

New Frontiers in Imitation Learning

Yisong Yue

How to Use Behavioral Tracking Data?

- Analyze & Understand Behavior
 - "Interpretable" Machine Learning
 - Causal Relationships

...and a little bit of this

- Predictive Modeling
 - Predict next action (or sequence of actions)
 - Multiple predictions
 - Multi-agent systems
 - Multiple modalities

Warm Up: Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

Imitation Learning

• Input:

– Sequence of contexts/states:

- Predict:
 - Sequence of actions

• Learn Using:

- Sequences of demonstrated actions

ImitationCostPolicyLearning $argmin E_{s \sim P_h} \left[c_s(h(s)) \right]$ hfff</

- Violates IID assumption
 - Policy induces state distribution

- Many approaches
 - SEARN
 - DAgger / DaD / AggreVaTe

Annronticoshin

Al Previous Work:

- Minimal assumptions
- Inefficient in complex & structured settings

What to Imitate?

Animal Demonstrations Human Demonstrations LUNGE 0 **Computational Oracle** "I like to speak in movie quotes" / ay ih iy k uw n ay р m uw S

This Talk

- Example Applications
 - Camera Control
 - Speech Animation
 - Hierarchical Behaviors
 - Multi-Agent Behaviors
 - Learning to Optimize
- Research Questions
 - Structure of Input & Output Spaces

Camera Control (Smooth Imitation Learning)

Realtime Player Detection and Tracking

Disnep Research

Problem Formulation

- Input: stream of x
 - E.g., noisy player detections
- State s = (x,a)

Recent detections and actions

- Goal: learn $h(s) \rightarrow a$
 - Imitate expert

Naïve Approach

- Supervised learning of demonstration data
 - Train predictor per frame
 - Predict per frame

What is the Problem?

Basically takes "infinite" training data to train smooth model.

– Via input/output examples

• In practice, people do post-hoc smoothing

Cannot Rely 100% on Learning!

- People have models of smoothness!
 - Kalman Filters
 - Linear Autoregressors
 - Etc...
- Pure ML approach throws them away!
 "black box"

Hybrid Model-Based + Black-Box

- Model-based approaches
 - Strong assumptions, well specified
 - Lacks flexibility
 - E.g., Kalman Filter, Linear Autoregressor
- Black-box approaches
 - Assumption free, underspecified
 - Requires a lot of training data
 - E.g., random forest, deep neural network
- Best of both worlds?

Conventional Models

Visual Interpretation of Policy Class

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Our Result

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Qualitative Comparison

Lessons Learned

- Intuition: Let model do most of work
 - Black box (deep neural net) adds flexibility
 - "Regularization" improves learning
 - Exponentially faster convergence compared to SEARN
- Applicable to other approaches?
 - Synthesize program + black box
 - Optimal controller + black box

Smooth Imitation Learning for Online Sequence Prediction Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Exploit Lipschitz from smooth temporal dynamics

Speech Animation

- Animation artists spend ≥50% time on face
 - Mostly eyes & mouth
 - Very tedious We'll focus on mouth & speech.

Co-Articulation is Hard

Automatically Animate to Input Audio?

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015
A Deep Learning Approach for Generalized Speech Animation
Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Prediction Task

Kim

Goal: learn predictor $h: X \to Y$

Input speech: " P R E D I C T I O N " Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 x Token p r ih d d ih ih k k sh sh uh uh n ... r ih d d ih ih ih k sh sh sh uh uh n

Aggregate Outputs

Very fast!

Prediction for Very Different Language

PANDORA THE WORLD OF AVATAR

DISNEY'S ANIMAL KINGDOM SUMMER 2017

Behind the Scenes of Pandora - The World of Avatar

https://youtu.be/URSOqWtLix4

Hierarchical Behaviors (New Model Classes)

Strategy vs Tactics

- Long-term Goal:
 Curl around basket
- Tactics
 - Drive left w/ ball
 - Pass ball
 - Cut towards basket

Stephan Zheng

Macro Goals & Micro Actions

Generating Long-term Trajectories using Deep Hierarchical Networks Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

User preference study: hierarchical policy vs baselines

Eyrun Eyolfsdottir

Drosophila Behavior

Activity Labels

Learning recurrent representations for hierarchical behavior modeling Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017 Multi-Agent Systems (Coordinated Imitation Learning)

English Premier League 2012-2013 Match date: 04/05/2013

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

State Representation

Data-Driven Ghosting using Deep Imitation Learning Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

But Who Plays Which Role?

