

Inference + Imitation

Yisong Yue

 $\operatorname{argmin}_{\theta} \mathsf{E}_{\mathsf{s}\sim\mathsf{P}(\mathsf{s}|\theta)} \mathsf{L}(\pi^{*}(\mathsf{s}),\pi_{\theta}(\mathsf{s}))$ $\max_{\pi\in\Pi} \min_{r\in\mathcal{R}} \mathbb{E}_{\pi} \left[r(s,a) \right] - \mathbb{E}_{\pi^{*}} \left[r(s,a) \right]$

Imitation Learning

Optimize desired behavior Learn from demonstrations ϕ \mathbf{z} θ \mathbf{x} N

 $\mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - D_{KL}(q(\mathbf{z}|\mathbf{x};\lambda)||p_{\theta}(\mathbf{z}))$

(Variational) Inference

Inference in probabilistic models Phrased as optimization

← Probabilistic Imitation Learning

→ Learning to Infer

Warm Up: Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low **

** error can also be probabilistic (e.g., log likelihood)

Imitation Learning

• Input:

– Sequence of contexts/states:

- Predict:
 - Sequence of actions

• Learn Using:

Sequences of demonstrated actions

Example: Basketball Player Trajectories

- *s* = location of players & ball
- *a* = next location of player
- **Goal:** learn $h(s) \rightarrow a$

Example: Learning to Optimize

- *s* = optimization problem & current location
- *a* = next location
- **Goal:** learn $h(s) \rightarrow a$

What to Imitate?

Human Demonstrations

Animal Demonstrations

<image>

Latent Variable Models (Segue to Variational Inference)

Variational Inference

approximate posterior $q(\mathbf{z}|\mathbf{x};\lambda)$

ELBO $\mathcal{L}(\mathbf{x}; \theta, \lambda) = \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}) \right] - D_{KL}(q(\mathbf{z} | \mathbf{x}; \lambda) || p_{\theta}(\mathbf{z}))$

Stochastic Variational Inference

approximate posterior $q(\mathbf{z}|\mathbf{x};\lambda)$

ELBO $\mathcal{L}(\mathbf{x}; \theta, \lambda) = \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}) \right] - D_{KL}(q(\mathbf{z} | \mathbf{x}; \lambda) || p_{\theta}(\mathbf{z}))$

E.g., Hoffman et al., 2013

Amortized Variational Inference

approximate posterior $q(\mathbf{z}|\mathbf{x};\lambda)$

ELBO $\mathcal{L}(\mathbf{x}; \theta, \lambda) = \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}) \right] - D_{KL}(q(\mathbf{z} | \mathbf{x}; \lambda) || p_{\theta}(\mathbf{z}))$

E.g., VAEs [Rezende et al., 2014] [Kingma & Welling, 2014]

Outline For Today

Coordinated Learning

Infer Latent Roles

Hierarchical Behaviors

Generative Behavior

Learning to Optimize

Learn to Infer

← Probabilistic Imitation Learning
 → Learning to Infer

English Premier League 2012-2013

Match date: 04/05/2013

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

English Premier League 2012-2013

Match date: 04/05/2013

State Representation

Geometric features computed

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

But Who Plays Which Role?

• All we get are trajectories!

- Don't know which belongs to which role.

• Need to solve a permutation problem

- Naïve baseline ignores this!

Coordination Model

Hoang Le

Mixture of Gaussians HMM

Single-Agent Policies

Coordinated Multi-Agent Imitation Learning

Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learning Algorithm

Hoang Le

Standard Imitation Learning

Stochastic Variational Inference

Coordinated Multi-Agent Imitation Learning

Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learned Roles

Coordinated vs Uncoordinated

Coordinated Multi-Agent Imitation Learning

Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Outline For Today

Coordinated Learning

Infer Latent Roles

Hierarchical Behaviors

Generative Behavior

Learning to Optimize

Learn to Infer

← Probabilistic Imitation Learning
 → Learning to Infer

Strategy vs Tactics

- Long-term Goal:
 Curl around basket
- Tactics
 - Drive left w/ ball
 - Pass ball
 - Cut towards basket

Eric Zhan

Generative + Hierarchical Imitation Learning

Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey. (under review)

http://basketball-ai.com/

User Study

(14 Professional Sports Analysts, 25 scenarios)

Heatmap of Macro-Goals per Role:

Eyrun Eyolfsdottir

Aside: Animal Behavior

Activity Labels

Learning recurrent representations for hierarchical behavior modeling Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017

Outline For Today

Coordinated Learning

Infer Latent Roles

Hierarchical Behaviors

Generative Behavior

← Probabilistic Imitation Learning
 → Learning to Infer

Optimization as Sequential Decision Making

- Many solvers are sequential:
 - Greedy
 - Search heuristics
 - Gradient Descent
- Can view as solver as "agent"
 - State = intermediate solution
 - Find a state with high reward (solution)

Optimization as Sequential Decision Making

Contextual Submodular Maximization

- Training set: (x, F_x)
- Greedily maximize F_x using only x
- Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search

