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PO“CV Learning (Reinforcement & Imitation)

Goal: Find “Optimal” Policy

Imitation Learning:
Optimize imitation loss

Reinforcement Learning:
Optimize environmental reward

Learning-based Approach for
Sequential Decision Making

State/Context s,

St+1

>

Agent

Environment / World

Action a,




Imitation Learning Tutorial

https://sites.google.com/view/icmI2018-imitation-learning/

Yisong Yue Hoang M. Le
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“1 want to use deep learning to optimize the design,
manufacturing and operation of our aircrafts. But
| need some guarantees.” -- Aerospace Director
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Blending Models/Rules & Black-Box Learning
4 I

Goals: A
p-Based
 Composable Theoretical Guarantees
e Learning Theoretic m
* Control Theoretic )
 Amenable to many IL/RL approaches

* Easy for control engineer to use T
* Very data efficient

~
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Starting Point ]
* Model-Based/Free

On/Off Policy
* Imitation/Reinforcement

Standard IL/RL Objective -

/ * Optimal Control
argmin,L(h) )
S.L.
R(h) <k
/ What can R encode?

Side Constraint



Side Guarantees

X <

dt

el 3

Stability

Safety

Possibly Others: -

Ideal Behavior

Fairness
Low-risk
Temporal logic
Etc...

Unsmooth

Smooth|Recovery

>

Smoothness



Realtime Player Detection and Tracking

Human Operated Camera
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Naive Approach

* Supervised learning of demonstration data
* Train predictor per frame

* Predict per frame
In practice, 2-step smoothing:
20

Camera Angle
S
Camera Angle
=)

Time Frame Time Frame



Starting Point

IL/RL Objective

N

— argmin,L(h) + AR(h)

R(h) <k /
\ Smooth Dynamics

What is R?

argmin,L(h)
S.L.



Regularize to Function Class
(his “close to” some g)

argminy,L(h)

s.t. @) argmin, ,L(h) + Allh — gll?
g € G:||h — g||* < k

1 \
Intractable?

Model-Based Controllers
(provably smooth)




Smooth PO|ICy Class (solution concept)

Black Box Predictor Smooth Model

argminp—r.yL(h) s.t.  h(s) = argming (f(s) —a)* + A(g(s) — a’)?
_ f(s)+2g(s)

Smooth Imitation Learning for Online Sequence Prediction 1+A4
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016




Test-Time Functional Regularization

Hoang
Le

Smooth Complex
Predictors H

Complex Predictors F

argming=cs »HL(R)  s.t. h(s) = argming (f(s) — a)? + A(g(s) — a’)?

_ f(s)+Ag(s)
B 142

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Basic Algorithmic Recipe

argming_r HL(R)  s.t. h(s) = argming (f(s) — a)? + A(g(s) — a’)?

_ f(s)+Ag(s)
B 142

Initialize g
Hold g fixed, train f using standard policy learning
Hold h fixed, estimate better g to characterize h

= w e

Repeat from Step 1

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Basic Algorithmic Recipe

Theoretical Questions:
argminh:(f,g)L(h * Does having g help with I.earning? (s) — a')2
* (Can we preserve properties of g?

 Can we leverage existing work as subroutines?

Practical Questions
* |sit easy for a practitioner to use?

Initialize g
Hold g fixed, train f using standard policy learning
Hold h fixed, estimate better g to characterize h

= w e

Repeat from Step 1

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Summary of Theoretical Guarantees

argminp—r,gL(h) s.t. h(s) = argming (f(s) — a)? + 2(g(s) — a')?

_ f(s)+Ag(s)
B 142

* By construction: h “close” to g
 Certifications on g => (relaxed) certifications on h

* Compatible with many forms of IL/RL
e Can be exponentially faster than prior work (SEARN)

Run-time regularization

E.g., “smoothness”

Adaptive Step Size
Exploits Lipschitz



Our Results

\

Provably Smooth Predictions
(G = linear autoregressors)

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

In]gtation Loss - Test Set - Adaptive vs. Fixed Beta

— adaptive 3
— 3=0.01
G=0.05
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Provably Faster Learning
(Natural Policy Updates)
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Generalized Control Regularization

i

Richard
Cheng

(5)+1g(s)
h(s) = =55

* fis black box learning
e gis “control prior” (e.g., H-infinity controller)

* Learn f using policy gradient using any standard RL method

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Generalized Control Regularization

\
Richard
. +/1 < Cheng
h(s) = f(s)+Ag(s)
1+A
* Theorem (informal):
2
* Variance of policy gradient decreases by factor of: (1—1/1)

* Bias converges to: Dy (h*, g) Implies much faster learning!

