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PoIicy/ControIIer Lea rning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy
State/Context s,
>
Imitation Learning: Agent
Optimize imitation loss
Reinforcement Learning: Action a,
Optimize environmental reward
St+1 | Environment / World
€ <

“Dynamics”

Learning-based Approach for
Sequential Decision Making

Non-learning approaches include: optimal control, robust control, adaptive control, etc.



Many Exciting Success Stories
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“1 want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
| need some guarantees.” -- Aerospace Director
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Stability

e Fairness

Behavioral Guarantees  possibly others: | * Low-risk

 Temporal logic
* Etc...

Ideal Behavior

Unsmooth

Smooth|Recovery
>

Safety Smoothness



Research Questions

Smooth|Recover %

Stability Safety Smoothness

* How to constrain learning to (provably) satisfy guarantees?

* How to integrate domain knowledge from physics & control theory?
* (Towards) a unified framework?

* How to exploit structure for faster learning?
e (both computational & statistical)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I
. . . . . Model-Based Planner
* Integration in optimization problem O




Starting Point

Standard IL/RL Objective -

/

argminy,L(h)
S.L.
R(h) < k

In general, very hard \ i
to verify/optimize!

Side Constraint -
(e.g., for all inputs, h is safe)

Model-Based/Free
On/Off Policy
Imitation/Reinforcement

Optimal Control




Functional Regularization

(to a certified controller)

argminyL(h)

S.t. @) argmin, ,L(h) + Ak — gl
g € G: ||h — g|I* < k

‘ ’  Intractable?

Model-Based Controllers
(certified by construction)

— Key idea: G encodes domain knowledge & guarantees
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Blended PO'ICY Class (solution concept)

ul
Hoang Richard
Le Cheng

Black Box Predictor Model-Based Controller

f(s) +1g(s)
1+4

argminp=cryL(h)  s.t. h(s) =

Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng, Abhinav Verma, et al. ICML 2019



Test-Time Functional Regularization

Certified Complex
Predictors H

Complex Predictors F

f(s) +4g(s)
1+4

argming=;r L(h) s.t.  h(s) =

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Theoretical Guarantees

_f(s) +2g(s)
14+ A1

argminp—r,gL(h) s.t.  h(s)

* By construction: h “close” to g

Run-time regularization
 Certifications on g => (relaxed) certifications on h

e Compatible with IL/RL

* New learning approaches

Convergence analysis

* VVery data efficient Low-Variance Gradients



Comments on Certified by Construction

f(s)+Ag(s)
h(s) = =15

* Assumption: all g € G are certified by construction

* Robust against disturbances
 Satisfied for many physical systems

* Disturbance: f € F is a “disturbance” of g
» Worst-case disturbance depends max f(s) and A
S

* Guarantees worsen as A decreases

* Note: local per-state guarantee => global guarantee



Comments on Optimization/Learning

_f(s) +2g(s)

argminp—r,gL(h) s.t.  h(s) T+

* Alternating optimization

* Hold g fixed, optimize f >
a ”» h
+ Hold h fixed, optimize g Reduces to “standard” approaches

e (see NeurlPS 2019 paper for clean treatment)

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurlIPS 2019



Realtime Player Detection and Tracking
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Naive Approach

* Supervised learning of demonstration data
* Train predictor per frame

* Predict per frame
In practice, 2-step smoothing:
20

Camera Angle
s 8 5
Camera Angle
o

Time Frame Time Frame



Smooth Policy Class

Hoang
Le

Black Box Predictor Smooth Model

f(s) +1g(s)
1+4

argminp=cryL(h)  s.t. h(s) =

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Test-Time Functional Regularization

Smooth Complex
Predictors H

Complex Predictors F

f(s) +4g(s)
1+4

argming=;r L(h) s.t.  h(s) =

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Our Results

Camera Angle

Time

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Qualitative Comparison

Our Approach
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Control Regularization
Richar:.
Cheng

(s)+Ag(
h(9) = Lt

* fis black box
e gis “control prior” (e.g., H-infinity controller)

e Learn f using any RL method

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



L2
A

Control Regularization

i
Richard
Cheng

* (Relaxed) Lyapunov stability bounds:

High Regularization Low Regularization

— Control Prior Traj.
— Optimal Trajectory

—— Control Prior Traj.
— Optimal Trajectory

Dl
-

State Space, S State Space, S

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Control Regularization %
Richar:-
_ f()+2g(s) chene
h(s) = 1+
* Theorem (informal):
* Variance of policy gradient decreases by factor of: (1—1/1)2

. Implies much faster learning!
* Bias converges to: (m) Dry(h*, g)

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Control Regularization ~

i
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Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019






Summary: Functional Regularization

IL/RL Objective

Regularization & argming, L(h) \
Constrained Learning st ﬁ argminyL(h) + AR(h)

R(h) <k /
\ Side Guarantees

Hybrid Policy h( ) _ f(s)+Ag(s)
Solution Concept 5) = 142



Summary: Functional Regularization (cont.)

