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Behavioral	Modeling

detection of a formation challenging. For example, using a static ordering of players throughout a match (e.g. ordering players by 
their starting roles or identity), the frequent role swaps throughout a match cause great overlap in the player distributions, as shown 
in the top row  of Figure 4, and hence, a static ordering of players does not accurately represent the structure or formation of the 
team. To overcome this, we use a dynamic ordering of players by the role that they occupy at a given instant in time. However, a big 
challenge in achieving this is that we don’t know what formation a team is playing in advance, so we can not assign roles. We solve 
the two tasks of formation discovery and role assignment simultaneously using an Expectation-Maximization approach on the 
player tracking data, where we first assign initial player role based on the mean positions of the players. We then use the Hungarian 
algorithm [9] to update the role of each player in every frame and calculate the error between the previous and updated assignments 
which is similar to [8]. We then continue to iterate this process until convergence. This process normally takes 5-10 iterations to 
converge for an entire half  of  soccer and some results of  this process are shown at the bottom of  Figure 4.
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Figure 4. (Top) Shows the mean positions of the players over a half of a game - notice the heavy overlapping that occurs between the 
midfielders and the forwards. (Bottom) Using our approach we can accurately assign player roles at each frame which disambiguates role and 
allows formation analysis to occur.

Figure 5. Mean formation for each match half relative to the centroid (centre of each rectangle) overlaid over one another for each team (A-T). 
Red represents home games and blue represents away games, with all teams normalized to attack from left to right.

12.4. TAXI DRIVER ROUTE PREFERENCE DATA 147

Figure 12.2: The collected GPS datapoints

12.4.3 Fitting to the Road Network and Segmenting

To address noise in the GPS data, we fit it to the road network using a particle filter (Thrun et al.,
2005). A particle filter simulates a large number of vehicles traversing over the road network,
focusing its attention on particles that best match the GPS readings. A motion model is employed
to simulate the movement of the vehicle and an observation model is employed to express the
relationship between the true location of the vehicle and the GPS reading of the vehicle. We use
a motion model based on the empirical distribution of changes in speed and a Laplace distribution
for our observation model.

Once fitted to the road network, we segmented our GPS traces into distinct trips. Our segmen-
tation is based on time-thresholds. Position readings with a small velocity for a period of time are
considered to be at the end of one trip and the beginning of a new trip. We note that this problem
is particularly difficult for taxi driver data, because these drivers may often stop only long enough
to let out a passenger and this can be difficult to distinguish from stopping at a long stoplight. To
address same of the potential noise, we discard trips that are too short, too noisy, and too cyclic.



How	to	Use	Behavioral	Tracking	Data?

• Analyze	&	Understand	Behavior
– “Interpretable”	Machine	Learning
– Causal	Relationships

• Predictive	Modeling	
– Predict	next	action	(or	sequence	of	actions)
– Multiple	predictions

• Multi-agent	systems
• Multiple	modalities

…and	a little	bit	of	this



• Find	function	from	input	space	X to	output	space	Y

such	that	the	prediction	error	is	low.

Microsoft announced today that they 
acquired Apple for the amount equal to the 
gross national product of Switzerland. 
Microsoft officials stated that they first 
wanted to buy Switzerland, but eventually 
were turned off by the mountains and the 
snowy winters…
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Warm	Up: Supervised	Learning



Imitation	Learning

• Input:
– Sequence	of	contexts/states:	

• Predict:
– Sequence	of	actions

• Learn	Using:
– Sequences	of	demonstrated	actions

h

x

y



Imitation	
Learning argmin

h
Es~Ph

cs (h(s))[ ]
States

PolicyCost

• Violates	IID	assumption
– Policy	induces	state	

distribution

• Alternating	optimization
– Roll	out	policy
– Estimate	state	distribution

Estimate	Empirically

• Many	approaches
– SEARN
– DAgger /	DaD /	AggreVaTe
– Apprenticeship
– GAIL
– Maximum	Entropy

Previous	Work:
• Minimal	assumptions
• Inefficient	in	complex	&	structured	settings



What	to	Imitate?

