc
e

m
od

el
.

3
IT

E
R

A
T

IV
E

IN
FE

R
E

N
C

E
M

O
D

E
L

S

In
Se

ct
io

n
3.

2,
w

e
in

tro
du

ce
ou

r
co

nt
rib

ut
io

n,
ite

ra
tiv

e
in

fe
re

nc
e

m
od

el
s.

W
e

fir
st

m
ot

iv
at

e
ou

r
ap

pr
oa

ch
in

Se
ct

io
n

3.
1

by
in

te
rp

re
tin

g
st

an
da

rd
in

fe
re

nc
e

m
od

el
s

in
VA

Es
as

op
tim

iz
at

io
n

m
od

el
s,

i.e
.m

od
el

s
th

at
le

ar
n

to
pe

rf
or

m
op

tim
iz

at
io

n.
U

si
ng

in
si

gh
ts

fr
om

ot
he

ro
pt

im
iz

at
io

n
m

od
el

s,
th

is
in

te
rp

re
ta

tio
n

ex
te

nd
s

an
d

im
pr

ov
es

up
on

st
an

da
rd

in
fe

re
nc

e
m

od
el

s.

3.
1

IN
FE

R
E

N
C

E
M

O
D

E
L

S
A

R
E

O
PT

IM
IZ

A
T

IO
N

M
O

D
E

L
S

A
s

de
sc

rib
ed

in
Se

ct
io

n
2.

1,
va

ria
tio

na
li

nf
er

en
ce

tra
ns

fo
rm

s
in

fe
re

nc
e

in
to

th
e

m
ax

im
iz

at
io

n
of

L
w

.r.
t.

th
e

pa
ra

m
et

er
so

fq
(z
|x
),

co
ns

tit
ut

in
g

th
e

ex
pe

ct
at

io
n

st
ep

of
th

e
va

ria
tio

na
lE

M
al

go
rit

hm
.I

n
ge

ne
ra

l,
th

is
is

a
no

n-
co

nv
ex

op
tim

iz
at

io
n

pr
ob

le
m

,m
ak

in
g

it
so

m
ew

ha
ts

ur
pr

is
in

g
th

at
an

in
fe

re
nc

e
m

od
el

ca
n

le
ar

n
to

ou
tp

ut
re

as
on

ab
le

es
tim

at
es

of
q(
z|
x
)

ac
ro

ss
da

ta
ex

am
pl

es
.O

fc
ou

rs
e,

di
re

ct
ly

co
m

pa
rin

g
in

fe
re

nc
e

sc
he

m
es

is
co

m
pl

ic
at

ed
by

th
e

fa
ct

th
at

ge
ne

ra
tiv

e
m

od
el

s
ad

ap
t

to
ac

co
m

-
m

od
at

e
th

ei
ra

pp
ro

xi
m

at
e

po
st

er
io

rs
.

N
ev

er
th

el
es

s,
in

fe
re

nc
e

m
od

el
s

at
te

m
pt

to
re

pl
ac

e
tra

di
tio

na
l

op
tim

iz
at

io
n

te
ch

ni
qu

es
w

ith
a

le
ar

ne
d

m
ap

pi
ng

fr
om

x
to

q(
z|
x
).

W
e

de
m

on
st

ra
te

th
is

po
in

t
in

Fi
gu

re
1

by
vi

su
al

iz
in

g
th

e
op

tim
iz

at
io

n
su

rf
ac

e
of

L
de

fin
ed

by
a

tra
in

ed
2-

D
la

te
nt

G
au

ss
ia

n
m

od
el

an
d

a
pa

rti
cu

la
r

da
ta

ex
am

pl
e,

in
th

is
ca

se
,a

bi
na

riz
ed

M
N

IS
T

di
gi

t.
To

vi
su

al
iz

e
th

e
su

rf
ac

e,
w

e
us

e
a

2-
D

po
in

te
st

im
at

e
as

th
e

ap
pr

ox
im

at
e

po
st

er
io

r,
q(
z|
x
)
=

�(
z

=
µ

q
),

w
he

re
µ

q
=

(µ
1
,µ

2
)
2

R
2

an
d
�

is
th

e
D

ira
c

de
lta

fu
nc

tio
n.

