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Behavioral Modeling

12.4. TAXI DRIVER ROUTE PREFERENCE DATA 147

Figure 12.2: The collected GPS datapoints

12.4.3 Fitting to the Road Network and Segmenting

To address noise in the GPS data, we fit it to the road network using a particle filter (Thrun et al.,
2005). A particle filter simulates a large number of vehicles traversing over the road network,
focusing its attention on particles that best match the GPS readings. A motion model is employed
to simulate the movement of the vehicle and an observation model is employed to express the
relationship between the true location of the vehicle and the GPS reading of the vehicle. We use
a motion model based on the empirical distribution of changes in speed and a Laplace distribution
for our observation model.

Once fitted to the road network, we segmented our GPS traces into distinct trips. Our segmen-
tation is based on time-thresholds. Position readings with a small velocity for a period of time are
considered to be at the end of one trip and the beginning of a new trip. We note that this problem
is particularly difficult for taxi driver data, because these drivers may often stop only long enough
to let out a passenger and this can be difficult to distinguish from stopping at a long stoplight. To
address same of the potential noise, we discard trips that are too short, too noisy, and too cyclic.



• Find function from input space X to output space Y

such that the prediction error is low.

Microsoft announced today that they 
acquired Apple for the amount equal to the 
gross national product of Switzerland. 
Microsoft officials stated that they first 
wanted to buy Switzerland, but eventually 
were turned off by the mountains and the 
snowy winters…
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Warm Up: Supervised Learning



Imitation Learning

• Input:
– Sequence of contexts/states: 

• Predict:
– Sequence of actions

• Learn Using:
– Sequences of demonstrated actions
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Example: Basketball Player Trajectories

• 𝑠 = location of players & ball
• 𝑎 = next location of player

• Training set: 𝐷 = 𝑠, 𝑎⃗
– 𝑠 = sequence of 𝑠
– 𝑎⃗ = sequence of 𝑎

• Goal: learn ℎ(𝑠) → 𝑎
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Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)

has two macro-goals: 1)

pass the ball (orange) and

2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
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What to Imitate?

93:8 • Taylor, S. et al.
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Fig. 7. Comparison of held-out video of the reference speaker compared with AAM reference model rendered predictions. Predicted mouth regions are
rendered onto the original face for visual comparison.

/  ay      l      ay      k      t      uw      s      p      iy      k      ih      n      m      uw      v      iy      k      w      ow      t      s   /
“I like to speak in movie quotes”

a)

b)

c)

Fig. 8. Animation is transferred from the shape component of the AAM to CG characters using rig-space retargeting. (a) Reference video of the input speech
(unseen speaker). (b) Visualization of the predicted animation as AAM. (c) The corresponding rig-space retargeted animation on a selection of face rigs.

Long Short-Term Memory Networks. LSTMs are a memory-based
extension of recurrent neural networks, and were recently applied
to learning photorealistic speech animation [Fan et al. 2015], which
demonstrated some modest improvements over basic HMMs using
a small dataset. We follow the basic setup of [Fan et al. 2015], and
trained an LSTM network [Bastien et al. 2012] on the KB-2k dataset.

We use three hidden layers, a fully-connected layer, and two LSTM
layers.We experimented with 100 to 3000 hidden units for each layer,
finding 500 achieves the best performance. Mini-batch size was 10,
and to prevent overfitting we use dropout with 50% probability
[Srivastava et al. 2014].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 93. Publication date: July 2017.

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Previous (Deep Imitation) Work:
• Minimal assumptions
• Inefficient in complex & structured settings
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Structure in the Policy
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good global behavior

Structured Imitation Learning

Benefits:
• Abstractions for domain experts
• Better inductive bias
• Reductions to conventional learning
• Composable theoretical guarantees



Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize

Speech Animation

Side Constraints (Smoothness)



• Animation artists spend ≥50% time on face
– Mostly eyes & mouth
– Very tedious We’ll focus on mouth & speech.





bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ ℜD is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫

ℓ(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

ℓ(a, b) = ∥a − b∥2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

ℓ(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.

Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Token - p p r ih ih d d ih ih ih ih k k sh sh sh sh uh uh n -(a) x

y

“ P R E D I C T I O N ”Input speech:

(b)

Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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N
i=1, (4)
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correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{

? if y(d) is missing

y(d) otherwise
,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ϵ,

for independently distributed random noise variables ϵ.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).
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E.g., [Sumner & Popovic 2004]
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Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Smooth Imitation Learning

Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize

Speech Animation



Data-Driven Ghosting using Deep Imitation Learning, 
Hoang Le et al.  SSAC 2017

Our Approach

https://www.youtube.com/watch?v=WI-WL2cj0CA

https://www.youtube.com/watch?v=WI-WL2cj0CA


Naïve Baseline



State Representation

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey.  SSAC 2017



But Who Plays Which Role?

