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“ I want to use deep learning to optimize the design,      
manufacturing and operation of our aircrafts.  But   
I need some guarantees. ”    -- Aerospace Director



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning

Goals:
• Composable Theoretical Guarantees
• Learning Theoretic
• Control Theoretic

• Amenable to many IL/RL approaches
• Easy for control engineer to use
• Very data efficient
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Starting Point

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ

Standard IL/RL Objective

Side Constraint

s.t.				
𝑅 ℎ < 𝜅

What can R encode?

• Model-Based/Free
• On/Off Policy
• Imitation/Reinforcement
• Optimal Control



Side Guarantees

Stability

B(x)

Safe 
Set      

Safety

of F which only contains complex predictors that behave similarly to some g 2 G. Hence, learning
h 2 H is equivalent to regularizing the behavior of the learned f to be close to some g 2 G. Any
certifiable properties of g may be (approximately) lifted to certify h. Another interesting aspect
of this approach is that the regularization is also enforced at test time, rather than only at training
time, which may have implications for learning efficiency and generalization. Similar concepts
of test-time regularization were studied in the context of posterior regularization for inference in
latent variable models [31, 110], but such settings are much simpler (e.g., single-shot inferences
rather than sequential decision making), and do not lead to certifiable guarantees on behavior.

3.1.2 Preliminary Results: Smooth Online Sequence Prediction
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Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X �! Y which
describes the ideal camera work that should occur at the

1

Figure 2:

We present one preliminary result that demonstrates the promise of this re-
search direction. In many continuous planning settings, the policy typically
receives a stream of input contexts and must make online decisions that max-
imizes utility subject to various constraints such as smoothness or stability.
Consider the example in Figure 2 from [17, 46]. Given a stream of contexts,
the ideal trajectory is the black line. However, our policy has detected that it
made a mistake at time A, and now must correct its mistake. The blue line
corresponds to a non-smooth correction, whereas the red line corresponds to a smooth correction
that recovers the black line at a slightly later time. If smooth behavior is desirable or required, then
the policy should be trained to behave like the red line rather than the blue line. Making smooth
context-aware predictions can be viewed as a structured prediction problem.

A fundamental challenge when using powerful function classes is the statistical inefficiency
of the function class, which results in many iterations of training (either imitation learning or
reinforcement learning) in order to generate enough training data to encourage the learned policy to
behave smoothly. However, there are already many well-studied smooth function classes, including
linear autoregressors and Kalman filters, whose primary limitation is that they cannot flexibly
condition on arbitrary context or input features. Can we design a function class and learning
algorithm to obtain the best of both worlds?

Our recent work [17, 46] demonstrated such an approach for the setting of Figure 1(b):

h(x) = argmin
a0

ka
0
� f(x)k2 + �ka

0
� g(x)k2 =

f(x) + �g(x)

1 + �
, (1)

where f denotes a black-box predictor and g denotes a smooth model-based approach. For G being
linear autoregressors and F being deep neural nets, we clearly have G ⇢ F and thus H ⇢ F . It is
straightforward to certify that a learned g 2 G outputs smooth trajectories (standard regularization
techniques can guarantee smoothness of linear autoregressors). For sufficiently large �, we can
thus certify that the learned h 2 H is (approximately) smooth.

We showed in [46] how to design a learning algorithm that can exploit smoothness properties
of H to train f and g for sequential decision making. The algorithm was designed for imitation
learning (e.g., smoothly imitating an expert demonstration of desired behavior), but in principle can
be adapted for reinforcement learning as well. In particular, we were able to prove a convergence
rate that is orders of magnitude faster than conventional imitation learning over F . The reasoning is
because enforcing smooth behavior allows the learning algorithm to extrapolate future behaviors.
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Smoothness

Ideal Behavior

Unsmooth

Smooth Recovery

• Fairness
• Low-risk
• Temporal logic 
• Etc…

Possibly Others:





Naïve Approach

• Supervised learning of demonstration data
• Train predictor per frame
• Predict per frame

Actual Human Movement
Supervised with Smooth RegularizationIn practice, 2-step smoothing:



Starting Point

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.
𝑅 ℎ < 𝜅

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ + 𝜆𝑅 ℎ

IL/RL Objective

Smooth Dynamics What is R?



Regularize to Function Class
(h is “close to” some g)

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.
∃𝑔 ∈ 𝐺: ℎ − 𝑔 < < 𝜅

𝑎𝑟𝑔𝑚𝑖𝑛',>𝐿 ℎ + 𝜆 ℎ − 𝑔 <

Model-Based Controllers
(provably smooth)

Intractable?



Smooth Policy Class (solution concept)

Policy

Black Box Predictor Smooth Model

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛AB 𝑓 𝑠 − 𝑎′ < + 𝜆 𝑔 𝑠 − 𝑎′ <

=
E F GH> F

IGH

𝑎𝑟𝑔𝑚𝑖𝑛'J(E,>)𝐿 ℎ s. t.

Hoang
Le

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016



Test-Time Functional Regularization

Complex Predictors F

Smooth Complex
Predictors H

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016

𝑎𝑟𝑔𝑚𝑖𝑛'J(E,>)𝐿 ℎ s. t.

Hoang
Le

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛AB 𝑓 𝑠 − 𝑎′ < + 𝜆 𝑔 𝑠 − 𝑎′ <

=
E F GH> F

IGH



Basic Algorithmic Recipe

1. Initialize g
2. Hold g fixed, train f using standard policy learning
3. Hold h fixed, estimate better g to characterize h
4. Repeat from Step 1

𝑎𝑟𝑔𝑚𝑖𝑛'J(E,>)𝐿 ℎ s. t. ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛AB 𝑓 𝑠 − 𝑎′ < + 𝜆 𝑔 𝑠 − 𝑎′ <

=
E F GH> F

IGH

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016



Basic Algorithmic Recipe

1. Initialize g
2. Hold g fixed, train f using standard policy learning
3. Hold h fixed, estimate better g to characterize h
4. Repeat from Step 1
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Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016

Theoretical Questions:
• Does having g help with learning?
• Can we preserve properties of g?
• Can we leverage existing work as subroutines?
Practical Questions
• Is it easy for a practitioner to use?