93:8 • Taylor, S. et al.
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Fig. 7. Comparison of held-out video of the reference speaker compared with AAM reference model rendered predictions. Predicted mouth regions are
rendered onto the original face for visual comparison.

/  ay      l      ay      k      t      uw      s      p      iy      k      ih      n      m      uw      v      iy      k      w      ow      t      s   /
“I like to speak in movie quotes”

a)

b)

c)

Fig. 8. Animation is transferred from the shape component of the AAM to CG characters using rig-space retargeting. (a) Reference video of the input speech
(unseen speaker). (b) Visualization of the predicted animation as AAM. (c) The corresponding rig-space retargeted animation on a selection of face rigs.

Long Short-Term Memory Networks. LSTMs are a memory-based
extension of recurrent neural networks, and were recently applied
to learning photorealistic speech animation [Fan et al. 2015], which
demonstrated some modest improvements over basic HMMs using
a small dataset. We follow the basic setup of [Fan et al. 2015], and
trained an LSTM network [Bastien et al. 2012] on the KB-2k dataset.

We use three hidden layers, a fully-connected layer, and two LSTM
layers.We experimented with 100 to 3000 hidden units for each layer,
finding 500 achieves the best performance. Mini-batch size was 10,
and to prevent overfitting we use dropout with 50% probability
[Srivastava et al. 2014].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 93. Publication date: July 2017.

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of
a cost function

While limiting the probability of crashing into obstacles over
the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Human	Demonstrations Animal	Demonstrations

Computational	Oracle



This	Talk

• Example	Applications
– Camera	Control
– Speech	Animation
– Hierarchical	Behaviors
– Multi-Agent	Behaviors
– Learning	to	Optimize

• Research	Questions
– Structure	of	Input	&	Output	Spaces
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Camera	Control
(Smooth	Imitation	Learning)





Problem	Formulation

• Input:	stream	of	x
– E.g.,	noisy	player	detections

• State	s	=	(x,a)
– Recent	detections	and	actions

• Goal:	learn
– Imitate	expert

h(s)→ a
Figure 3. Features and Labels. (a) player detections, (b)
pan/tilt/zoom parameters, and (c) spherical quantization scheme
for generating features.

for player detection, and one at ground level for broadcast-
ing (operated by a human expert). The videos were syn-
chronized at 60fps. ‘Timeouts’ were manually removed, re-
sulting in 32 minutes of ‘in-play’ data divided into roughly
50 segments (each about 40 seconds long), with two held
out for validation and testing.

A semi-professional soccer match was recorded using
three cameras: two near the flood lights for player detec-
tion, and a robotic PTZ located at mid-field remotely oper-
ated by a human expert. The videos were synchronized at
60 fps. About 91 minutes was used for training, and two 2
minute sequences were held out for validation and testing.

Features The ground locations of players were deter-
mined from 3D geometric primitives which best justified
the background subtraction results [4]. Each ground po-
sition was projected to a spherical coordinate system cen-
tered and aligned with the broadcast camera. Because the
number of detections varies due to clutter and occlusions,
a fixed length feature vector was constructed using spatial
frequency counts. The surface of the sphere was quantized
at three resolutions (1 ˆ 2, 1 ˆ 4, and 1 ˆ 8) resulting in a
14 dimensional feature vector x

t

[6].

Labels Pan/tilt/zoom parameters are estimated for each
frame of the broadcast video by matching detected SIFT
key points to a collection of manually calibrated reference
frames in a similar fashion to [20]. The homography be-
tween the current frame and the best match in the database
of reference images is estimated, from which the camera’s
pan-tilt-zoom settings are extracted. Because the tilt and
zoom of the broadcast camera do not vary significantly over
the dataset, our experiments only focus on building an esti-
mator for online prediction of pan angles.

6.1. Baselines

Savitzky-Golay. [6] learns a predictor using a random for-
est trained using only current player locations. A Savitzky-
Golay (SG) filter smooths the predictions, but induces a de-

lay. Our implementation of this method augments the cur-
rent player locations with previous player locations. This
modification makes the instantaneous predictions more re-
liable, as the predictor has more temporal information.