Se
e

A
pp

en
di

x
C

.1
fo

rf
ur

th
er

de
ta

ils
.

Sh
ow

n
on

th
e

pl
ot

ar
e

th
e

M
A

P
es

tim
at

e,
th

e
es

tim
at

e
fr

om
a

tra
in

ed
in

fe
re

nc
e

m
od

el
,a

nd
an

ex
pe

ct
at

io
n

st
ep

tra
je

ct
or

y
us

in
g

st
oc

ha
st

ic
gr

ad
ie

nt
as

ce
nt

on
µ

q
.

Th
e

ex
pe

ct
at

io
n

st
ep

ar
riv

es
at

a
be

tte
r

fin
al

es
tim

at
e,

bu
ti

tr
eq

ui
re

s
m

an
y

ite
ra

tio
ns

an
d

is
de

pe
nd

en
to

n
th

e
st

ep
si

ze
an

d
in

iti
al

es
tim

at
e.

Th
e

in
fe

re
nc

e
m

od
el

ou
tp

ut
s

a
ne

ar
-o

pt
im

al
es

tim
at

e
in

on
e

fo
rw

ar
d

pa
ss

w
ith

ou
th

an
d

tu
ni

ng
(o

th
er

th
an

th
e

ar
ch

ite
ct

ur
e)

,b
ut

it
is

re
st

ric
te

d
to

th
is

si
ng

le
es

tim
at

e.

Th
is

ex
am

pl
e

ill
us

tra
te

s
ho

w
in

fe
re

nc
e

m
od

el
s

di
ff

er
fr

om
co

nv
en

tio
na

l
op

tim
iz

at
io

n
te

ch
ni

qu
es

.
D

es
pi

te
ha

vi
ng

no
co

nv
er

ge
nc

e
gu

ar
an

te
es

on
in

fe
re

nc
e

op
tim

iz
at

io
n,

in
fe

re
nc

e
m

od
el

s
ha

ve
be

en
sh

ow
n

to
w

or
k

w
el

le
m

pi
ric

al
ly

.
H

ow
ev

er
,b

y
le

ar
ni

ng
a

di
re

ct
m

ap
pi

ng
fr

om
x

to
q(
z|
x
),

st
an

-
da

rd
in

fe
re

nc
e

m
od

el
s

ar
e

re
st

ric
te

d
to

on
ly

si
ng

le
-s

te
p

es
tim

at
io

n
pr

oc
ed

ur
es

.T
hi

s
re

st
ric

tio
n

m
ay

re
su

lt
in

w
or

se
in

fe
re

nc
e

es
tim

at
es

,
th

er
eb

y
lim

iti
ng

th
e

qu
al

ity
of

th
e

ac
co

m
pa

ny
in

g
ge

ne
ra

tiv
e

m
od

el
.

To
im

pr
ov

e
up

on
th

is
pa

ra
di

gm
,

w
e

ta
ke

in
sp

ira
tio

n
fr

om
th

e
ar

ea
of

le
ar

ni
ng

to
le

ar
n,

w
he

re
A

nd
ry

ch
ow

ic
z

et
al

.(
20

16
)s

ho
w

ed
th

at
an

op
tim

iz
er

m
od

el
,i

ns
ta

nt
ia

te
d

as
a

re
cu

rr
en

tn
eu

-
ra

ln
et

w
or

k,
ca

n
le

ar
n

to
op

tim
iz

e
th

e
pa

ra
m

et
er

s
of

an
op

tim
iz

ee
m

od
el

,a
no

th
er

ne
ur

al
ne

tw
or

k,
fo

r
va

rio
us

ta
sk

s.
Th

e
op

tim
iz

er
m

od
el

re
ce

iv
es

th
e

op
tim

iz
ee

’s
pa

ra
m

et
er

gr
ad

ie
nt

s
an

d
ou

tp
ut

s
up

da
te

s
to

th
es

e
pa

ra
m

et
er

s
to

im
pr

ov
e

th
e

op
tim

iz
ee

’s
lo

ss
.