𝑎𝑟𝑔𝑚𝑖𝑛'J(E,>)𝐿 ℎ s. t.

Summary of Theoretical Guarantees

• By construction: h “close” to g
• Certifications on g => (relaxed) certifications on h

• Compatible with many forms of IL/RL
• Can be exponentially faster than prior work (SEARN)

E.g., “smoothness”
Run-time regularization

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛AB 𝑓 𝑠 − 𝑎′ < + 𝜆 𝑔 𝑠 − 𝑎′ <

=
E F GH> F

IGH

Adaptive Step Size
Exploits Lipschitz



Our Results

B 
E 

T 
T 

E 
R

Provably Faster Learning
(Natural Policy Updates)

Provably Smooth Predictions
(G = linear autoregressors)

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr.  ICML 2016



Qualitative Comparison

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little.  CVPR 2016

Our Approach2-Step Baseline



Generalized Control Regularization

• f is black box learning
• g is “control prior”   (e.g., H-infinity controller)

• Learn f using policy gradient using any standard RL method

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng

ℎ 𝑠 = E F GH> F
IGH



Generalized Control Regularization

• Theorem (informal):  
• Variance of policy gradient decreases by factor of: I

IGH

<

• Bias converges to: 𝐷LM(ℎ∗, 𝑔)

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng

ℎ 𝑠 = E F GH> F
IGH

Implies much faster learning!



Generalized Control Regularization

• (Relaxed) Lyapunov stability bounds:

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng
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Control Regularization for Reduced Variance Reinforcement Learning

Algorithm 1 Control Regularized RL (CORE-RL)
1: Compute the control prior, uprior using the known

model fknown(s, a) (or other prior knowledge)
2: Initialize RL policy ⇡✓0

3: Initialize array D for storing rollout data
4: Set k = 1 (representing k

th policy iteration)
5: while k < Episodes do

6: Evaluate policy ⇡✓k�1 at each timestep
7: if Using Adaptive Mixing Strategy then

8: At each timestep, compute regularization weight �
9: for the control prior using the TD-error from (11).

10: else

11: Set constant regularization weight �
12: end if

13: Deploy mixed policy ⇡k�1 from (5) to obtain
14: rollout of state-action-reward for T timesteps.
15: Store resulting data (st, at, rt, st+1) in array D.
16: Using data in D, update policy using any policy
17: gradient-based RL algorithm (e.g. DDPG, TRPO)
18: to obtain ✓k.
19: k = k + 1
20: end while

21: return Policy ⇡✓k , uprior B Overall controller

• For a given policy iteration, compute the regularization
weight, �, at each time step using the strategy described
in Section 4.3 (Lines 7-9). The algorithm also allows
using fixed regularization weight, � (Lines 10-11).

• Deploy the mixed policy (5) on the system, and record
the resulting states/action/rewards (Lines 13-15).

• At the end of each policy iteration, update the policy
based on the recorded state/action/rewards (Lines 16-18).

4.2. Bias-Variance Tradeoff

The following theorem formally expresses that mixing the
policy gradient-based controller ⇡✓k with the control prior,
uprior, decreases learning variability but introduces a bias
into the learned policy that is proportional to (a) the mixing
parameter �, and (b) the sub-optimality of the control prior.
Theorem 1. Consider the mixed policy (5) where ⇡✓k is an
RL controller learned through policy gradients, and sup-
pose that ⇡✓k converges to ⇡✓opt as k ! 1. The variance
(4) of the mixed policy arising from the policy gradient is
reduced by a factor ( 1

1+� )
2 when compared to the RL policy

with no control prior. However, the mixed policy has bias
proportional to the sub-optimality of the control prior:

DTV (⇡✓opt ,E[⇡k])

=
�

1 + �
DTV (⇡✓opt ,⇡prior) as k ! 1

(9)

where DTV (·, ·) represents the total variation distance be-
tween two probability measures (i.e. policies).

Note that ⇡prior is the (contrived) stochastic analogue to the
deterministic control prior uprior, such that ⇡prior(a|s) =
(a = uprior(s)) where is the indicator function.

The results in Section 6 validate this expected variance
reduction, and also demonstrate the benefits of regulariza-
tion on learning performance – see Fig. 4b. Note that the
bias/variance results apply to the policy – not the accumu-
lated reward.

Intuition: Using Figure 2, we provide some intuition for the
control regularization discussed above. Note the following:

• The difference between the control prior trajectory and
the optimal trajectory can be thought of as proportional
to the bias of the policy (e.g DTV (⇡✓opt ,⇡prior)). Note
this correspondence is not exactly correct, since Fig. 2 is
in the state space, but it provides good intuition.

• The explorable region of the state space is denoted by the
set Sst, which grows as � decreases and vice versa. This
illustrates the constrained policy search interpretation of
regularization, though again this correspondence is not
exact since Fig. 2 looks at the state space.

• If the optimal trajectory is in the explorable region, then
we can learn the corresponding optimal policy – otherwise
we cannot.

The second and third points above will be rigorously ad-
dressed in Section 5.

Figure 2. Illustration of optimal trajectory vs. control-theoretic
trajectory with the explorable set Sst. (a) With high regularization,
set Sst is small so we cannot learn the optimal trajectory. (b) With
lower regularization, set Sst is larger so we can learn the optimal
trajectory. However, this also enlarges the policy search space.