Control methods => analytic guarantees

Blend w/ learning => improve precision/flexibility
Preserve behavioral guarantees

Interpret as functional regularization

Other directions:

Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

Imitation-Projected Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurlIPS 2019

(side guarantees)

(real-world improvements)

(possibly relaxed)

(speeds up learning)

(offline learning)

(neurosymbolic policies)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I
. . . . . Model-Based Planner
* Integration in optimization problem O




Model-Based Control

New State Current Action (aka control input)

\ /

Sts1 = F(sp,up) + €

/ Unmodeled Disturbance / Error

Current State

(Value lteration is also contraction mapping)

Robust/Optimal Control (fancy contraction mappings)
e Stability guarantees (e.g., Lyapunov)
* Precision/optimality depends on error




Learning Residual Dynamics £ =nominal dynamics

F =learned dynamics

Current Action (aka control input)
New State

. /

St+1 — F(Stlut) T F(Stlut) T E(Strut)

\ / Unmodeled Disturbance / Error

Current State

Leverage robust/optimal control (fancy contraction mappings)
* Preserve stability (even using deep learning)
 Requires F Lipschitz & bounded error




BO u n d a ry CO n d it i O n S | Guanya X?h;n ichael

Shi Shi  O’Connell

Ground effect

AR
AN

Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, Xichen Shi, Michael O'Connell, et al. ICRA 2019
Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020
Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions, Guanya Shi et al., T-RO 1021



Control System Formulation

Dynamics:

Control:

Unknown forces & moments:

{

/“

Learn the Residual

p=v, mv = mg + Rf, + £,
R=RS(w), Jw=JwXw+T,+ T,
f., =0, O,T]T
_ i
Ty = [Txa Ty, Tz]
p— 2 —
J & Ci cT cT cr 4T
T _ 0 CTlarm 0 _CTlarm ng
Ty T _CTlarm 0 CTla,rm 0 TL2
Tz —CQ CQ —CQ cQ g
Ny

[fa,xa fa,ya fa,z]T

]T Learn the Residual

[Ta,xa Ta,ys Ta,z



Data Collection (Manual Exploration)

position (m)

N
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time (s)
Learn ground effect: F(s,u) - f, = [fa,x,fa,y,fa,z]T

(s,u): height, velocity, attitude and four control inputs

Notable Extension:
Safe Exploration

Ensures F is Lipshitz
[Bartlett et al., NeurlPS 2017]
[Miyato et al., ICLR 2018]

|

Spectral-Normalized
4-Layer Feed-Forward



Prediction Results

—— RelLU Network prediction
——— Ground effect physical model with different u
e Ground truth

Ground Effect (N)
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 20109.



Prediction Results

Spectral Normalized Conventional DNN
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019.



Controller Design (simplified)

Shi Shi  O’Connell

* Nonlinear Feedback Linearization:

_ — K _ Desired Trajectory
Unominal = Bsl] n= v — p*l  (tracking error)

\

Feedback Linearization (PD control)

* Cancel out ground effect F(s,uUy14): U = Unominal T Uresidual

)

Requires Lipschitz & small time delay



Controller Design (simplified)

Shi Shi  O’Connell

* Nonlinear Feedback Linearization:

_ — K _ Desired Trajectory
Unominal = 8s] n= _ (tracking error)
(% v*
Stability Guarantee: Time delay Unmodeled
(simplified) / _— disturbance
In()ll < lln(0)llexp {— Amin(K) = Lp t} + S
¢ Amin(K) — Lp

N
Lipschitz of NN

= |In(t)| - Exponentially fast

€
Amin(K ) o Zp
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Aside: Robust Regression for Safe Exploration

Landing trajectories Spectral Normalized Conventional
1.50 1 : iy 2.0
1.25+ 132 1.5
1.001 o =
B o 3
+ g
= 0.75 —— slow landing (safe) 0.6 05 A=
'g 0.50 - ——— fast landing (safe) 0.4 0
—— fast landing (unsafe) - 0.2
0.25~ .0+ J ; [ 0.0 1 . -0.5
=2 -1 0 1
0.00 : K- Vr /5)

0 2 . 4 6 8 Robust regression guarantees extrapolation!
time (s) Enables safe exploration!

Robust Regression for Safe Exploration in Control,

Angie Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, Yisong Yue, L4DC 2020

Yashwanth
Nakka

Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems,

Yashwanth Kumar Nakka, Angie Liu, Guanya Shi, Anima Anandkumar, Yisong Yue, Soon-Jo Chung, R-AL 2021



Aside: Learning Control Lyapunov/Barrier Functions

* CLFs & CBFs encode low-dim projection of
dynamics

* Learn CLF/CBFs?
* Stability/safety under uncertainty?