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Generalized Control Regularization

Richard
Cheng

* (Relaxed) Lyapunov stability bounds:

High Regularization Low Regularization

— Control Prior Traj.
— Optimal Trajectory

—— Control Prior Traj.
— Optimal Trajectory

~—— -
—

State Space, S State Space, S

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019



Generalized Control Regularization

i

Richard

Zoom Out (Wlth Var) Zoom In (No Var) Cheng
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Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019






Improving Control Prior?

Abhinav Hoang
Verma Le

Recall Algorithmic Recipe:

Initialize g
Hold g fixed, train f using standard policy learning
Hold h fixed, estimate better g to characterize h

s w N e

Repeat from Step 1

How to synthesize g?

Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurlIPS 2019



Aside: Batch Learning

e Suppose learning on historical data (“off-policy”)

 How to ensure that constraint is satisfied (with high probability)?

argminyL(h)

s.t. R < 5 mm) argminymax;L(R) + A(R(R) — 6)

* Convert learning into 2-player game on Lagrangian
* h player plays best response

* A pIayer pIays no-regret online Iearning I Satisfying constraints in training set

* PAC-guarantees on constraint satisfaction «——+ -
g-satisfaction in test set W.P. 1-6

=

Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019



Summary: Functional Regularization

IL/RL Objective
Equivalence Between argming, L(h) \
Regularization & St ﬁ argminyL(h) + AR(h)
Constrained Learning R(h) < k /
™~ Side Guarantees
Hybrid Policy h(s) = argming, (f(s) — a')? + A(g(s) — a')?

Solution Concept _ f(s)+Ag(s)
B 1+
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Model-Based Control

New State Current Action (aka control input)

\ /

Sts1 = F(sp,up) + €

/ Unmodeled Disturbance / Error

Current State

(Value lteration is also contraction mapping)

Robust Control (fancy contraction mappings)
e Stability guarantees (e.g., Lyapunov)
* Precision/optimality depends on error




Learning Residual Dynamics £ =nominal dynamics

F =learned dynamics

Current Action (aka control input)
New State

. /

Ser1 = F(seup) + F(sp,up) + €

\ / Unmodeled Disturbance / Error

Current State

Leverage robust control (fancy contraction mappings)
* Preserve stability (even using deep learning)
 Requires F Lipschitz & bounded error




Stable Drone Landing

Guanya
Shi

Ground effect

AR
AN

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019



Control System Formulation

Dynamics:

Control:

Unknown forces & moments:

{

/“

Learn the Residual

p =1V, mv = mg + Rf, + £,
R=RS(w), Jw=JwXw+T,+ T,
f., =0, O,T]T
_ T
Tu [Tma Ty, Tz]
p— 2 —
T cr cT cT cr ny
T _ 0 cTla,rrn 0 _CTlarm ng
Ty T _CTlarm 0 CTla,rm 0 TL2
Tz —CQ CQ —CQ cQ g
Ty

[fa,xa fa,ya fa,z]T

]T Learn the Residual

[Ta,xa Tays Ta,z



Current Research:
Safe Exploration

Data Collection (Manual Exploration)

N

I
N
<

position (m)
o
L
e
== |

Ensures F is Lipshitz

‘ Part | Part Il [Bartlett et al., NeurlPS 2017]
0 50 100 150 200 250 300 350 [Miyato et al., ICLR 2018]
time (s) l
o . I - T Spectral-Normalized
Learn ground effect: F(s,u) = f, = [fax fay, fa2] 4-Layer Feed-Forward

* (s,u): height, velocity, attitude and four control inputs



Prediction Results

—— RelLU Network prediction
—— Ground effect physical model with different u
e Ground truth

Ground Effect (N)
V N

1 o
0 - — = -
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Height (m)

Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 20109.



Current Research:

PrediCtiOn ReSU |tS Quantifying Extrapolation

Spectral Normalized Conventional DNN
(2.0
1.4
1.2 ining set 13 o
= 1.0 main g
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Neural Lander: Stable Drone Landing Control using Learned Dynamics

Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, Soon-Jo Chung. ICRA 2019.



Controller Design (simplified)

Guanya
* Nonlinear Feedback Linearization: Shi

— K _ Desired Trajectory
Unominal = As] n =  — p* (tracking error)

\

Feedback Linearization (PD control)

* Cancel out ground effect F(s,uUy14): U = Unominal T Uresidual

/

Requires Lipschitz & small time delay



Controller Design (simplified)

Guanya
* Nonlinear Feedback Linearization: Shi

u _ — K _ Desired Trajectory
nominal = Bsl] n= v — pt (tracking error)

Feedback Linearization (PD control)

» Cancel out ground effect F(s,uyq): Y = Unominal T Uresidual

(time delay)
Requires Lipschitz & small time delay



Controller Design (simplified)

* Nonlinear Feedback Linearization:

_ — K . Desired Trajectory
Unominal = RsT] n= _ (tracking error)
1% v*

Stability Guarantee: Time delay Unmodeled
(simplified) / - disturbance
()l < lln(o)llexp {A’"i”‘(’{) — L t} T

¢ Amin(K) —Lp
N
Lipschitz of NN
€
= [In(t)ll - —  Exponentially fast
Amin(K) o Lp P Y

Guanya
Shi



Robust Landing Control

PID Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C K8MkC SSQ



https://www.youtube.com/watch?v=C_K8MkC_SSQ
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Aside: Learning Control Lyapunov Functions

e CLFs encode low-dimensional projection of dynamics
* DOF of action space rather than state space
* Can be easier to learn than full dimensional dynamics

* How to learn CLF for controller design?
* How to analyze stability under model uncertainty?

Victor

Andrew
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems Taylor Dorobantu
Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, Aaron D. Ames. IROS 2019.

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
Andrew J. Taylor, Victor D. Dorobantu, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, Aaron D. Ames. CDC 2019.
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Ravi Motivating Example:
ke Risk-Aware Planning

Low Risk High Risk

* Compiled as mixed integer program
* Challenging optimization problem




Model-Based Planning

* Environment Model is Given
* Design global plan (aka trajectory)

e Satisfy global constraints
* Previous topics only ensured local constraints
* E.g., Lyapunov stability, smoothness

* NP-Hard optimization problem!



Optimization as Sequential Decision Making

* Many Solvers are Sequential
* Tree-Search

* Greedy
 Gradient Descent

* Can view solver as “agent” or “policy”
 State = intermediate solution
* Find a state with high reward (solution)
* Learn better local decision making

Formalize Learning Problem

e Builds upon modern RL/IL
Theoretical Analysis/Guidance
Interesting Algorithms




Example #1: Learning to Search (Discrete)

Integer Program Tree-Search (Branch and Bound)
o State = partial search tree
max — Z €T, (need to featurize)
i=1 Yy L YT cieiee Y Y e

subject to:
r1 + 19 > 1. »
T2 + a3 > 1, Action = variable
T+ 14 > 1, selection or branching

T3+ x5 > 1.
T4+ x5 > 1,

r; € {0,1},Vi e {1,---,5} Sparse Reward
@ feasible solution

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]



Example #2: Learning Greedy Algorithms (discrete)

- Submodular Utility
Contextual Submodular Maximization: argmax F, (L]J)

Y:|¥Y|<B / \
Selected Elements

* Greedy Sequential Selection: Context / Environment

s YV «¥ P argmax E,(WDa)
a

/

Not Available at Test Time

* Train policy to mimic greedy:
e (s) - a

/‘

States = (W, x)

Dictionary of Trajectories Select Diverse Set

Learning Policies for Contextual Submodular Prediction S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell. ICML 2013



Example #3: Iterative Amortized Inference (continuous)

e State = description of problem & current point

Gradient Descent Style Updates: ) .
* Action = next point

N —0.25

——%_ -4 Tterative Inference Model ’ —200
Q< %  Global Maximum 4
O X7 —0.30 *
[t —300
—0.351 ‘
’ —400
W —0.40
—500
| —0457 T g
\\ ~~~~~~~~~~~ :’ —~600

l““ _N= i
20 9025 130 135 140 145 L350
251 —700

Useful for Accelerating Variational Inference

Iterative Amortized Inference, Joe Marino, Yisong Yue, Stephan Mandt. ICML 2018



Optimization as Sequential Decision Making

Learning to Search

* Discrete Optimization (Tree Search), Sparse Rewards

Jialin Song

* Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization

* Discrete Optimization (Greedy), Dense Rewards

* Learning Policies for Contextual Submodular Prediction [ICML 2013]
Stephane Ross

Learning to Infer

* Continuous Optimization (Gradient-style), Dense Rewards

* Iterative Amortized Inference [ICML 2018]

* A General Method for Amortizing Variational Filtering [NeurIPS 2018] _
Joe Marino



Optimization as Sequential Decision Making

Learning to Search

e Discrete Optimization (Tree Search), Sparse Rewards

| ;e”"
B

Jialin Son

e Learning to Search via Retrospective Imitation [arXiv]

* Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization

* Discrete Optimization (Greedy), Dense Rewards

* Learning Policies for Contextual Submodular Prediction [ICML 2013] .
Stephane Ross

Learning to Infer

* Continuous Optimization (Gradient-style), Dense Rewards

* [terative Amortized Inference [ICML 2018]

* A General Method for Amortizing Variational Filtering [NeurIPS 2018] _
Joe Marino



Learning to Optimize for Tree Search

e |dea #1: Treat as Standard RL

 Randomly explore for high rewards
* Very hard exploration problem!

