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How to Use Behavioral Tracking Data?

* Analyze & Understand Behavior

— “Interpretable” Machine Learning
— Causal Relationships '\

...and a little bit of this
* Predictive Modeling
— Predict next action (or sequence of actions)

— Multiple predictions
* Multi-agent systems
* Multiple modalities



Warm Up: Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.

Microsoft announced today that they
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Imitation Learning

* |nput:

— Sequence of contexts/states:

* Predict: (v

— Sequence of actions

o

* Learn Using:
— Sequences of demonstrated actions




Cost Policy

Imitation AN
Learning  argminE_, [c,(h(s))]
h

e \

. . States
Estimate Empirically

* Violates IID assumption ¢ Many approaches

* Al

Policy induces state — SEARN
distribution — DAgger / DaD / AggreVaTe
Annron ticachin

Previous Work:
* Minimal assumptions
* |nefficient in complex & structured settings




What to Imitate?

Human Demonstrations Animal Demonstrations
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Computational Oracle




This Talk

* Example Applications

— Camera Control

— Speech Animation 4

— Hierarchical Behaviors (1

— Multi-Agent Behaviors

— Learning to Optimize \_

* Research Questions
— Structure of Input & Output Spaces




Camera Control
(Smooth Imitation Learning)



Realtime Player Detection and Tracking

Human Operated Camera
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Problem Formulation

* |[nput: stream of x

— E.g., noisy player detections

e State s =(x,a)

— Recent detections and actions e

 Goal: learn h(s)—a / Q

— Imitate expert \_ J




Naive Approach

e Supervised learning of demonstration data
— Train predictor per frame
— Predict per frame
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What is the Problem?

e Basically takes “infinite” training data to train

smooth model. jj
— Via input/output examples % ., w
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* |n practice, people do post-hoc smoothing




Cannot Rely 100% on Learning!

* People have models of smoothness!
— Kalman Filters
— Linear Autoregressors
— Etc...

* Pure ML approach throws them away!

— "black box”



Hybrid Model-Based + Black-Box

* Model-based approaches

— Strong assumptions, well specified _
. Conventional

— Lacks flexibility Models

— E.g., Kalman Filter, Linear Autoregressor

* Black-box approaches

— Assumption free, underspecified
— Requires a lot of training data
— E.g., random forest, deep neural network

 Best of both worlds?



New Policy Class

Black Box Predictor Smooth Model

h(s=(x,a))= argmin(f(s) — a,)z + A(g(a) _ a')2

_ f(s)+Ag(a)
[+ A




Visual Interpretation of Policy Class
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Complex Predictors F

Smooth Complex
Predictors H

h(s = (x,a)) = argmin( f(s)- a')2 +A(g(a)- a')z

_ f(s)+Ag(a)
1+ A

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Our Result

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Qualitative Comparison

Learning Onling
Jianhui Chen, Hoa




Lessons Learned

* Intuition: Let model do most of work
— Black box (deep neural net) adds flexibility

— “Regularization” improves learning
* Exponentially faster convergence compared to SEARN

\

Exploit Lipschitz
« Applicable to other approaches? | romsmootn

temporal dynamics

— Synthesize program + black box
— Optimal controller + black box

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Speech Animation
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* Animation artists spend 250% time on face
— Mostly eyes & mouth

— Very tedious We’ll focus on mouth & speech.



Co-Articulation is Hard

/k/



Automatically Animate to Input Audio?

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017



Prediction Task

Sarah
Taylor

Taehwan

Kim
Input sequence X =<T1,%2y...,T|g >

Output sequence Y =<wy1,y2,-- -, Yy > , Yt € RP

Goal: learn predictor h: X — Y
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Temporal curvature can vary smoothly or sharply
(Depends on context — this is the co-articulation problem)
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Minimal long-range dependencies
(prediction = construction = election...)



Input speech: “PREDICTION?”

Frame|1 2 3 4 5 6 7 8 9 1011 121314151617 18 19 20 21 22
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Very fast!






Prediction for Very Different Language







PANDOR

THE WORLD OF AVATAR

DISNEY'S ANIMAL KINGDOM
SUMMER 2017“’*.‘“‘“; |

Behind the Scenes of Pandora - The World of Avatar https://youtu.be/URSOqW1tLix4




Hierarchical Behaviors
(New Model Classes)



Strategy vs Tactics

* Long-term Goal:

— Curl around basket

* Tactics
— Drive left w/ ball
— Pass ball

— Cut towards basket




Macro Goals & Micro Actions

micro-planner J,,;.ro

state s

memory

micro-action a

memory

macro-goal g

transfer m

mg(a)

macro-planner JT nacro

Micro-action

Attention

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Final prediction



User preference study: hierarchical policy vs baselines
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memory) memory) attention)
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Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017
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Multi-Agent Systems

(Coordinated Imitation Learning)



English Premier League Match date: 04/05/2013
2012-2013

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017



State Representation
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Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017



But Who Plays Which Role?

* All we get are trajectories!

— Don’t know which belongs to which role.

* Need to solve a permutation problem
— What happens if we ignore this?
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White: Learning Policies

English Premier League Match date: 04/05/2013
2012-2013



Coordination Model

Train Multiple Interacting Policies

Action 1 Action K Latent Structure

Observed Actions

Graphical Model Inference

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017



Learned Roles




Learning to Optimize



(Combinatorial) Optimization

* Find good feasible solutions

— Within combinatorial search space

 Examples:
— Mixed Integer Programming
— Submodular Optimization
— Boolean Satisfiability
— Etc...

e Typically solved using local search heuristics



Challenges in Optimization

* Expensive oracles
— Computational intensive
— Not always available

 Weak search heuristics
— Long search time
— Low solution quality




Sequential Decision Making

* Many solvers are sequential:
— Greedy
— Search heuristics

e Can view as solver as “agent”
— State = intermediate solution
— Find a state with high reward (solution)



Grasp Trajectory Prediction

* Quickly identify successful trajectory
* Requires high-fidelity simulator (slow)




First trajectory fails

Requires Statistical
Model of Diversity!

Second trajectory diverse

Learning Policies for Contextual Submodular Prediction
S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICML 2013



Contextual Submodular Optimization

* Contextual submodular optimization
— Tests are redundant
— Depends on context

e Typically solved using greedy

— If you know the submodular function
* Goal: imitate greedy algorithm
— Decisions based on features
— Minimize dependency on oracle (at test time)

Stephane
Ross




Robotic Trajectory Prediction
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Learning Policies for Contextual Submodular Prediction
S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICML 2013



Ravi Ongoing Research sl B T8
ana Risk-Aware Planning s 4

Low Risk | High Risk

 Compiled as mixed integer program
* Challenging optimization problem
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* Exponential search space

— Local search heuristics (e.g., branch and bound)

e Goal: Learn statistical model of search space

— Find feasible solutions much faster



Preliminary Results

Our Approach

* //;‘”_. Optimal Solution
e (Gurobi solver)
,f 1@
4 e
Ours | Gurobi Solver
Train | 1049 15241
Test 1127 25249

Avg Nodes Explored

Ours | Gurobi Solver
Train | 0.732 0.305
Test 0.577 0.309

Avg Objective value

Learning to Search via Self-Imitation with Application to Risk-Aware Planning
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono (under review)



New Frontiers in Imitation learning

* Incorporating Structure

— Smoothness of output space
— Latent structure of input space

* New Algorithmic Frameworks

— Black Box + Model-Based Planning
— Black Box + Latent Graphical Models

* Cool Applications!
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