• All we get are trajectories!
– Don’t know which belongs to which role.

• Need to solve a permutation problem
– Naïve baseline ignores this!



Coordination Model

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey.  ICML 2017

Hoang
Le



Learned Roles

LB

LCB

LMF



Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Smooth Imitation Learning

Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize

Speech Animation



Strategy vs Tactics

• Long-term Goal:
– Curl around basket

• Tactics
– Drive left w/ ball
– Pass ball
– Cut towards basket

Generating Long-term Trajectories Using Deep

Hierarchical Networks

Stephan Zheng

Caltech
stzheng@caltech.edu

Yisong Yue

Caltech
yyue@caltech.edu

Patrick Lucey

STATS
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Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)

has two macro-goals: 1)

pass the ball (orange) and

2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
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Generative + Hierarchical 
• Generative Imitation Learning

– No single “correct” action

• Hierarchical
– Make predictions at multiple resolutions

MAGnet: Generating Long-Term Multi-agent Trajectories
Eric Zhan, Stephan Zheng, Yisong Yue

Caltech

Problem

How can we learn models to generate multi-agent trajectories over long time

horizons that also generalize well?

• Individual behavior is complex and multi-modal.

• Team coordination is coherent over long time horizons.

• Space of joint trajectories is exponentially large.

Our Solution

• We propose MAGnet, a flexible model class with a hierarchal latent structure

that can jointly represent long-term (macro) and short-term (micro) temporal

dependencies.

• MAGnet finds compact and e�cient representations of coordination that are

also semantically meaningful and allow agents to behave sensibly over long

time frames.

• We instantiate MAGnet with variational RNNs (VRNN) and train it using

variational methods and weak labels for long-term goals.

MAGnet: Multi-Agent Goal-driven Network

Goal: to learn p(x
1

ÆT , . . . , x
N
ÆT ), the joint distribution of N agents, where each agent

travels along a trajectory of length T : x
i
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• e.g. N = 5 basketball players on o�ense moving for T = 50 frames.

We factorize the joint distribution as:

p(xÆT ) =

TY

t=1

p(xt | x<t) =
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and model the conditional probabilities using stochastic recurrent units (VRNN) and

introduce macro-goal latent variables mt:
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VRNN MAGnet

VRNN

VRNN

agents

During training we use weak labels m̂t = (m̂
1

t , . . . , m̂
N
t ), where m̂

i
t is the next location

in which player i is stationary. We can think of these macro-goals as capturing the

long-term intents of players.

Conclusions

• Multi-agents trajectories generated from MAGnet are much more realistic and

avoid common problems exhibited by state-of-the-art non-hierarchal models.

• MAGnet captures the distribution of the data and its generated macro-goals

are semantically meaningful and lead to more direct individual behavior as well

as long-term coordinated intent.

Basketball Rollouts: MAGnet vs. Baseline

50-frame rollouts starting from the black dots, with 10 frames of burn-in (dark shading).

More rollouts and videos at https://ezhan94.github.io/ .

Ground Truth Ground Truth

MAGnet MAGnet

Baseline VRNN Baseline VRNN

• Baseline: Players move in the wrong direction, out of bounds, and not cohesively.

• MAGnet: Generated macro-goals guide players to stay in bounds and they reveal

team formations that the players want to execute.

• Left: The green player takes di�erent paths towards the same macro-goals in 15

rollouts, which suggests that MAGnet captures the distribution of the data.

• Right: Macro-goals are manually fixed to guide the green player towards the

basket and then to the bottom-left corner.

Ongoing and Future Work

• Exploring more probabilistic structures, such as flexible priors and backwards

recognition networks during inference.

• Learning MAGnet without full supervision of weak macro-goal labels.

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey.  NeurIPS 2016
Generating Multi-agent Trajectories using Programmatic Weak Supervision
Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, Patrick Lucey. ICLR 2019

Macro-goals

NAOMI: Non-Autoregressive Multiresolution Sequence Imputation
Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, Yisong Yue. NeurIPS 2019



(a) Left: Ground truth trajectories from test set with
weak macro-goal labels (boxes). Players reach their
macro-goals along non-linear paths (green, purple).
Right: Baseline rollout of representative quality. Com-
mon problems include players moving in the wrong
direction (red) or out of bounds (purple, yellow, green).
Players do not move cohesively as a team.