()1 lmm
/ f€ > 1771111/2 s"/ : R2
’IHI(LI' ;

:' o /|

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, Aaron D. Ames. IROS 2019.
A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
Andrew J. Taylor, Victor D. Dorobantu, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, Aaron D. Ames. CDC 2019.
Learning for Safety-Critical Control with Control Barrier Functions

Andrew Taylor, Andrew Singletary, Yisong Yue, Aaron Ames. L4DC 2020.

A Control Barrier Perspective on Episodic Learning via Projection-to-State Safety

Andrew Victor
Andrew J. Taylor, Andrew Singletary, Yisong Yue, Aaron D. Ames. L-CSS 2020. Taylor Dorobantu


https://arxiv.org/abs/1903.11199

Dynamic Environments
[Neural-Fly, Science Robotics 2022]

Meta-learning + Adaptive Control
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https://arxiv.org/abs/2103.04548

Summary: Dynamics Learning

* Learn residual dynamics (data efficient)

* Control Lipschitz constant (imposes compatible structure)
* Standard controller design (inherits guarantees)
 Extend to complex settings (multi-agent, meta-learning,

continuous-time, etc.)

* Robust regression for safe exploration (provable limited extrapolation)



Integration of Learning at Varying Levels

* Integration in control/action é’)

Learning-Based Model-Based

* Integration in dynamics modeling

Learning-Based

I

Model-Based Planner
* Integration in optimization problem { O }




Model-Based Planning

* Environment model is given Sep1 = F(sp,up) + €

* Design global plan (aka trajectory)

e Satisfy global constraints
* Previous topics only ensured local constraints
* E.g., Lyapunov stability, smoothness

* NP-Hard optimization problem!



Optimization as Sequential Decision Making

* Many Solvers are Sequential
* Tree-Search
* Greedy
* Gradient Descent

* Can view solver as “agent” or “policy”
 State = intermediate solution
* Find a state with high reward (solution)
* Learn better local decision making



Optimization as Sequential Decision Making

Learning Search Policy

* Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

* GLAS: Global-to-Local Safe Autonomy Synthesis [RA-L 2020]

* A General Large Neighborhood Search Framework for Solving Integer Programs [Neur|PS 2020]

Learning Value Function

* MLNav: Learning to Safely Navigate on Martian Terrains [R-AL 2022]

* Learning to Make Decisions via Submodular Regularization [ICLR 2021]

Learning to Infer Daftry

* [terative Amortized Inference [ICML 2018]
* A General Method for Amortizing Variational Filtering [NeurIPS 2018]

* Iterative Amortized Policy Optimization [NeurlPS 2021]

Joe Marino
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Instances
\_
/
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\_
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Compiled as Combinatorial
\ Search Problems /

subject to,

(Dynamic Constraint) x;y1 = Axt + Bug,

(Safety Constraints) hiTxt < gl
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MLNav: Learning to Navigate on Martian Terrains, Shreyansh Daftry et al., R-AL 2022



e: NASA/JPL-Caltech

.




Learned
Decentralized
Planner

(enforcing safety)

Ben Wolfgang
Riviere Hoenig

GLAS: Global-to-Local Safe Autonomy
Synthesis for Multi-Robot Motion
Planning with End-to-End Learning,
Benjamin Riviere, et al., R-AL 2020
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5. Deploy: Six robots navigating an obstacle course. i— m
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Learned ODE-based Policy

Neural Gaits: Learning Bipedal Locomotion via
Control Barrier Functions and Zero Dynamics Policoes

Jimenez Rodriguez, Csomay-Shanklin, et al., LADC 2022

lvan
Jimenez
Rodriguez

Noel
Csomay-Shanklin

Torso Angle
g va(z™) = ya(z")

Impact
Mapping

Continuous Discrete

* Barriers induce control-theoretic safety conditions
e Conventional: complicated ODE-based optimization
e Learn policy as Neural ODE

* Fast run-time gait generation
e Satisfies safety guarantees



Blending Models/Rules & Black-Box Learning
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Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016

Control Regularization for Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019

Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019
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Imitation-Projected Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019
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Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions, Guanya Shi et al., ICRA 2020
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Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019

A General Large Neighborhood Search Framework for Solving Integer Programs, Jialin Song, Ravi Lanka, et al., NeurlPS 2020

GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning, Benjamin Riviere, et al., R-AL 2020
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Iterative Amortized Inference, Joe Marino et al., ICML 2018

A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurlPS 2018

Iterative Amortized Policy Optimization, Joe Marino et al., NeurlPS 2021

MLNav: Learning to Safely Navigate on Martian Terrains, Shreyansh Daftry et al., R-AL 2022

Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies, Jimenez Rodriguez, Csomay-Shanklin, et al., L4DC 2022

Learning to Control an Unstable System with One Minute of Data: Leveraging Gaussian Process Differentiation in Predictive Control, Jimenez Rodriguez, et al.,
IROS 2021
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