4.3. Computing the mixing parameter �

A remaining challenge is automatically tuning �, especially
as we acquire more training data. While setting a fixed
� can perform well, intuitively, � should be large when
the RL controller is highly uncertain (little data), and it
should decrease as we become more confident in our learned
controller (de-emphasizing the control prior).

Consider the multiple model adaptive control (MMAC)



Generalized Control Regularization

Control Regularization for Reduced Variance Reinforcement Learning
Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, Joel Burdick. ICML 2019

Richard
Cheng
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Control Regularization for Reduced Variance Reinforcement Learning

Figure 4. Learning results for CartPole, Car-Following, and TORCS RaceCar Problems. (a) Reward improvement over control prior
using DDPG with different set values for � or an adaptive �. The right plot is a zoomed-in version of the left plot without variance
bars for clarity. Values above the dashed black line signify improvements over the control prior. (b) Performance and variance in the
reward as a function of the regularization �, across different runs of the algorithm using random initializations/seeds. Dashed lines show
the performance (i.e. reward) and variance using the adaptive weighting strategy. Variance is measured for all episodes across all runs.
Adaptive � and intermediate values of � exhibit best learning. Again, performance is baselined to the control prior, so any performance
value above 0 denotes improvement over the control prior.

ization. Figure 4b reinforces that intermediate values of �
exhibit optimal performance. In all curves, we plot laptime
improvement over the control prior so that values above
zero denote improved performance over the prior.

It is important to note that using the adaptive strategy
for setting � in the TORCS setting gives us the highest-
performance policy that improves upon the control prior.
The variance with the adaptive strategy is significantly lower
than for the DDPG baseline, which again shows that the
learning process reliably learns a good controller.

7. Conclusion

This paper shows, through theoretical results and experimen-
tal validation, that our method of functional regularization
with a control prior enables significant variance reduction
and performance improvements in reinforcement learning.
This regularization can be interpreted as constraining the
explored action space during learning. Our method also
allows us to capture dynamic stability properties of a robust
control prior to guarantee stability during learning. A signif-
icant criticism of RL is that random initializations/seeds can
produce vastly different learning behaviors, limiting applica-
tion of RL to physical systems. Our framework substantially
alleviates this problem, allowing reliable learning of high-
performance, stable controllers with minimal variability.

B E T T E R





Improving Control Prior?

Recall Algorithmic Recipe:

1. Initialize g
2. Hold g fixed, train f using standard policy learning
3. Hold h fixed, estimate better g to characterize h
4. Repeat from Step 1

How to synthesize g?

Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning
Abhinav Verma, Hoang Le, Yisong Yue, Swarat Chaudhuri. NeurIPS 2019

Abhinav
Verma

Hoang
Le



Aside: Batch Learning
• Suppose learning on historical data (“off-policy”)
• How to ensure that constraint is satisfied (with high probability)?

• Convert learning into 2-player game on Lagrangian
• h player plays best response
• 𝜆 player plays no-regret online learning

• PAC-guarantees on constraint satisfaction 

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.

𝑅 ℎ < 𝛿

Batch Policy Learning under Constraints
Hoang Le, Cameron Voloshin, Yisong Yue. ICML 2019

Hoang
Le

𝑎𝑟𝑔𝑚𝑖𝑛'𝑚𝑎𝑥H𝐿 ℎ + 𝜆(𝑅 ℎ − 𝛿)

Satisfying constraints in training set
→
𝜺-satisfaction in test set W.P. 1-𝜹



Summary: Functional Regularization

𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ
s.t.

𝑅 ℎ < 𝜅
𝑎𝑟𝑔𝑚𝑖𝑛'𝐿 ℎ + 𝜆𝑅 ℎ

IL/RL Objective

Side Guarantees

ℎ 𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛AB 𝑓 𝑠 − 𝑎′ < + 𝜆 𝑔 𝑠 − 𝑎′ <

=
E F GH> F

IGH

Equivalence Between 
Regularization & 
Constrained Learning

Hybrid Policy 
Solution Concept



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning



Model-Based Control

𝑠SGI = 𝐹 𝑠S, 𝑢S + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

Robust Control (fancy contraction mappings)
• Stability guarantees (e.g., Lyapunov)
• Precision/optimality depends on error

(Value Iteration is also contraction mapping)



Learning Residual Dynamics

𝑠SGI = 𝐹 𝑠S, 𝑢S + W𝐹 𝑠S, 𝑢S + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance / Error

𝐹 = nominal dynamics
W𝐹 = learned dynamics

Leverage robust control (fancy contraction mappings)
• Preserve stability (even using deep learning)
• Requires W𝐹 Lipschitz & bounded error



Stable Drone Landing

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, 
Yisong Yue, Soon-Jo Chung.  ICRA 2019

Ground effect

Guanya
Shi



Control System Formulation

• Dynamics:

• Control:

• Unknown forces & moments:

Learn the Residual

Learn the Residual



Data Collection (Manual Exploration)

• Learn ground effect:

• (s,u): height, velocity, attitude and four control inputs

W𝐹 𝑠, 𝑢 → Spectral-Normalized
4-Layer Feed-Forward

Ensures Y𝑭 is Lipshitz
[Bartlett et al., NeurIPS 2017]
[Miyato et al., ICLR 2018]

Current Research: 
Safe Exploration



Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, 
Yisong Yue, Soon-Jo Chung.  ICRA 2019.