(b) Left: Rollout from MAGnet with the same burn-in
as in (a). All players remain in bounds. The green
player corrects its trajectory, whereas in (a) it goes off
in the wrong direction. Right: Rollout from the left
shown with its generated macro-goals. The locations
of the macro-goals suggest that the players want to set
up a formation along the 3-point line.

(c) More rollouts from MAGnet. Left: Macro-goal
generation is stable and changes only a few times per
rollout. Players often reach their macro-goals at some
point in their trajectories. Right: Rare failure case:
the green player moves out of bounds despite macro-
goals generated in bounds. This is likely due to an
under-representation of starting states in the data.

(d) Blue trajectories are ground truth. Left: The green
player takes different paths towards the same macro-
goals in 15 rollouts, suggesting that MAGnet captures
the variability of the data. Right: Macro-goals are
manually fixed to guide the green player towards the
basket and then the bottom-left, demonstrating that
macro-goals cab control state predictions in rollouts.

Figure 2: 50-frame rollouts starting from the black dots. A 10-frame burn-in period is applied for all
rollouts (unless otherwise stated as ground truth), marked by dark shading on the trajectories.

Details of Models. We combine MAGnet with VRRNs by modeling the conditional distributions
of the agents and macro-goals in Eq. (5) as separate VRNNs. The baseline is a VRNN whose decoder
splits into 5 separate decoders, one for each player, conditioned on the same latent variable zt. We use
memory-less 2-layer fully-connected networks for priors, encoders, and decoders, and 2-layer GRU
memory cells for hidden states. Both models have a latent space dimension of 80 (40 for macro-goals
and 8 per agent in MAGnet), and are also conditioned on the previous positions of the players. We
use a learning rate of 0.0005 and compare models that achieve the best log-likelihood on the test set.

Results. Both models achieve comparable quantitative performance (log-likelihood ⇠ 2350 nats
per test sequence), but rollouts from MAGnet are of significantly higher quality3, shown and analyzed
in Figure 2.4 For instance, trajectories generated by MAGnet are much more realistic and cohesive as
a team, whereas frequent problems exhibited by the baseline involve players moving in the wrong
direction or out of bounds. Furthermore, we observe that: 1) macro-goals allow us to interpret each
player’s long-term goals and how they change over time (Figures 2b, 2c); 2) macro-goals influence a
player’s trajectory (Figure 2d); and 3) MAGnet captures the variability of the data (Figure 2d).

Future work. Our results suggest several directions for further investigation: 1) developing a
better theoretical understanding of the optimal hierarchical latent structure; 2) learning MAGnet
without weak macro-goal supervision; 3) validating MAGnet on other modalities and domains; and
4) exploring more probabilistic structures such that the model generalizes better with more agents
(e.g. with the ball and defensive players), deeper hierarchies, and over longer time horizons.

3Higher log-likelihoods do not necessarily indicate higher quality of generated samples [Theis et al., 2015].
4More rollouts can be viewed at https://ezhan94.github.io.
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New result: formal notion of style-consistency for 
generative imitation learning!
Learning Calibratable Policies using Programmatic Style-Consistency, 
Eric Zhan et al., arxiv

https://www.youtube.com/watch?v=0q1j22yMipY

https://www.youtube.com/watch?v=0q1j22yMipY
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Activity Labels

Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017



• IL for meta-controller (plan sub-goals)
• RL/IL for low-level controllers (individual sub-goals)

• More label efficient than flat IL
• Converge much faster than conventional hierarchical RL

Hierarchical Imitation and Reinforcement Learning

Figure 3. Montezuma’s revenge: hg-DAgger/Q versus h-DQN. (Left) Screenshot of Montezuma’s Revenge in black-and-white with
color-coded subgoals. (Middle) Learning progression of hg-DAgger/Q in solving the first room of Montezuma’s Revenge for a typical
successful trial. Subgoal colors match the left pane; success rate is the fraction of times the LO-level RL learner achieves its subgoal
over the previous 100 attempts. (Right) Learning performance of hg-DAgger/Q versus h-DQN (median and inter-quartile range).

We introduce a simple modification to Q-learning on the
LO level to speed up learning: the accumulation of expe-
rience replay buffer does not begin until the first time the
agent encounters positive pseudo-reward. During this pe-
riod, in effect, only the meta-controller is being trained.
This modification ensures the reinforcement learner en-
counters at least some positive pseudo-rewards, which
boosts learning in the long horizon settings and should nat-
urally work with any off-policy learning scheme (DQN,
DDQN, Dueling-DQN). For a fair comparison, we intro-
duce the same modification to the h-DQN learner (other-
wise, h-DQN failed to achieve any reward).