B
ec

au
se

th
e

co
m

pu
ta

tio
na

lg
ra

ph
is

3

★

Ayya Alieva Shreyansh
Daftry

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Distribution of Planning Problems

Background: Determinitic Path Planning as a MIP

Mixed-Integer Programming Formulation for a deterministic Path
Planning problem.

min
U

J(U, X)

subject to,

(Dynamic Constraint) xt+1 = Axt + But ,

(Safety Constraints) hiTt xt  git 8 0  t  T � 1

8 0  i  N � 1

X = [x0, x1 · · · xt]T State vector

U = [u0, u1 · · · ut]T Control Inputs

J ! Cost Function (e.g. fuel consumption)

4 / 38

Compiled as Combinatorial
Search Problems

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Branch and Bound Approach:

Standard technique to solve MIP.
Iteratively adds constraints to each time-step.
Use lower-bound estimate of the objective value to direct the
search problem.

[] ! Side of the obstacle

{ } ! Time Step
root

{1}

{2}

[0]

{2}

[1]

{2}

[2]

{2}

{3}

[0]

{3}

[1]

{3}

[2]

{3}

[3]

[3]

[0]

{1}

[1]

{1}

[2]

{1}

[3]

11 / 38

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Learning to Search via Self-Imitation

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

1

2

3

6

7 9

10

11

Expert Trace

DAgger
Policy 000

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

1

2

3 4

5

6

7

8

9

10

11

Roll-out Trace

Feedback from Retrospective Oracle

1

2

4

5

6

9

10

11

Final Learned Policy

DAgger Learning
Policy Roll-out

(optional exploration)

Retrospective Oracle
(Algorithm 2)

Policy Update

Repeat Policy Roll-out

Figure 1. A visualization of self-imitation learning. This flowchart describes various components of Algorithm 1. A DAgger policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle. The roll-out, feedback and update can be repeated until some termination condition is met.

Algorithm 1: Self-Imitation Policy Learning
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained by imitating expert traces
4 Æ: mixing parameter
5 D0: expert traces dataset
6 D = D0
7 for i √ 1 to N do
8 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)
9 run º̂i to generate trace P

10 compute the retrospective optimal trace º§(P)
(Algorithm 2)

11 collect new dataset Di based on º§(P)
12 update D with Di
13 train ºi+1 on D
14 end
15 return best ºi on validation

this example, the search space is organized as a tree where
circular and diamond nodes represent intermediate states
and terminal states, respectively. Numbers in nodes indicate
the order they are visited. Algorithm 1 starts with an ini-
tial set of expert demonstrations and initial policy trained
DAgger style. It is then run with an exploration policy to
generate a new roll-out trace that might contain a new and
potentially easier to find terminal state, node 5 in example.
A retrospective oracle computes retrospective optimal trace
on the roll-out trace, indicated by black nodes. If our goal is

Algorithm 2: Retrospective Oracle for Tree Search
1 Inputs:
2 P : search tree trace
3 s: terminal state
4 Output:
5 retro_optimal: the retrospective optimal trace
6 while s is not the root do
7 parent√ s.parent
8 retro_optimal(parent)√ s
9 s √ parent

10 end
11 return retro_optimal

to reach a terminal state at the lowest depth, it makes sense
to prioritize node 5 over node 11 contained in the expert
trace. We do not discard terminal node 11 – in case the
policy moves to node 6 first (due to imperfect learning), it
will prioritize moving to node 11.

Design Decisions. There are two design decisions in Al-
gorithm 1: how to create each new dataset Di given the
search traces and a retrospective optimal trace, and how to
construct a retrospective optimal trace º§(P) for a terminal
state given a search trace P .