Height (m)

Gr
ou

nd
 E

ffe
ct

 (N
)



Prediction Results

Neural Lander: Stable Drone Landing Control using Learned Dynamics
Guanya Shi, Xichen Shi, Michael O'Connell, Rose Yu, Kamyar Azizzadenesheli, Anima Anandkumar, 
Yisong Yue, Soon-Jo Chung.  ICRA 2019.
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Spectral Normalized Conventional DNN

Current Research: 
Quantifying Extrapolation



Controller Design (simplified)

• Nonlinear Feedback Linearization:

• Cancel out ground effect  W𝐹(𝑠, 𝑢[\]):

𝑢^[_`^A\ = 𝐾F𝜂

Feedback Linearization (PD control)

𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired Trajectory
(tracking error)

𝑢 = 𝑢^[_`^A\ + 𝑢efF`]gA\

Guanya
Shi

Requires Lipschitz & small time delay



Controller Design (simplified)

• Nonlinear Feedback Linearization:

• Cancel out ground effect W𝐹(𝑠, 𝑢[\]):

𝑢^[_`^A\ = 𝐾F𝜂 𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired Trajectory
(tracking error)

𝑢 = 𝑢^[_`^A\ + 𝑢efF`]gA\

(time delay)

Feedback Linearization (PD control)

Requires Lipschitz & small time delay

Guanya
Shi



Controller Design (simplified)

• Nonlinear Feedback Linearization:

• Cancel out ground effect W𝐹(𝑠, 𝑢[\]):

𝑢^[_`^A\ = 𝐾F𝜂 𝜂 = 𝑝 − 𝑝∗
𝑣 − 𝑣∗

Desired Trajectory
(tracking error)

𝑢 = 𝑢^[_`^A\ + 𝑢efF`]gA\

(time delay)

Feedback Linearization (PD control)

Requires Lipschitz & small time delay

Stability Guarantee: 
(simplified)

𝜂(t) ≤ 𝜂(0) exp
𝜆_`^ 𝐾 − W𝐿𝜌

𝐶
𝑡 +

𝜖
𝜆_`^ 𝐾 − W𝐿𝜌

⟹ 𝜂(t) →
𝜖

𝜆_`^ 𝐾 − W𝐿𝜌 Exponentially fast

Unmodeled 
disturbance

Lipschitz of NN

Time delay

Guanya
Shi



Robust Landing Control

PD PID Neural-Lander (PD+Fa)

https://www.youtube.com/watch?v=C_K8MkC_SSQ

https://www.youtube.com/watch?v=C_K8MkC_SSQ




Aside: Learning Control Lyapunov Functions

• CLFs encode low-dimensional projection of dynamics
• DOF of action space rather than state space
• Can be easier to learn than full dimensional dynamics

• How to learn CLF for controller design?
• How to analyze stability under model uncertainty?

A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability
Andrew J. Taylor, Victor D. Dorobantu, Meera Krishnamoorthy, Hoang M. Le, Yisong Yue, Aaron D. Ames.  CDC 2019.

Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems
Andrew J. Taylor, Victor D. Dorobantu, Hoang M. Le, Yisong Yue, Aaron D. Ames.  IROS 2019.

Andrew 
Taylor

Victor
Dorobantu



Learning-Based Model-Based

+

Learning-Based

Model-Based Learning-Based

Model-Based Planner

Learned Optimizer

ModelModel Model

Blending Models/Rules & Black-Box Learning



Motivating Example:
Risk-Aware Planning

Background: Risk-Aware Path Planning

Finds a control sequence that minimizes the expected value of

a cost function

While limiting the probability of crashing into obstacles over

the planning horizon (chance constraint)

Demonstration of Risk

3 / 32

• Compiled as mixed integer program
• Challenging optimization problem

Jialin
Song

Ravi
Lanka



Model-Based Planning

• Environment Model is Given

• Design global plan (aka trajectory)

• Satisfy global constraints
• Previous topics only ensured local constraints
• E.g., Lyapunov stability, smoothness

• NP-Hard optimization problem!



Optimization as Sequential Decision Making

• Many Solvers are Sequential
• Tree-Search
• Greedy
• Gradient Descent

• Can view solver as “agent” or “policy”
• State = intermediate solution
• Find a state with high reward (solution)
• Learn better local decision making

• Formalize Learning Problem
• Builds upon modern RL/IL

• Theoretical Analysis/Guidance
• Interesting Algorithms



Example #1: Learning to Search (Discrete)

★

Sparse Reward
@ feasible solution

State = partial search tree
(need to featurize)

Action = variable 
selection or branching

[He et al., 2014][Khalil et al., 2016] [Song et al., arXiv]

Integer Program Tree-Search (Branch and Bound)



Example #2: Learning Greedy Algorithms (discrete)

Contextual Submodular Maximization: 𝑎𝑟𝑔max
q: q rs

𝐹t(Ψ)

Dictionary of Trajectories Select Diverse Set

Context / Environment
Selected Elements

Learning Policies for Contextual Submodular Prediction S. Ross, R. Zhou, Y. Yue, D. Dey, J.A. Bagnell.  ICML 2013

Submodular Utility

• Greedy Sequential Selection:
• Ψ ← Ψ⨁ argmax

A
𝐹t(Ψ⨁𝑎)

• Train policy to mimic greedy:
• 𝜋 𝑠 → 𝑎

Not Available at Test Time

State s = (𝚿, 𝒙)



Example #3: Iterative Amortized Inference (continuous)

Iterative Amortized Inference, Joe Marino, Yisong Yue, Stephan Mandt.  ICML 2018

Gradient Descent Style Updates:

Useful for Accelerating Variational Inference

• State = description of problem & current point
• Action = next point



Optimization as Sequential Decision Making
Learning to Search
• Discrete Optimization (Tree Search), Sparse Rewards
• Learning to Search via Retrospective Imitation [arXiv]

• Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization
• Discrete Optimization (Greedy), Dense Rewards
• Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Infer
• Continuous Optimization (Gradient-style), Dense Rewards
• Iterative Amortized Inference [ICML 2018]

• A General Method for Amortizing Variational Filtering [NeurIPS 2018]

Stephane Ross

Joe Marino

Jialin Song



Optimization as Sequential Decision Making
Learning to Search
• Discrete Optimization (Tree Search), Sparse Rewards
• Learning to Search via Retrospective Imitation [arXiv]

• Co-training for Policy Learning [UAI 2019]

Contextual Submodular Maximization
• Discrete Optimization (Greedy), Dense Rewards
• Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Infer
• Continuous Optimization (Gradient-style), Dense Rewards
• Iterative Amortized Inference [ICML 2018]

• A General Method for Amortizing Variational Filtering [NeurIPS 2018]

Stephane Ross

Joe Marino

Jialin Song



Learning to Optimize for Tree Search

• Idea #1: Treat as Standard RL

• Randomly explore for high rewards
• Very hard exploration problem!