To mitigate the instability of DQN (see, for example, learn-
ing progression of subgoal 2 and 4 in Figure 3, middle),
we introduce one additional modification. We terminate
training of subpolicies when the success rate exceeds 90%,
at which point the subgoal is considered learned. Subgoal
success rate is defined as the percentage of successful sub-
goal completions over the previous 100 attempts.

Figure 3 (right) shows the median and the inter-quartile
range over 100 runs of hg-DAgger/Q and hg-DQN.7 The
LO-level sample sizes are not directly comparable with the
middle panel, which displays the learning progression for a
random successful run, rather than an aggregate over mul-
tiple runs. In all of our experiments, the performance of
the imitation learning component is stable across many dif-
ferent trials, whereas the performance of the reinforcement
learning component varies substantially. Subgoal 4 (door)
is the most difficult to learn due to its long horizon whereas
subgoals 1–3 are mastered very quickly, especially com-
pared to h-DQN. Our algorithm benefits from hierarchi-
cal guidance and accumulates experience for each subgoal
only within the relevant part of the state space, where the
subgoal is part of an optimal trajectory. In contrast, h-DQN

7In Appendix B, we present additional plots, including 10 best
runs of each algorithm, subgoal completion rate over 100 trials,
and versions of Figure 3 (middle) for additional random instances.

may pick bad subgoals and the resulting LO-level samples
then “corrupt” the subgoal experience replay buffers and
substantially slow down convergence.8

The number of HI-level labels in Figure 3 (middle) can be
further reduced by using a more efficient RL procedure
than DDQN at the LO level. In the specific example of
Montezuma’s Revenge, the actual human effort is in fact
much smaller, since the human expert needs to provide a
sequence of subgoals only once (together with simple sub-
goal detectors), and then HI-level labeling can be done au-
tomatically. The human expert only needs to understand
the high level semantics, and does not need to be able to
play the game.

7. Conclusion
We have presented hierarchical guidance framework and
shown how it can be used to speed up learning and reduce
the cost of expert feedback in hierarchical imitation learn-
ing and hybrid imitation–reinforcement learning.

Our approach can be extended in several ways. For in-
stance, one can consider weaker feedback such as pref-
erence or gradient-style feedback (Fürnkranz et al., 2012;
Loftin et al., 2016; Christiano et al., 2017), or a weaker
form of imitation feedback, only saying whether the agent
action is correct or incorrect, corresponding to bandit vari-
ant of imitation learning (Ross et al., 2011).

Our hybrid IL / RL approach relied on the availability of
a subgoal termination predicate indicating when the sub-
goal is achieved. While in many settings such a termina-
tion predicate is relatively easy to specify, in other settings
this predicate needs to be learned. We leave the question
of learning the termination predicate, while learning to act

8In fact, we further reduced the number of subgoals of h-DQN
to only two initial subgoals, but the agent still largely failed to
learn even the second subgoal (see the appendix for details).

Aside: Hierarchically Composing IL & RL

Hierarchical Imitation and Reinforcement Learning
Hoang Le, Nan Jiang, Alekh Agarwal, Miro Dudik, Yisong Yue, Hal Daume.  ICML 2018
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Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Optimization as Sequential Decision Making

• Many solvers are sequential:
– Greedy
– Search heuristics
– Gradient descent

• Can view solver as “agent”
– State = intermediate solution
– Find a state with high reward (solution)



Contextual Submodular Maximization
• Training set: (𝑥, 𝐹-)
• Greedily maximize 𝐹- using only 𝑥
• Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search
• Training set: 𝑥=MILP, 𝑦=solution/search−trace
• Find 𝑦 (or better solution)
• Learning to Search via Retrospective Imitation [arXiv]
• Co-training for Policy Learning [UAI 2019]

Learning to Infer
• Training set: 𝑥=data/model, 𝐿=likelihood
• Iteratively optimize L (generalizes VAEs)
• Iterative Amortized Inference [ICML 2018]
• A General Method for Amortizing Variational Filtering [NeurIPS 2018]

Stephane Ross

Jialin Song

Joe Marino

Optimization as Sequential Decision Making



Motivating Application 
Risk-Aware Planning

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

• Compiled as mixed integer program
• Challenging optimization problem

Jialin
Song

Ravi
Lanka



Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Distribution of Planning Problems