For the first decision, the main idea is to learn from mistakes
made during each roll-out in order to better imitate º§(P).
What constitutes a mistake is also influenced by the actions
a policy takes. For example, in (He et al., 2014), a selection

\Collect
Relevant DataLearning h

s

a

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Test
Instances

MLNav: Learning-Augmented
Rover Navigation Shreyansh

Daftry
Hiro
Ono

Neil
Abcouwer

MLNav: Learning to Navigate on Martian Terrains, Shreyansh Daftry et al., R-AL 2022

Learned
Decentralized
Planner
(enforcing safety)

GLAS: Global-to-Local Safe Autonomy
Synthesis for Multi-Robot Motion
Planning with End-to-End Learning,
Benjamin Rivière, et al., R-AL 2020

Wolfgang
Hoenig

Ben
Riviere

Learned ODE-based Policy

Noel
Csomay-Shanklin

Ivan
Jimenez
Rodriguez

Neural Gaits: Learning Bipedal Locomotion via
Control Barrier Functions and Zero Dynamics Policoes
Jimenez Rodriguez, Csomay-Shanklin, et al., L4DC 2022

• Barriers induce control-theoretic safety conditions

• Conventional: complicated ODE-based optimization

• Learn policy as Neural ODE
• Fast run-time gait generation
• Satisfies safety guarantees

Torso Angle

Swing Foot

Impact
Mapping

Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Ongoing!

Jialin
Song

Ravi
Lanka

Joe
Marino

Ivan
Jimenez

Rodriguez

Aadyot
Bhatnagar

Albert
Zhao

Milan
Cvitkovic

Noel
Csomay

-Shanklin

Ugo
Rosolia

Stephan
Mandt

Hiro
Ono

Neil
Abcouwer

Hoang
Le

Andrew
Taylor

Victor
Dorobantu

Guanya
Shi

Richard
Cheng

Abhinav
Verma

Cameron
Voloshin

Meera
Krishnamoorthy

Jimmy
Chen

Peter
Carr

Andrew
Kang

Joel
Burdick

Swarat
Chaudhuri

Gabor
Orosz

Angie
Liu

Anima
Anandkumar

Soon-Jo
Chung

Michael
O’Connell

Kamyar
Azizzadenesheli

Jim
Little

Aaron
Ames

Collaborators

Wolfgang
Hoenig

Shreyansh
Daftry

Ben
Riviere

Yashwanth
Nakka

Bistra
Dilkina

Rose
Yu

Xichen
Shi

Tyler
del Sesto

Siddarth
Venkatraman

Alex
Piche

Alessandro
Ialongo

Ayya
Alieva

Aiden
Aceves

Yuxin
Chen

Stephen
Mayo

Lucas
Igel

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019
Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019
Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision Trees, Jianhui Chen, et al., CVPR 2016
Imitation-Projected Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019
Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, et al., ICRA 2019
Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020
Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Guanya Shi et al., T-RO 2021.
Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds, Michael O’Connell, Guanya Shi, et al., Science Robotics 2022
Robust Regression for Safe Exploration in Control, Angie Liu, Guanya Shi, et al., L4DC 2020
Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems, Yashwanth Kumar Nakka, et al. R-AL 2021
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems, Andrew Taylor, Victor Dorobantu, et al., IROS 2019
A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability, Andrew Taylor, Victor Dorobantu, et al., CDC 2019
Learning for Safety-Critical Control with Control Barrier Functions, Andrew Taylor, et al., L4DC 2020
A Control Barrier Perspective on Episodic Learning via Projection-to-State Safety, Andrew Taylor, et al., L-CSS 2020
Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019
A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, Ravi Lanka, et al., NeurIPS 2020
GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning, Benjamin Rivière, et al., R-AL 2020
Learning to Make Decisions via Submodular Regularization, Ayya Alieva, Aiden Aceves, et al., ICLR 2021
Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018
Iterative Amortized Policy Optimization, Joe Marino et al., NeurIPS 2021
MLNav: Learning to Safely Navigate on Martian Terrains, Shreyansh Daftry et al., R-AL 2022
Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, Jimenez Rodriguez, Csomay-Shanklin, et al., L4DC 2022
Learning to Control an Unstable System with One Minute of Data: Leveraging Gaussian Process Differentiation in Predictive Control, Jimenez Rodriguez, et al.,
IROS 2021

Thanks! http://www.yisongyue.com

@yisongyue

http://www.yisongyue.com/