• Issues: massive state space & sparse rewards ★



Learning to Optimize for Tree Search

• Idea #2: Treat as Standard IL

• Convert to Supervised Learning
• Assume access to solved instances

• Training Data: 𝐷} = ,

• Basic IL: argmin
�∈�

𝐿��(𝜋) ≡ 𝐸 F,A ~�� ℓ(𝑎, 𝜋 𝑠 )

★

Behavioral Cloning

“Demonstration Data”



Retrospective Imitation

• Given: 
• Family of Distributions of Search problems

• Family is parameterized by size/difficulty
• Solved Instances on the Smallest/Easiest Instances

• “Demonstrations”

• Goal:
• Interactive IL approach
• Can Scale up from Smallest/Easiest Instances
• Formal Guarantees

Jialin
Song

Ravi
Lanka

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Connections to Curriculum Learning 
& Transfer Learning

Difficulty levels: k=1,…,K



Retrospective Imitation

• Two-Stage Algorithm

• Core Algorithm
• Fixed problem difficulty
• Reductions to Supervised Learning

• Full Algorithm w/ Scaling Up
• Uses Core Algorithm as Subroutine

Interactive IL w/ Sparse Environmental Rewards

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv



Supervised Learning 
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· · ·
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? · · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Region A

Region B

Imitation
Learning

Policy

Retrospective Oracle Feedback

1� Initial Learning

2� Policy Roll-out (optional exploration)

3� Retrospective Oracle
(Algorithm 2)

4� Policy Update with Further Learning

Figure 1. A visualization of retrospective imitation learning depicting components of Algorithm 1. An imitation learning policy is
initialized from expert traces and is rolled out to generate its own traces. Then the policy is updated according to the feedback generated
by the retrospective oracle as in Figure 2. This process is repeated until some termination condition is met.

E

F

· · ·

· · · · · · G

· · ·

H

...

I

· · ·

M

? · · · N

· · ·

Figure 2. Zoom-in views of Region A and B in Figure 1. At node
E , the retrospective feedback indicates selecting node H over F , G
and I . At node M , the ? node is preferred over N .

4. Retrospective Imitation Learning
We now describe the retrospective imitation learning ap-
proach. It is a general framework that can be combined
with a variety of imitation learning algorithms. For clar-
ity of presentation, we instantiate our approach using the
data aggregation algorithm (DAgger) (Ross et al., 2011; He
et al., 2014) and we call the resulting algorithm Retrospec-
tive DAgger. We also include the instantiation with SMILe
(Ross & Bagnell, 2010) in Appendix A. In Section 6, we em-
pirically evaluate retrospective imitation with both DAgger
and SMILe to showcase the generality of our framework.

We decompose our general framework into two steps. First,
Algorithm 1 describes our core procedure for learning on
fixed size problems with a crucial retrospective oracle sub-
routine (Algorithm 2). Algorithm 3 then describes how to
scale up beyond the fixed size. We will use Figure 1 as a
running example. The ultimate goal is to enable imitation

Algorithm 1: Retrospective DAgger for Fixed Size
1 Inputs:
2 N : number of iterations
3 º1: initial policy trained on expert traces
4 Æ: mixing parameter
5 {P j }: a set of training problem instances
6 D0: expert traces dataset
7 initialize D = D0
8 for i √ 1 to N do
9 º̂i √Æºi + (1°Æ)ºexplor e (optionally explore)

10 run º̂i on {P j } to generate a set of search traces {ø j }
11 for each ø j , compute º§(ø j , s) for each terminal state s

(Algorithm 2)
12 collect new dataset Di based on each º§(ø j , s)
13 update D with Di (i.e., D √ D [Di )
14 train ºi+1 on D
15 end
16 return best ºi on validation

learning algorithms to scale up to problems much larger
than those for which we have expert demonstrations, which
is a significant improvement since conventional imitation
learning cannot naturally accomplish this.

Core Algorithm for Fixed Problem Size. We assume ac-
cess to an initial dataset of expert demonstrations to help
bootstrap the learning process, as described in Line 3 in
Algorithm 1 and depicted in step 1� in Figure 1. Learning
proceeds iteratively. In Lines 9-10, the current policy (po-

Retrospective Imitation (Core Algorithm)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Derived from Sparse
Environmental Rewards

Repeat



Retrospective Imitation (Full Algorithm)

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv

Initialize k=1

Initialize
Gurobi/SCIP/CPlex

k=k+1
Use trained 𝝅

Problem 
Difficulty k

Base Solver

Instances &
Demonstrations

Core Algorithm



(a) (b) (c)

Figure 4: (left) Retrospective imitation versus off-the-shelf methods. The RL baseline performs very poorly due to sparse
environmental rewards. (middle, right) Single-step decision error rates, used for empirically validating theoretical claims.

(a) (b) (c)

Figure 5: Retrospective DAgger (“select only” policy class) with off-the-shelf branch-and-bound solvers using various search
node budgets. Retrospective DAgger consistently outperforms baselines.

the results on a range of search size limits. We see that
Retrospective DAgger (“select only”) is able to consistently
achieve the lowest optimality gaps, and the optimality gap
grows very slowly as the number of integer variables scale
far beyond the base problem scale. As a point of compar-
ison, the next closest solver, Gurobi, has optimality gaps
ª 50% higher than Retrospective DAgger (“select only”) at
14 waypoints (560 binary variables).