Background: Determinitic Path Planning as a MIP

Mixed-Integer Programming Formulation for a deterministic Path
Planning problem.

min
U

J(U, X)

subject to,

(Dynamic Constraint) xt+1 = Axt + But ,

(Safety Constraints) hiTt xt  git 8 0  t  T � 1

8 0  i  N � 1

X = [x0, x1 · · · xt ]T State vector

U = [u0, u1 · · · ut ]T Control Inputs

J ! Cost Function (e.g. fuel consumption)

4 / 38

Compiled as Combinatorial 
Search Problems

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Branch and Bound Approach:

Standard technique to solve MIP.
Iteratively adds constraints to each time-step.
Use lower-bound estimate of the objective value to direct the
search problem.

[ ] ! Side of the obstacle

{ } ! Time Step
root
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Feedback from Retrospective Oracle

1
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6

9
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Final Learned Policy

DAgger Learning
Policy Roll-out

(optional exploration)

Retrospective Oracle
(Algorithm 2)

Policy Update

Repeat Policy Roll-out

Figure 1. A visualization of self-imitation learning. This flowchart describes various components of Algorithm 1. A DAgger policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle. The roll-out, feedback and update can be repeated until some termination condition is met.

Algorithm 1: Self-Imitation Policy Learning
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained by imitating expert traces
4 Æ: mixing parameter
5 D0: expert traces dataset
6 D = D0
7 for i √ 1 to N do
8 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)
9 run º̂i to generate trace P

10 compute the retrospective optimal trace º§(P )
(Algorithm 2)

11 collect new dataset Di based on º§(P )
12 update D with Di
13 train ºi+1 on D
14 end
15 return best ºi on validation

this example, the search space is organized as a tree where
circular and diamond nodes represent intermediate states
and terminal states, respectively. Numbers in nodes indicate
the order they are visited. Algorithm 1 starts with an ini-
tial set of expert demonstrations and initial policy trained
DAgger style. It is then run with an exploration policy to
generate a new roll-out trace that might contain a new and
potentially easier to find terminal state, node 5 in example.
A retrospective oracle computes retrospective optimal trace
on the roll-out trace, indicated by black nodes. If our goal is

Algorithm 2: Retrospective Oracle for Tree Search
1 Inputs:
2 P : search tree trace
3 s: terminal state
4 Output:
5 retro_optimal: the retrospective optimal trace
6 while s is not the root do
7 parent√ s.parent
8 retro_optimal(parent)√ s
9 s √ parent

10 end
11 return retro_optimal

to reach a terminal state at the lowest depth, it makes sense
to prioritize node 5 over node 11 contained in the expert
trace. We do not discard terminal node 11 – in case the
policy moves to node 6 first (due to imperfect learning), it
will prioritize moving to node 11.

Design Decisions. There are two design decisions in Al-
gorithm 1: how to create each new dataset Di given the
search traces and a retrospective optimal trace, and how to
construct a retrospective optimal trace º§(P ) for a terminal
state given a search trace P .

For the first decision, the main idea is to learn from mistakes
made during each roll-out in order to better imitate º§(P ).
What constitutes a mistake is also influenced by the actions
a policy takes. For example, in (He et al., 2014), a selection

\
Collect

Demonstrations
Imitation
Learning h

s

a

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

Test 
Instances



Our Approach Philosophy

• Leverage off-the-shelf solvers 
– Imitation learning

• Learn better solvers
– Avoid mistakes of off-the-shelf solvers

• Scale up to larger problems
– Not tractable with off-the-shelf solvers

★



Retrospective Imitation

• Given: 
– Family of Distributions of Search problems

• Family is parameterized by size/difficulty

– Solved Instances on the Smallest/Easiest Instances
• “Demonstrations”

• Goal:
– Learn to minimize mistakes
– Scale up from Smallest/Easiest Instances
– Formal Guarantees (see paper)

Jialin
Song Ravi

Lanka

Connections to 
Curriculum Learning 
& Transfer Learning

Difficulty levels: k=1,…,K

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation

• Two-Stage Algorithm

• Core Algorithm
– Fixed problem difficulty
– Reductions to Supervised Learning

• Full Algorithm w/ Scaling Up
– Uses Core Algorithm as Subroutine

Interactive IL w/ Sparse Environmental Rewards

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
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· · ·
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· · ·

Region A

Region B

Imitation
Learning

Policy

Retrospective Oracle Feedback

1� Initial Learning

2� Policy Roll-out (optional exploration)

3� Retrospective Oracle
(Algorithm 2)

4� Policy Update with Further Learning

Figure 1. A visualization of retrospective imitation learning depicting components of Algorithm 1. An imitation learning policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle as in Figure 2. This process is repeated until some termination condition is met.