* Issues: massive state space & sparse rewards / ;i



Learning to Optimize for Tree Search

e |dea #2: Treat as Standard IL

* Convert to Supervised Learning
e Assume access to solved instances

“Demonstration Data” Q
* Training Data: Dy = {(,?ﬁ)}
A A

* Basic IL: argmin LDO (m) = E(S,a)NDO [£(a, m(s))]

l tell ,

Behavioral Cloning




Retrospective Imitation

Jialin Ravi

. Given: Song Lanka
* Family of Distributions of Search problems Difficulty levels: k=1,...,K

* Family is parameterized by size/difficulty

* Solved Instances on the Smallest/Easiest Instances
* “Demonstrations”

e Goal:
* Interactive IL approach
* Can Scale up from Smallest/Easiest Instances
* Formal Guarantees

Connections to Curriculum Learning
& Transfer Learning

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation

* Two-Stage Algorithm

* Core Algorithm
* Fixed problem difficulty Interactive IL w/ Sparse Environmental Rewards

* Reductions to Supervised Learning

* Full Algorithm w/ Scaling Up

* Uses Core Algorithm as Subroutine

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation (core Algorithm)

Roll-out Trace
Expert Trace

Repeat

@ Retrospective Oraclel
(Algorithm 2)

(D Initial Learning

Imitation
Learning
Policy

Supervised Learning
Reduction

@ Policy Update with Further Learning

Derived from Sparse
Retrospective Oracle Feedback s Environmental Rewards
Region B

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Retrospective Imitation (rull Aigorithm)

Initialize k=1

Initialize
Gurobi/SCIP/CPlex

Problem
Difficulty k

Base Solver

Instances &
Demonstrations

>

k=k+1

- Core Algorithm

) Retrospective Or: el
(Algorithm 2)
e .
3y "\ -
@?“ o ® O 0O
@ Policy Up:
e )
Retrospective Oracle Feedback ® O
Region B )

Use trained 1T

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv




Retrospective DAgger vs Heuristics for
MILP based Path Planning (budget=2k)

Retrospective DAgger

*— (select only)

BETTER

Optimality Gap (%)
o
~J o
w o

N

w
@)
=
>

r— /
04 -~— ——

—e— Gurobi
150 4 CIP \

Gurobi

More experiments
in paper

SCIP

pproach

10 11 12 13 14
Initial demonstrations  (400) (440) (480) (520) (560)
only at smallest size! Way points (# binary variables)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Ongoing: Integration with ENav

Ravi Hiro  Olivier Neil
Lanka Ono  Toupet Abcouwer




* Planning for 3D Inkjet Droplet Printing

0.1 -
0.08
0.06 -
0.04

0.02

Stephanie
Ding

Jialin

‘Uduak  Sandipan

Song Inyang-Udoh Mishra

®) Rensselaer

P
«(m

TEXA

The University of Texas at Austin



lterative Amortized Inference
(for Deep Probabilistic Models)

Joe Marino
—0:25 —-200
¢
~0.30 ‘\ ™
~0.35 "\\
‘\’ —400
. —100
W —0.40 | L r
\\\\\\\ - ~200
—0.457. e
~~~~~ i —600 —
- = 300 4 N
0025 130 155 140 145 = o
Hi ~700 = —400 w
9 - — SGD
Related to “Learning to Learn” [Andychowicz et al., 2016] =500 = —— SGD + Momentum
L —— RMSProp
—600 o —— AdaM
—— Iterative Inference Model (VL)
—700 o
0 50 100 150 200 250 300

Inference Iterations

Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018



Ongoing: Amortized Planning

Learning dynamics: Yujia Sophie Hao Tongxin

7, Huang Dai Liu Li
(at St) freward(atast)
’ fstate(as, St) S¢1q
Planning: /
al,ag,...,ar

Baseline: Gradient-based Planning

Optimize:
T Can use (offline) training to amortize?
max Z freward (fstate(ét—la at—1)7 at)
al,...,aT

t=1



Center for Autonomous Systems and Technologies

A New Vision for Autonomy

Caltech

http://cast.caltech.edu



http://cast.caltech.edu/

Autonomous Dynamic Robots




http:/cast.caltech.edu

POStd OC Open | ngS ! Mory Gharib Soon-Jo Chung Aaron Ames

(applications due January)

.
g .
.
TN “
— A s

Anima Anandkumar Yisong Yue

Katie Bouman Pietro Perona


http://cast.caltech.edu/

Takeaways

* Control methods => analytic guarantees
(side guarantees)

* Blend w/ learning => improve precision/flexibility

* Preserve side guarantees (possibly relaxed)

* Sometimes interpret as functional regularization

(speeds up learning)

* Also: combinatorial planning as policy learning
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