Empirically Validating Theoretical Results. Finally, we
evaluate how well our theoretical results in Section 5 char-
acterizes experimental results. Figure 4b and 4c presents
the optimal move error rates for the maze experiment,
which validates Proposition 1 that retrospective imitation
is guaranteed to result in a policy that has lower error rates
than imitation learning. The benefit of having a lower error
rate is explained by Theorem 2, which informally states that
a lower error rate leads to shorter search time. This result
is also verified by Figure 2a and 2d, where Retrospective
DAgger/SMILe, having the lowest error rates, explores the
fewest number of squares at each problem scale.

7 Conclusion & Future Work
We have presented the retrospective imitation approach
for learning combinatorial search policies. Our approach
extends conventional imitation learning, by being able to
learn good policies without requiring repeated queries to
an expert. A key distinguishing feature of our approach is

the ability to scale to larger problem instances than con-
tained in the original supervised training set of demonstra-
tions. Our theoretical analysis shows that, under certain
assumptions, the retrospective imitation learning scheme
is provably more powerful and general than conventional
imitation learning. We validated our theoretical results on
a maze solving experiment and tested our approach on the
problem of risk-aware path planning, where we demon-
strated both performance gains over conventional imita-
tion learning and the ability to scale up to large problem
instances not tractably solvable by commercial solvers.

By removing the need for repeated expert feedback, ret-
rospective imitation offers the potential for increased appli-
cability over imitation learning in search settings. However,
human feedback is still a valuable asset as human computa-
tion has been shown to boost performance of certain hard
search problems [Le Bras et al., 2014]. It will be interesting
to incorporate human computation into the retrospective
imitation learning framework so that we can find a balance
between manually instructing and autonomously reason-
ing to learn better search policies. Retrospective imitation
lies in a point in the spectrum between imitation learning
and reinforcement learning; we are interested in exploring
other novel learning frameworks in this spectrum as well.
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Our Approach

Gurobi

SCIP

Initial demonstrations
only at smallest size!

More experiments
in paper

Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
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• Planning for 3D Inkjet Droplet Printing

Ongoing: Additive Manufacturing
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Experiment: Setup
● Two structures: square and cross

● Two parameters decide # of integer variables
○ Grid size of each layer
○ # of control receding horizon

● We implement the learning to search framework
with SCIP, an open source integer program solver



Iterative Amortized Inference 
(for Deep Probabilistic Models)

Joe Marino

Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018
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Related to “Learning to Learn” [Andychowicz et al., 2016] 



Ongoing: Amortized Planning
Yujia

Huang
Sophie

Dai
Hao
Liu

Tongxin
Li

Folds here Folds here

• Why L2P is more stable?
• Actions are more stable

• Finding a global optimal may not be the 
best choice!

Reward
Traning
Testing

Learning to Learn for Planning and Beyond
Tongxin LI; Sihui Dai; Hao Liu; Yujia Huang; Tanvi Gupta

California Institute of Technology

[1] J. Marino, Y. Yue, and S. Mandt, “Iterative amortized inference,” arXiv preprint arXiv:1807.09356, 2018
[2] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent dynamics for planning from pixels,” arXiv preprint arXiv:1811.04551, 2018
[3] C. Cremer, X. Li, and D. Duvenaud, “Inference suboptimality in variational autoencoders,” arXiv preprint arXiv:1801.03558 , 2018
[4] R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon, “Amortized inference regularization,” in Advances in Neural Information Processing Systems, 2018, pp. 4393–4402
[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013

References

• Model-based Reinforcement learning:

• Recurrent  Gradient-based Planning
• Inefficient

• Amortization [5]
• Inaccurate

• Learning to plan [1]

Motivation

Introduction

• We define our algorithm for learned planning (L2P) as follows:

L2P: Learn an inference model to infer the action.
Update the parameter of inference model during training.

• We compare with gradient based planning (GP) and
cross entropy method (CEM) described below:
GP: Update actions based on gradient of reward model.

CEM: Population based genetic algorithm.

Methods Discussion

Conclusions

Learning dynamics:

Planning:

Optimize:

Results

We thank the TA Joe Marino, for advising our project 
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probabilistic models.
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Future Directions

Comparison

Optimality Convergence Rate Stability

Cross Entropy Method 
(CEM) [2]

Converge to optimal after 
sufficiently many 

samplings
No guarantee High variance

Gradient-based
Planning(GP)

Reach optimal after 
enough iterations

More iterations are 
necessary

High Variance

Learning to Plan (L2P)
No guarantee, but 

distance from optimal 
upper bounded

Fewer than needed for 
gradient based

Low variance

Plan 1 Plan 2 Plan N…

Iterations

CEM GP L2P

Performance comparison in noiseless case

L2PGP

Performance comparison in noisy case:

Theorem: Suppose      and      are Lipschitz continuous 
functions. Then the “amortized gap”[3,4] for planning is 
bounded from above by

CEM

Reinforcement learning       Variational Inference

mean std.

CEM 4.33 4.56

GP 111.41 21.08

L2P 130.77 1.37

mean std.

CEM 3.13 8.36

GP 7.28 6.89

L2P 7.65 6.78

• Comparison between CEM, GP and L2P

• L2P provides robustness

• Transition model is more important than 
reward model

Baseline: Gradient-based Planning

Can use (offline) training to amortize?