Kalman Filter. We replace the Savitzky-Golay filter with
a Kalman filter employing a constant velocity process
model. Parameters were determined through validation (see
supplemental material).

Dual Kalman Filter. A dual Kalman filter [21] simulta-
neously estimates the unknown state of the system, as well
as its process matrix. Similar to our formulation, we as-
sume the system adheres to an autoregressive model. This
method then applies two Kalman filters in parallel: one to
estimate the coefficients of the autoregressive function, and
a second to estimate the trajectory of the camera, based on
the current estimate of the autoregressive model. Again, pa-
rameters were tuned through validation.

Conditional Regression Forests. Conditional regression
forests (CRFs) [11] split the training data into multiple sub-
sets. We tested various splitting methods based on camera
position and velocity, such as dividing the data into 4, 8 and
16 subsets of pan angle. We also tried both disjoint sets and
joint sets with different overlap ratios. We report the best
result from 8 subsets with 50% overlap. The output of the
CRF is further smoothed by a SG filter.

Filter Forests. Filter forests (FF) [15] is an efficient dis-
criminative approach for predicting continuous variables
given a signal. FF can learn the optimal filtering kernels
to smooth temporal signals. Our implementation includes
some adaptations, such as limited candidate window sizes,
to improve the performance on our datasets.

6.2. Benchmark Experiments

Fig. 4 shows the benchmark performance evaluated for
both basketball and soccer. We evaluate using joint loss (2)
with ! “ 500. The precision and smoothness losses are
plotted separately to illustrate their relative contributions to
the joint loss. For both settings, we see that our approach
achieves the best performance, with the performance gap
being especially pronounced in basketball.

We note that the soccer setting is significantly more chal-
lenging than basketball, and no method performs particu-
larly well for soccer. One possible explanation is that soccer
camera planning using only player detections is unreliable
due to players not following the ball (unlike in basketball).
A visual inspection of the generated videos also suggests
that lack of ball tracking in the input signal x is a significant
limitation in the soccer setting.

We also observe that our approach achieves very low
smoothness loss, despite not utilizing a post-processing
smoothing step (see Table 1 for a summary description of
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Naïve	Approach

• Supervised	learning	of	demonstration	data
– Train	predictor	per	frame
– Predict	per	frame



What	is	the	Problem?

• Basically	takes	“infinite”	training	data	to	train	
smooth	model.
– Via	input/output	examples

• In	practice,	people	do	post-hoc	smoothing
Actual Human Movement
Supervised with Smooth Regularization



Cannot	Rely	100%	on	Learning!

• People	have	models	of	smoothness!
– Kalman Filters
– Linear	Autoregressors
– Etc...

• Pure	ML	approach	throws	them	away!
– ”black	box”



Hybrid	Model-Based	+	Black-Box

• Model-based	approaches
– Strong	assumptions,	well	specified
– Lacks	flexibility
– E.g.,	Kalman Filter,	Linear	Autoregressor

• Black-box	approaches
– Assumption	free,	underspecified
– Requires	a	lot	of	training	data
– E.g.,	random	forest,	deep	neural	network

• Best	of	both	worlds?

Conventional
Models



New	Policy	Class

Policy

Black	Box	Predictor Smooth	Model

h(s ≡ (x,a)) = argmin
a '

f (s)− a '( )2
+λ g(a)− a '( )2

                   = f (s)+λg(a)
1+λ

Hoang
Le

Jimmy
Chen



Visual	Interpretation	of	Policy	Class

h(s ≡ (x,a)) = argmin
a '

f (s)− a '( )2
+λ g(a)− a '( )2

                   = f (s)+λg(a)
1+λ

Complex	Predictors	F

Smooth	Complex
Predictors	H

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016



Our	Result

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016



Qualitative	Comparison

Baseline Our Approach

Learning	Online	Smooth	Predictors	for	Real-time	Camera	Planning	using	Recurrent	Decision	Trees
Jianhui Chen,	Hoang	Le,	Peter	Carr,	Yisong	Yue,	Jim	Little.		CVPR	2016