E

F

· · ·

· · · · · · G

· · ·

H

...

I

· · ·

M

? · · · N

· · ·

Figure 2. Zoom-in views of Region A and B in Figure 1. At node
E , the retrospective feedback indicates selecting node H over F , G
and I . At node M , the ? node is preferred over N .

4. Retrospective Imitation Learning
We now describe the retrospective imitation learning ap-
proach. It is a general framework that can be combined
with a variety of imitation learning algorithms. For clar-
ity of presentation, we instantiate our approach using the
data aggregation algorithm (DAgger) (Ross et al., 2011; He
et al., 2014) and we call the resulting algorithm Retrospec-
tive DAgger. We also include the instantiation with SMILe
(Ross & Bagnell, 2010) in Appendix A. In Section 6, we em-
pirically evaluate retrospective imitation with both DAgger
and SMILe to showcase the generality of our framework.

We decompose our general framework into two steps. First,
Algorithm 1 describes our core procedure for learning on
fixed size problems with a crucial retrospective oracle sub-
routine (Algorithm 2). Algorithm 3 then describes how to
scale up beyond the fixed size. We will use Figure 1 as a
running example. The ultimate goal is to enable imitation

Algorithm 1: Retrospective DAgger for Fixed Size
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained on expert traces
4 Æ: mixing parameter
5 {P j }: a set of training problem instances
6 D0: expert traces dataset
7 initialize D = D0
8 for i √ 1 to N do
9 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)

10 run º̂i on {P j } to generate a set of search traces {ø j }
11 for each ø j , compute º§(ø j , s) for each terminal state s

(Algorithm 2)
12 collect new dataset Di based on each º§(ø j , s)
13 update D with Di (i.e., D √ D [Di )
14 train ºi+1 on D
15 end
16 return best ºi on validation

learning algorithms to scale up to problems much larger
than those for which we have expert demonstrations, which
is a significant improvement since conventional imitation
learning cannot naturally accomplish this.

Core Algorithm for Fixed Problem Size. We assume ac-
cess to an initial dataset of expert demonstrations to help
bootstrap the learning process, as described in Line 3 in
Algorithm 1 and depicted in step 1� in Figure 1. Learning
proceeds iteratively. In Lines 9-10, the current policy (po-

Retrospective Imitation (Core Algorithm)

Derived from Sparse
Environmental Rewards

Repeat

,
State s Action a

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation (Full Algorithm)

Initialize k=1

Initialize
Gurobi/SCIP/CPlex

k=k+1
Use trained 𝒉

Problem 
Difficulty k

Base Solver

Instances &
Demonstrations

Core Algorithm

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Learning to Search via Retrospective Imitation 
R. Lanka, J. Song, A. Zhao, A. Bhatnagar, Y. Yue, M. Ono. arXiv

(a) (b) (c)

Figure 4: (left) Retrospective imitation versus off-the-shelf methods. The RL baseline performs very poorly due to sparse
environmental rewards. (middle, right) Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 5: Retrospective DAgger (“select only” policy class) with off-the-shelf branch-and-bound solvers using various search
node budgets. Retrospective DAgger consistently outperforms baselines.

the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of compar-
ison, the next closest solver, Gurobi, has optimality gaps
ª 50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables).

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 char-
acterizes experimental results. Figure 4b and 4c presents
the optimal move error rates for the maze experiment,
which validates Proposition 1 that retrospective imitation
is guaranteed to result in a policy that has lower error rates
than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that
a lower error rate leads to shorter search time. This result
is also verified by Figure 2a and 2d, where Retrospective
DAgger/SMILe, having the lowest error rates, explores the
fewest number of squares at each problem scale.

7 Conclusion & Future Work
We have presented the retrospective imitation approach
for learning combinatorial search policies. Our approach
extends conventional imitation learning, by being able to
learn good policies without requiring repeated queries to
an expert. A key distinguishing feature of our approach is

the ability to scale to larger problem instances than con-
tained in the original supervised training set of demonstra-
tions. Our theoretical analysis shows that, under certain
assumptions, the retrospective imitation learning scheme
is provably more powerful and general than conventional
imitation learning. We validated our theoretical results on
a maze solving experiment and tested our approach on the
problem of risk-aware path planning, where we demon-
strated both performance gains over conventional imita-
tion learning and the ability to scale up to large problem
instances not tractably solvable by commercial solvers.