A New Vision for Autonomy
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6.3 Summary of Facilities, Equipment, and Other Resources
The Center for Autonomous Systems and Technologies (CAST) at Caltech, directed by Prof.
Gharib, promotes interdisciplinary research and the exchange of ideas in the expanding area of
autonomous systems ( ). These systems include, but are not limited
to, drones and robots for use in science, industry, and medicine. The research conducted by the
center addresses sensing, control, vision, and other emerging areas. Currently, drones are highly
unstable flyers and are prone to atmospheric conditions. CAST’s unique open air wind tunnel
facility, shown in Fig. 13, allows researchers to study the complexity and challenges of control and
stability associated with autonomous single or collective drone systems. Drone performance can be
tested and studied under severe atmospheric conditions such as rain, hail, sandstorms, turbulence,
and gust.

Figure 13: Caltech’s CAST drone research
facilities.

The CAST-facility is built of 8,230 square feet (765
m2) of specialized lab including: high-bay drone &
robotic testing facility, fabrication lab & assembly area,
and o�ces, meeting rooms, visiting sta� o�ces and re-
strooms. 4,300 square feet (399 m2) is located inside the
first floor of the Karman Laboratory and enclose 1800
square feet (167 m2) of outside laboratory space where
the wind tunnel system and drone flight arena is located.

The CAST wind tunnel facility in (Figs. 3 & 13), at
its core, provides a paradigm change in the field of multi-
functional wind tunnels, by incorporating a wide variety
of flow conditions in a space e�cient package. Introduc-
ing a new technique of generating flow patterns not de-
pendent upon obstacle geometries (which result in major
pressure losses) allows an open loop tunnel concept to be
implemented, maximizing test section size in a limited
space environment. To meet recent research challenges
and open new fields of wind tunnel testing, Co-PI Gharib
and his students have built an innovative concept of a con-
figurable 10-foot-by-10-foot multi-fan array of 1296 fans
capable of generating wind speeds of up to 44 mph, with
a side wall of 324 fans to create a crosswind. The wall is
capable of creating a nearly infinite variety of wind con-
ditions for drones to learn to react to– everything from
a light gust to a stormy vortex. It can also be tilted 90
degrees to simulate vertical take o�s and landings.

A real-time optical tracking system, comprised of 48
IR cameras, is implemented throughout the entire outdoor
drone arena of the CAST facility, including a designated
subsystem for the wind tunnel test section, to relay de-
tailed positioning information to the user. This setup al-
lows drones to enter and exit the test section as desired

but remain actively tracked and controlled throughout all of the CAST facility. The setup consists
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Autonomous Dynamic Robots

of an arrangement of high precision cameras placed throughout the capture space which can locate
an object three-dimensionally with sub-millimeter accuracy. The location information, for exam-
ple, can be fed back wirelessly to a control system to position one or more drones flying in the test
section with 200-micron accuracy.

Figure 14: Caltech’s Lucas wind tunnel
(1.3 m tall and 1.8 m wide)

The John W. Lucas Wind Tunnel at Caltech is a
medium-sized, low-speed wind tunnel with a 4.3 feet (1.3
meters) tall, 5.9 feet (1.8 meters) wide and 24.6 feet (7.5
meters) long test section. The closed circuit tunnel uti-
lizes a 670 hp (500 kW) synchronous motor driving a
16-blade variable pitch fan and can achieve flow speeds
up to 168 mph (75 m/s). It uses adaptive wall technol-
ogy to minimize the wall interference and reduce the need
for data corrections required in straight-wall tunnel tests.
Based on the measured pressure distribution around the
investigated model the wall contour is adapted to the cur-
rent model configuration to mimic an infinite flow field.
Equipped with a highly accurate 6-component strain gage balance, this tunnel provides precise data
about aerodynamic forces and moments. In addition, the Lucas Wind Tunnel is designed to facili-
tate particle image velocimetry (PIV) measurements, which enables a full dynamic characterization
of the flow field around any investigated model. The equipment was originally designed to fit within
the confines of the 90 x 30 x 20 feet (27.4 x 9.1 x 6.1 m) room in which it sits.

Figure 15: Prof. Chung’s space drone sim-
ulator facility.

The Aerospace Robotics and Control Laboratory at
Caltech, directed by PI Chung, has the facility and equip-
ment to develop full-autonomous aerial robots, such as
robotic multicopter systems with custom onboard autopi-
lot systems and single-board computers for computer-
vision based navigation and control, and robotic flapping
flying bats (AFOSR Young Investigator Award, 2009-
2011 and NSF CAREER Award 2013-2018). Our new
spacecraft research laboratory consists of a large space-
craft fabrication space with a clean room and one of the
largest spacecraft motion simulation flat floors among
university laboratories. The lab is also equipped with 3-
D printers for rapid prototyping of novel UAV designs,
multiple oscilloscopes, function generators, and real-time

control computers. The lab also has a state-of-the-art motion capture system for rapid implementa-
tion of control algorithms and two MarkForge Carbon Fiber 3D printers for fabricating lightweight
UAV wing and body structures. The Aerospace Department at Caltech (GALCIT) owns an ad-
vanced machine shop that is equipped with multiple 3D printers (SLS), laser cutters, and various
metalworking tools ( ).
6.4 Current and Pending Support
A separate document for listing funding and research activities of the PI and Co-PI in on-going and
pending research projects is attached into the R&R Senior / Key Person Profile Form.
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All the tasks will be performed on campus at the two universities: Caltech and GaTech.
There are no human or animal subjects involved. We will release the data collected on robot
measurements in the wind tunnel for drones and from the walking lab for bipedal robots. We
will also release the trained AI models as well as the software code, and make experiments
reproducible. The outcomes will be published at top AI and robot venues and the technical
reports will be made available.

6 Learning-Based Flight Control Algorithms

Objectives: By leveraging the successful development and implementation of our guid-
ance, navigation, and flight control algorithms with the proposed algorithms to learn high-
fidelity 6-DOF flight dynamic models under various perturbations, we will further improve
a three-way trade-o↵ among robustness, computational e�ciency, and optimal performance
characteristics of our flight control and autonomy systems in this project.