Lessons	Learned

• Intuition:	Let	model	do	most	of	work
– Black	box	(deep	neural	net)	adds	flexibility
– “Regularization”	improves	learning

• Exponentially	faster	convergence	compared	to	SEARN

• Applicable	to	other	approaches?
– Synthesize	program	+	black	box
– Optimal	controller	+	black	box

Exploit	Lipschitz
from	smooth	
temporal	dynamics

Smooth	Imitation	Learning	for	Online	Sequence	Prediction
Hoang	Le,	Andrew	Kang,	Yisong	Yue,	Peter	Carr.		ICML	2016



Speech	Animation



• Animation	artists	spend	≥50%	time	on	face
– Mostly	eyes	&	mouth
– Very	tedious We’ll	focus	on	mouth	&	speech.



/k/

Co-Articulation	is	Hard



Automatically	Animate	to	Input	Audio?

A	Decision	Tree	Framework	for	Spatiotemporal	Sequence	Prediction
Taehwan	Kim,	Yisong	Yue,	Sarah	Taylor,	Iain	Matthews.		KDD	2015
A	Deep	Learning	Approach	for	Generalized	Speech	Animation
Sarah	Taylor,	Taehwan	Kim,	Yisong	Yue,	et	al.		SIGGRAPH	2017



bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

Prediction	Task
Input	sequence

Output	sequence

Goal: learn	predictor

Phoneme	sequence

Sequence	of	face	configurations

Taehwan
Kim

Sarah
Taylor
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(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).

X

Y

Temporal	curvature	can	vary	smoothly	or	sharply
(Depends	on	context	– this	is	the	co-articulation	problem)

Minimal	long-range	dependencies
(prediction =	construction =	election…)
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This	is	the	only	thing	that	
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Very	fast!





Prediction	for	Very	Different	Language





Behind	the	Scenes	of	Pandora	- The	World	of	Avatar																	https://youtu.be/URSOqWtLix4



Hierarchical	Behaviors
(New	Model	Classes)



Strategy	vs Tactics

• Long-term	Goal:
– Curl	around	basket

• Tactics
– Drive	left	w/	ball
– Pass	ball
– Cut	towards	basket

Generating Long-term Trajectories Using Deep
Hierarchical Networks

Stephan Zheng
Caltech

stzheng@caltech.edu

Yisong Yue
Caltech

yyue@caltech.edu

Patrick Lucey
STATS

plucey@stats.com

Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)
has two macro-goals: 1)
pass the ball (orange) and
2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Stephan
Zheng



Macro	Goals	&	Micro	Actions

Generating	Long-term	Trajectories	using	Deep	Hierarchical	Networks
Stephan	Zheng,	Yisong	Yue,	Patrick	Lucey.		NIPS	2016
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Activity	Labels

Learning	recurrent	representations	for	hierarchical	behavior	modeling
Eyrun Eyolfsdottir,	Kristin	Branson,	Yisong Yue,	Pietro	Perona,	ICLR	2017



Multi-Agent	Systems
(Coordinated	Imitation	Learning)



Data-Driven	Ghosting	using	Deep	Imitation	Learning
Hoang	Le,	Peter	Carr,	Yisong	Yue,	Patrick	Lucey.		SSAC	2017



State	Representation

Data-Driven	Ghosting	using	Deep	Imitation	Learning
Hoang	Le,	Peter	Carr,	Yisong	Yue,	Patrick	Lucey.		SSAC	2017



But	Who	Plays	Which	Role?

• All	we	get	are	trajectories!
– Don’t	know	which	belongs	to	which	role.

• Need	to	solve	a	permutation	problem
– What	happens	if	we	ignore	this?