By removing the need for repeated expert feedback, ret-
rospective imitation offers the potential for increased appli-
cability over imitation learning in search settings. However,
human feedback is still a valuable asset as human computa-
tion has been shown to boost performance of certain hard
search problems [Le Bras et al., 2014]. It will be interesting
to incorporate human computation into the retrospective
imitation learning framework so that we can find a balance
between manually instructing and autonomously reason-
ing to learn better search policies. Retrospective imitation
lies in a point in the spectrum between imitation learning
and reinforcement learning; we are interested in exploring
other novel learning frameworks in this spectrum as well.

B 
E 

T 
T 

E 
R

Our Approach

Gurobi

SCIP

Initial demonstrations
only at smallest size!



Ongoing: Integration with ENav
Ravi
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Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Problem Formulation

• Input: stream of 𝑥F
– E.g., noisy player detections

• State 𝑠F = (𝑥F:FHI, 𝑎FHJ:FHI)
– Recent detections and actions

• Goal: learn ℎ(𝑠F) → 𝑎F
– Imitate expert

Figure 3. Features and Labels. (a) player detections, (b)
pan/tilt/zoom parameters, and (c) spherical quantization scheme
for generating features.

for player detection, and one at ground level for broadcast-
ing (operated by a human expert). The videos were syn-
chronized at 60fps. ‘Timeouts’ were manually removed, re-
sulting in 32 minutes of ‘in-play’ data divided into roughly
50 segments (each about 40 seconds long), with two held
out for validation and testing.

A semi-professional soccer match was recorded using
three cameras: two near the flood lights for player detec-
tion, and a robotic PTZ located at mid-field remotely oper-
ated by a human expert. The videos were synchronized at
60 fps. About 91 minutes was used for training, and two 2
minute sequences were held out for validation and testing.

Features The ground locations of players were deter-
mined from 3D geometric primitives which best justified
the background subtraction results [4]. Each ground po-
sition was projected to a spherical coordinate system cen-
tered and aligned with the broadcast camera. Because the
number of detections varies due to clutter and occlusions,
a fixed length feature vector was constructed using spatial
frequency counts. The surface of the sphere was quantized
at three resolutions (1 ˆ 2, 1 ˆ 4, and 1 ˆ 8) resulting in a
14 dimensional feature vector xt [6].

Labels Pan/tilt/zoom parameters are estimated for each
frame of the broadcast video by matching detected SIFT
key points to a collection of manually calibrated reference
frames in a similar fashion to [20]. The homography be-
tween the current frame and the best match in the database
of reference images is estimated, from which the camera’s
pan-tilt-zoom settings are extracted. Because the tilt and
zoom of the broadcast camera do not vary significantly over
the dataset, our experiments only focus on building an esti-
mator for online prediction of pan angles.

6.1. Baselines

Savitzky-Golay. [6] learns a predictor using a random for-
est trained using only current player locations. A Savitzky-
Golay (SG) filter smooths the predictions, but induces a de-

lay. Our implementation of this method augments the cur-
rent player locations with previous player locations. This
modification makes the instantaneous predictions more re-
liable, as the predictor has more temporal information.

Kalman Filter. We replace the Savitzky-Golay filter with
a Kalman filter employing a constant velocity process
model. Parameters were determined through validation (see
supplemental material).

Dual Kalman Filter. A dual Kalman filter [21] simulta-
neously estimates the unknown state of the system, as well
as its process matrix. Similar to our formulation, we as-
sume the system adheres to an autoregressive model. This
method then applies two Kalman filters in parallel: one to
estimate the coefficients of the autoregressive function, and
a second to estimate the trajectory of the camera, based on
the current estimate of the autoregressive model. Again, pa-
rameters were tuned through validation.

Conditional Regression Forests. Conditional regression
forests (CRFs) [11] split the training data into multiple sub-
sets. We tested various splitting methods based on camera
position and velocity, such as dividing the data into 4, 8 and
16 subsets of pan angle. We also tried both disjoint sets and
joint sets with different overlap ratios. We report the best
result from 8 subsets with 50% overlap. The output of the
CRF is further smoothed by a SG filter.

Filter Forests. Filter forests (FF) [15] is an efficient dis-
criminative approach for predicting continuous variables
given a signal. FF can learn the optimal filtering kernels
to smooth temporal signals. Our implementation includes
some adaptations, such as limited candidate window sizes,
to improve the performance on our datasets.