- Training set: (*x*=MILP, *y*=solution/search-trace)
- Find y (or better solution)
- Learning to Search via Retrospective Imitation [under review]

Learning to Infer

- Training set: (*x*=data/model, *L*=likelihood)
- Iteratively optimize L (generalizes VAEs)
- Iterative Amortized Inference [ICML 2018]

Stephane Ross

Jialin Song

Optimization as Sequential Decision Making

Contextual Submodular Maximization

- Training set: (x, F_x)
- Greedily maximize F_x using only x
- Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search

- Training set: (*x*=MILP, *y*=solution/search-trace)
- Find y (or better solution)
- Learning to Search via Retrospective Imitation [under review]

Learning to Infer

- Training set: (*x*=data/model, *L*=likelihood)
- Iteratively optimize L (generalizes VAEs)
- Iterative Amortized Inference [ICML 2018]

Stephane Ross

Jialin Song

Variational Inference

approximate posterior $q(\mathbf{z}|\mathbf{x};\lambda)$

ELBO $\mathcal{L}(\mathbf{x}; \theta, \lambda) = \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x} | \mathbf{z}) \right] - D_{KL}(q(\mathbf{z} | \mathbf{x}; \lambda) || p_{\theta}(\mathbf{z}))$

How do we solve $\lambda \leftarrow \operatorname{argmax}_{\lambda} \mathcal{L}(\mathbf{x}; \theta, \lambda)$?

conventional optimization techniques (e.g. SGD)

update using an estimate of the gradient

$$\lambda_{t+1} \leftarrow \lambda_t + \alpha \nabla_\lambda \mathcal{L}(\mathbf{x}; \theta, \lambda_t)$$

e.g. Hoffman et al., 2013

How do we solve $\lambda \leftarrow \operatorname{argmax}_{\lambda} \mathcal{L}(\mathbf{x}; \theta, \lambda)$?

amortized inference

learn a model to solve inference optimization

$$\lambda \leftarrow f(\mathbf{x}; \phi)$$

e.g. Dayan et al., 1995, Rezende et al., 2014

Amortization Gap

2D Model, MNIST

No Explicit Prior Information

inference optimization depends on the prior $\mathbf{\hat{\mathcal{L}}}(\mathbf{x};\theta,\lambda) = \mathbb{E}_q \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - D_{KL}(q(\mathbf{z}|\mathbf{x};\lambda)||p_{\theta}(\mathbf{z}))$

standard inference models only condition on the <u>data</u>, and must therefore *implicitly* account for the prior

problematic in models with varying priors

Related Work

Ladder VAE Sønderby *et al.*, 2016

Recurrent Inference Machines Putzky & Welling, 2017

Initial Encoding, Iterative Refinement Krishnan *et al.*, 2018 Hjelm *et al.*, 2016

Iterative Inference Networks

Iterative Amortized Inference

Inference Optimization

Iterative Amortized Inference

Inference Optimization

Iterative Amortized Inference

Inference Optimization

100		MNIST	
-100		Single-Level	
-200		Standard	84.14 ± 0.02
200		Iterative	83.84 ± 0.05
-300		Hierarchical	
ats		Standard	82.63 ± 0.01
<u>=</u> -400		Iterative	82.457 ± 0.001
Q	SGD SCD + Momentum	CIFAR-10	
-5001	$=$ $3GD \pm MOMentum$		
-500	\square RMSProp	Single-Level	
-500	BGD + Momentum RMSProp AdaM	<i>Single-Level</i> Standard	5.823 ± 0.001
-600	$\square \qquad \qquad$	<i>Single-Level</i> Standard Iterative	5.823 ± 0.001 ${f 5.64 \pm 0.03}$
-500 -600 -700	$\square \square $	Single-Level Standard Iterative Hierarchical	5.823 ± 0.001 ${f 5.64 \pm 0.03}$
-500 -600 -700	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Single-Level Standard Iterative Hierarchical Standard	$5.823 \pm 0.001 \\ 5.64 \pm 0.03 \\ 5.565 \pm 0.002$

 $-\log p(\mathbf{x})$

Iterative Amortized Inference

Ongoing Work

Inference + Imitation

° LUNGE

Coordinated Learning

Infer Latent Roles

Hierarchical Behaviors

Generative Behavior

Learning to Optimize

Learn to Infer

← Probabilistic Imitation Learning
 → Learning to Infer

References

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017 (*Best Paper Runner Up*)

Coordinated Multi-agent Imitation Learning Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Generative Multi-Agent Behavioral Cloning Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey. arXiv 2018

Generating Long-term Trajectories using Deep Hierarchical Networks Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Learning recurrent representations for hierarchical behavior modeling Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona. ICLR 2017

Iterative Amortized Inference Joseph Marino, Yisong Yue, Stephan Mandt. ICML 2018

Learning to Search via Retrospective Imitation Jialin Song, Ravi Lanka, Albert Zhao, Yisong Yue, Masahiro Ono. arXiv 2018

Learning Policies for Contextual Submodular Prediction Stephane Ross, Robin Zhou, Yisong Yue, Debadeepta Dey, Yisong Yue. ICML 2013

http://www.yisongyue.com