Motivation: The recent successes of supervised machine learning have spurred great
interest in applying data-driven methods to virtually every domain. However, existing ma-
chine learning approaches cannot e↵ectively capture the full complexity of many real-world
settings such as adversary wind conditions for nonlinear flight stability. Thus far, the adop-
tion of data-driven techniques in such domains is piecemeal and ad-hoc, and is increasingly
a bottleneck in the development of systems that feature unconventional complicating factors
such fast interactions between environments, unsteady aerodynamics, and nonlinear flight
dynamics. We will develop an integrated approach that holistically combines principles from
learning theory with those from system-theoretic disciplines such as optimal and robust
stochastic nonlinear control.

Figure 1. Autonomous flight of Caltech’s electric VTOL with

dynamically-sweeping wings (Fig. ??) under a wide spectrum of

severe wind conditions generated by the 1296-fan-array.

Guidance and control strategies
for highly maneuvering flight will
be designed to operate at multi-
ple timescales: the outer loop will
run an order of magnitude slower
than the flight dynamics in SE(3),
while transition maneuvers will be
controlled at the same time scale
as the flight dynamics. We will
develop (1) optimal agile motion
primitives utilizing flight data col-
lected with CAST’s open air wind
tunnel (see Fig. 1) and simula-
tion of reduced-order aeromechan-
ical models, which are fed into
the inner loop around the flight
controllers , and (2) a maneuver-
specific motion planning algorithm
that will make high-level decisions
to smoothly sequence qualitatively di↵erent maneuvers such as gliding, 3D turning, div-

9
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Takeaways
• Control methods => analytic guarantees

• Blend w/ learning => improve precision/flexibility

• Preserve side guarantees

• Sometimes interpret as functional regularization

• Also: combinatorial planning as policy learning

(side guarantees)

(possibly relaxed)

(speeds up learning)



Jialin
Song

Ravi
Lanka

Joe
Marino

Stephane
Ross

Aadyot
Bhatnagar

Albert
Zhao

Milan
Cvitkovic

Robin
Zhou

Debadeepta
Dey

Stephan
Mandt

Hiro
Ono

Drew
Bagnell

Olivier
Toupet

Neil
Abcouwer

Uduak
Inyang-Udoh

Sandipan
Mishra

Yujia
Huang

Sophie
Dai

Hao
Liu

Tongxin
Li

Ufuk
Topcu

Yue, Yisong
WI 2018-19CS 101B Sec. 01 - Special Topics in Computer Science

0002043782.jpg

rbal@caltech.edu

Bal
Roshan Singh
Junior (CS)

0002019355.jpg

pbuabthong@caltech.edu

Buabthong
Pakpoom (Pai)
G3 (MS)

0001959087.jpg

michaelangelo@caltech.edu

Caporale
Michaelangelo Valentino 
Senior (ACM)

0002044133.jpg

sding@caltech.edu

Ding
Stephanie Qiu Li
Junior (CS)

0002014909.jpg

kpark2@caltech.edu

Park
Kinam (Danny)
Senior (CS)

0002015416.jpg

azwang@caltech.edu

Wang
Andrew Zeyu
Senior (CS)

11-Dec-18 11:41:04 AM

Stephanie
Ding

Hoang
Le

Andrew 
Taylor

Victor
Dorobantu

Guanya
Shi

Richard
Cheng

Abhinav
Verma

Cameron
Voloshin

Meera
Krishnamoorthy

Jimmy
Chen

Peter
Carr

Andrew
Kang

Joel
Burdick

Swarat
Chaudhuri

Gabor
Orosz

Angie
Liu

Anima
Anandkumar

Soon-Jo
Chung

Michael
O’Connell

Kamyar
Azizzadenesheli

Jim
Little

Aaron
Ames



Smooth Imitation Learning for Online Sequence Prediction, Hoang Le, et al., ICML 2016
Control Regularization for` Reduced Variance Reinforcement Learning, Richard Cheng et al. ICML 2019
Batch Policy Learning under Constraints, Hoang Le, et al. ICML 2019
Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision Trees, Jianhui Chen, et al.,  CVPR 2016
Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning, Abhinav Verma, Hoang Le, et al., NeurIPS 2019
Neural Lander: Stable Drone Landing Control using Learned Dynamics, Guanya Shi, et al., ICRA 2019
Robust Regression for Safe Exploration in Control, Angie Liu, Guanya Shi, et al., arxiv
Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems, Andrew Taylor, Victor Dorobantu, et al., IROS 2019
A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability, Andrew Taylor, Victor Dorobantu, et al., CDC 2019
Learning to Search via Retrospective Imitation, Jialin Song, Ravi Lanka, et al., arXiv
Co-Training for Policy Learning, Jialin Song, Ravi Lanka, et al., UAI 2019
Learning Policies for Contextual Submodular Optimization, Stephane Ross et al., ICML 2013
Iterative Amortized Inference, Joe Marino et al., ICML 2018
A General Framework for Amortizing Variational Filtering, Joe Marino et al, NeurIPS 2018

https://sites.google.com/view/smooth-imitation-learning
https://github.com/rcheng805/CORE-RL
https://sites.google.com/view/constrained-batch-policy-learn/
https://github.com/vdorobantu/lyapy
https://github.com/ravi-lanka-4/CoPiEr
https://github.com/joelouismarino/iterative_inference
https://github.com/joelouismarino/amortized-variational-filtering

References

https://sites.google.com/view/smooth-imitation-learning
https://github.com/rcheng805/CORE-RL
https://sites.google.com/view/constrained-batch-policy-learn/
https://github.com/vdorobantu/lyapy
https://github.com/ravi-lanka-4/CoPiEr
https://github.com/joelouismarino/iterative_inference
https://github.com/joelouismarino/amortized-variational-filtering