6.2. Benchmark Experiments

Fig. 4 shows the benchmark performance evaluated for
both basketball and soccer. We evaluate using joint loss (2)
with ! “ 500. The precision and smoothness losses are
plotted separately to illustrate their relative contributions to
the joint loss. For both settings, we see that our approach
achieves the best performance, with the performance gap
being especially pronounced in basketball.

We note that the soccer setting is significantly more chal-
lenging than basketball, and no method performs particu-
larly well for soccer. One possible explanation is that soccer
camera planning using only player detections is unreliable
due to players not following the ball (unlike in basketball).
A visual inspection of the generated videos also suggests
that lack of ball tracking in the input signal x is a significant
limitation in the soccer setting.

We also observe that our approach achieves very low
smoothness loss, despite not utilizing a post-processing
smoothing step (see Table 1 for a summary description of

h
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Naïve Approach

• Supervised learning of demonstration data
– Train predictor per frame
– Predict per frame
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What is the Problem?

• Basically takes “infinite” training data to train 
smooth model.
– Via input/output examples

• In practice, people do post-hoc smoothing
Actual Human Movement
Supervised with Smooth Regularization



Cannot Rely 100% on Learning!

• People have models of smoothness!
– Kalman Filters
– Linear Autoregressors
– Etc...

• Pure ML approach throws them away!
– ”black box”



Hybrid Model-Based + Black-Box

• Model-based approaches
– Strong assumptions, well specified
– Lacks flexibility
– E.g., Kalman Filter, Linear Autoregressor

• Black-box approaches
– Assumption free, underspecified
– Requires a lot of training data
– E.g., random forest, deep neural network

• Best of both worlds?

Conventional
Models



New Policy Class

Policy

Black Box Predictor Smooth Model

Hoang
Le

ℎ 𝑠F ≡ 𝑥F:FHI, 𝑎FHJ:FHI = 𝑎𝑟𝑔𝑚𝑖𝑛QR 𝑓 𝑠F − 𝑎′ U + 𝜆 𝑔 𝑎FHJ:FHI − 𝑎′ U

=
X YZ [\] QZ^_:Z^`

J[\

Richard
Cheng



Functional Regularization

Complex Predictors F

Smooth Complex
Predictors H

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019
Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

ℎ 𝑠F ≡ 𝑥F:FHI, 𝑎FHJ:FHI = 𝑎𝑟𝑔𝑚𝑖𝑛QR 𝑓 𝑠F − 𝑎′ U + 𝜆 𝑔 𝑎FHJ:FHI − 𝑎′ U

=
X YZ [\] QZ^_:Z^`

J[\



Functional Regularization

Complex Predictors F

Smooth Complex
Predictors H

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016
Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019
Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

ℎ 𝑠F ≡ 𝑥F:FHI, 𝑎FHJ:FHI = 𝑎𝑟𝑔𝑚𝑖𝑛QR 𝑓 𝑠F − 𝑎′ U + 𝜆 𝑔 𝑎FHJ:FHI − 𝑎′ U

=
X YZ [\] QZ^_:Z^`

J[\

Stability of g → (relaxed) stability of h!



Our Result

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016

ℎ 𝑠F ≡ 𝑥F:FHI, 𝑎FHJ:FHI =
𝑓 𝑠F + 𝜆𝑔(𝑎FHJ:FHI)

1 + 𝜆



Qualitative Comparison

Baseline Our Approach

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little.  CVPR 2016



Lessons Learned

• Intuition: Let model do most of work
– Certifiable guarantees (e.g., smoothness, stability)
– Black box (deep neural net) adds flexibility
– “Regularization” improves learning

• Exponentially faster convergence w.r.t. SEARN

• Other settings?
– Deep learning + robust control / formal methods?

Lipschitz from smooth 
temporal dynamics

Aaron
Ames

Soon-Jo
Chung

Joel
Burdick

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
Andrew Taylor, Victor Dorobantu, et al., IROS 2019
Imitation-Projected Programmatic Reinforcement Learning,
Abhinav Verma, Hoang Le, et al., NeurIPS 2019

Swarat
Chaudhuri



Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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Coordinated Learning Hierarchical Behaviors
(Generative)

Learning to Optimize

Speech Animation

Side Constraints (Smoothness)



New Frontiers in Imitation learning

• Incorporating Structure
– Dynamics of output space
– Latent structure of input space
– New feedback oracles

• New Algorithmic Frameworks
– Black Box + Dynamics Model
– Black Box + Latent Graphical Model
– Retrospective Imitation

• Cool Applications!

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk
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