• All we get are trajectories!

- Don't know which belongs to which role.

Need to solve a permutation problem
 – What happens if we ignore this?

English Premier League 2012-2013

Match date: 04/05/2013

Coordinated Multi-Agent Imitation Learning

Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learned Roles

Learning to Optimize

(Combinatorial) Optimization

• Find good feasible solutions

- Within combinatorial search space

- Examples:
 - Mixed Integer Programming
 - Submodular Optimization
 - Boolean Satisfiability
 - Etc...
- Typically solved using local search heuristics

Challenges in Optimization

- Expensive oracles
 - Computational intensive
 - Not always available
- Weak search heuristics
 - Long search time
 - Low solution quality

Sequential Decision Making

- Many solvers are sequential:
 - Greedy
 - Search heuristics
- Can view as solver as "agent"
 - State = intermediate solution
 - Find a state with high reward (solution)

Grasp Trajectory Prediction

- Quickly identify successful trajectory
- Requires high-fidelity simulator (slow)

High-fidelity Simulator

First trajectory fails

Requires Statistical Model of Diversity!

Second trajectory diverse

Learning Policies for Contextual Submodular Prediction S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICML 2013

Contextual Submodular Optimization

- Contextual submodular optimization
 - Tests are redundant
 - Depends on context
- Typically solved using greedy

 If you know the submodular function
- Goal: imitate greedy algorithm
 - Decisions based on features
 - Minimize dependency on oracle (at test time)

Stephane Ross

Robotic Trajectory Prediction

Learning Policies for Contextual Submodular Prediction

S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICML 2013

Ongoing Research Risk-Aware Planning

Low Risk

High Risk

- Compiled as mixed integer program
- Challenging optimization problem

Exponential search space

- Local search heuristics (e.g., branch and bound)

Goal: Learn statistical model of search space
 – Find feasible solutions much faster

Preliminary Results

	Ours	Gurobi Solver			Ours	Gurobi Solver
Train	1049	15241		Train	0.732	0.305
Test	1127	25249		Test	0.577	0.309
Avg Nodes Explored			Avg Objective value			

Learning to Search via Self-Imitation with Application to Risk-Aware Planning R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono (under review)

New Frontiers in Imitation learning

Incorporating Structure

- Smoothness of output space
- Latent structure of input space

• New Algorithmic Frameworks

- Black Box + Model-Based Planning
- Black Box + Latent Graphical Models
- Cool Applications!

Eyrun Eyolfsdottir

Jimmy Chen

Stephan Zheng

Hoang Le

Taehwan Kim

Ross

Jialin Song

Andrew Kang

Debadeepta Dey

Robin Zhou

Albert Zhao

Sarah Taylor

Lanka

Kristin Branson

lain Matthews

Jim Little

Pietro Perona

Patrick Lucey

Drew Bagnell

Masahiro Ono

References

Smooth Imitation Learning for Online Sequence Prediction

Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision Trees

Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016

A Decision Tree Framework for Spatiotemporal Sequence Prediction

Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anastasio Rodriguez, Jessica Hodgins, Iain Matthews. SIGGRAPH 2017

Generating Long-term Trajectories using Deep Hierarchical Networks

Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Learning recurrent representations for hierarchical behavior modeling

Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona. ICLR 2017

Data-Driven Ghosting using Deep Imitation Learning

Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017

Coordinated Multi-agent Imitation Learning

Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learning Policies for Contextual Submodular Prediction

Stephane Ross, Jiaji Zhou, Yisong Yue, Debadeepta Dey, J. Andrew Bagnell. ICML 2013