Coordination	Model

Coordinated	Multi-Agent	Imitation	Learning
Hoang	Le,	Yisong	Yue,	Peter	Carr,	Patrick	Lucey.		ICML	2017

Hoang
Le



Learned	Roles

LB

LCB

LMF



Learning	to	Optimize



(Combinatorial)	Optimization

• Find	good	feasible	solutions
– Within	combinatorial	search	space

• Examples:
– Mixed	Integer	Programming
– Submodular	Optimization
– Boolean	Satisfiability
– Etc…

• Typically	solved	using	local	search	heuristics



Challenges	in	Optimization

• Expensive	oracles
– Computational	intensive
– Not	always	available

• Weak	search	heuristics
– Long	search	time
– Low	solution	quality

Branch and Bound Approach:

Standard technique to solve MIP.

Iteratively adds constraints to each time-step.

Use lower-bound estimate of the objective value to direct the
search problem.
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Sequential	Decision	Making

• Many	solvers	are	sequential:
– Greedy
– Search	heuristics

• Can	view	as	solver	as	“agent”
– State	=	intermediate	solution
– Find	a	state	with	high	reward	(solution)



Grasp	Trajectory	Prediction

• Quickly	identify	successful	trajectory
• Requires	high-fidelity	simulator	(slow)



High-fidelity Simulator First trajectory fails

Second trajectory diverse

Requires	Statistical
Model	of	Diversity!

Learning	Policies	for	Contextual	Submodular Prediction
S.	Ross,	R.	Zhou,	Y.	Yue,	D.	Dey,	J.A.	Bagnell.		ICML	2013



Contextual	Submodular	Optimization

• Contextual	submodular	optimization
– Tests	are	redundant
– Depends	on	context

• Typically	solved	using	greedy
– If	you	know	the	submodular	function

• Goal:	imitate	greedy	algorithm
– Decisions	based	on	features
– Minimize	dependency	on	oracle	(at	test	time)

Stephane
Ross



Robotic	Trajectory	Prediction

Failure Rate (4 evaluations)
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Learning	Policies	for	Contextual	Submodular Prediction
S.	Ross,	R.	Zhou,	Y.	Yue,	D.	Dey,	J.A.	Bagnell.		ICML	2013



Ongoing	Research	
Risk-Aware	Planning

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of
a cost function

While limiting the probability of crashing into obstacles over
the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

• Compiled	as	mixed	integer	program
• Challenging	optimization	problem

Jialin
Song

Ravi
Lanka



Branch and Bound Approach:

Standard technique to solve MIP.

Iteratively adds constraints to each time-step.

Use lower-bound estimate of the objective value to direct the
search problem.
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• Exponential	search	space
– Local	search	heuristics	(e.g.,	branch	and	bound)

• Goal:	Learn	statistical	model	of	search	space
– Find	feasible	solutions	much	faster



Preliminary	ResultsSample solutions

Solvers solution Our solution
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Sample solutions

Solvers solution Our solution
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Optimal	Solution
(Gurobi solver) Our	Approach

Results

100 Randomly generated obstacle maps (10 obstacles)
Training (80 instances) and Test (20 instances)
Caveat: We only report the results of the instances that both
the Solver and our method solves within a time limit

Ours Gurobi Solver
Train 461 278
Test 446 651

Avg Nodes Explored

Ours Gurobi Solver
Train 0.586 0.514
Test 0.614 0.532

Avg Objective value

Empirical Results with 10 waypoints and 10 obstacles

Ours Gurobi Solver
Train 1049 15241
Test 1127 25249

Avg Nodes Explored

Ours Gurobi Solver
Train 0.732 0.305
Test 0.577 0.309

Avg Objective value

Empirical Results with 20 waypoints and 10 obstacles
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Learning	to	Search	via	Self-Imitation	with	Application	to	Risk-Aware	Planning
R.	Lanka,	J.	Song,	A.	Zhao,	Y.	Yue,	M.	Ono	(under	review)



New	Frontiers	in	Imitation	learning

• Incorporating	Structure
– Smoothness	of	output	space
– Latent	structure	of	input	space

• New	Algorithmic	Frameworks
– Black	Box	+	Model-Based	Planning
– Black	Box	+	Latent	Graphical	Models

• Cool	Applications!

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of
a cost function

While limiting the probability of crashing into obstacles over
the planning horizon (chance constraint)

Demonstration of Risk

3 / 32
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