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Goal-Oriented Experiment Design

Experiment Designer Experiment Platform

• Iterative & adaptive

• Utility maximizing (find best outcome)

Experiment

Measurement

self-tuning system



Robotics & Control
image credit @ mwfarmandfield Protein Engineering

image credit @ creativebiomart

Material Science 
image credit @ phys.org

Drug Discovery
from Slideshare

Many Applications (Goal-Oriented)

http://www.myfolio.com/creativebiomart
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http://www.myfolio.com/creativebiomart
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Hypothesis Space

Nature Paper

Useful Result

$100M

AI for Goal-Oriented Experiment Design



Batch Supervised Learning

(      )
Data: X Target Signal: Y

f(x) ≈ y
Data Collected Up Front!



Experiment Design as Interactive Learning

• Collect data on the fly
• Not available a priori

• Limited budget on data collection

• How to choose?



Three Modes of Interactive Learning

Active Learning Multi-Armed Bandits(Bayesian) Optimization

• Goal: Discover truth

• E.g., model of world

• Maximize accuracy

• Goal: Best single prediction

• E.g., best protein 

• Maximize final utility

• Goal: Utility over time

• E.g., recommender systems

• Maximize utility over time

Focus of Talk



Learning Setup

Experiment Designer Experiment Platform

self-tuning system

Given: input space X
Unknown: fitness F(x)=y
Maintain: posterior P(F|D)    (D=measurements)

Measure yt

Choose xt
Add (xt,yt) to D
Update posterior P(F|D)

t=t+1

Upper Confidence Bound:  argmaxx 𝜇 x + 𝛽𝜎 x
Posterior Sampling:              argmaxx f(x),   f~P(F|D)



Active Learning Simple Example

• 1 feature

• Learn threshold function

True Model
Passive Learning
Sample from distribution

Learned Model



Active Learning Simple Example

• 1 feature

• Learn threshold function

True Model
Active Learning
Binary Search



Comparison with Passive/Batch Learning

• # samples to be within ε of true model

• Passive Learning:

• Active Learning:
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(Bayesian) Optimization 
Example

Frances
Arnold

X = space of proteins
F(x) = fitness landscape

Image Credit: Frances Arnold



• How to split trials to collect information

• Static Experimental Design 
• Standard practice

• (pre-planned)

http://en.wikipedia.org/wiki/Design_of_experiments

Treatment Placebo Treatment Placebo Treatment

…

Bandits Example



• Adapt experiments based on outcomes

Treatment Placebo Treatment Treatment

…
Treatment

Bandits Example



Each Experiment Matters (“Cumulative Regret”)

http://www.nytimes.com/2010/09/19/health/research/19trial.html



Comparison 
(Active Learning, Optimization, Bandits)

• Similarities:
• Same interaction protocol

• Query F(x)

• “Sequential experimental design”

• Active Learning: learn F(x) as accurately as possible

• (Bayesian) Optimization: find maximizer F(x*)

• Bandits: maximize σ𝑖 𝐹(𝑥𝑖)

Discovering “truth”

Best result only

Each experiment matters
“Regret Minimization”

Goal-Oriented	Experiment	Design

Experiment	Designer Experiment	Platform

• Iterative	&	adaptive

• Utility	maximizing	(find	best	outcome)

Experiment

Measurement

self-tuning system



Challenges

Volatile Utility Landscapes

High Dimensionality
https://phys.org/news/2022-04-deep-decode-

functional-properties-proteins.html 

Imperfect & 
Heterogeneous 

Experiments

High Fidelity

Low Fidelity

Multi-Objective (Safety & Efficacy)

Training Data

 on Antibodies

Experiment on 

Enzymes

Distribution Shift

https://phys.org/news/2022-04-deep-decode-functional-properties-proteins.html
https://phys.org/news/2022-04-deep-decode-functional-properties-proteins.html


Design Task
(Out of 

Distribution)

Prior Experiments

Representation Learning

Uncertainty 
Quantification

Design Most Informative 
Experiments

Continuous 
Learning

Real Applications are Complicated!

Scientific PapersSimulations



Large & Heterogenous Batched Experiments 

New constraints & complexity

Icon image src: https://uxwing.com/lab-icon/ https://thenounproject.com/icon/physics-simulator-3127977/ 

https://uxwing.com/lab-icon/
https://thenounproject.com/icon/physics-simulator-3127977/


Basic Recipe

Choose Objective
(can be multiple)

Choose Representation
https://phys.org/news/2022-04-deep-decode-

functional-properties-proteins.html 

Choose Experiment Platforms

Icon image src: https://uxwing.com/lab-icon/ https://thenounproject.com/icon/physics-simulator-3127977/ 

Choose 
Algorithm 

Interdependent!

https://phys.org/news/2022-04-deep-decode-functional-properties-proteins.html
https://phys.org/news/2022-04-deep-decode-functional-properties-proteins.html
https://uxwing.com/lab-icon/
https://thenounproject.com/icon/physics-simulator-3127977/
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Example: Engineering Active Site of Protoglobin

Jason
Yang

1
cis product

2
trans product

Design Problem: 
find the optimal set of mutations on 5 sites

for high yield and selectivity for 1, the cis product

Design space:
205 = 3.2 million variants



Example: Computational Antibody Design

Rosetta
Orchestrator

Rosetta

Rosetta

Rosetta Output: Portfolio of AntibodiesTom 
Desautels

Cloris 
Cheng

Raul 
Astudillo



Research Questions

• How do we scale in a principled way?

• How do we quantify uncertainty?

• How can we design methods for larger scope?

• How can we develop full-stack algorithmic exploration?

Work in Progress: Advice Welcome!



Thought Experiment: What point should we choose next?

Highest Posterior Mean
Highest Optimistic Estimate

Highest
Uncertainty

Measurements Highest Point 
from Random 
Sample

Posterior Mean

Random 
Sample

1D Design Space

U
ti

lit
y



Value of Information 

• Informal Definition: how much information (in expectation) the 
measurement tells us about our desired goal

• Desired goal is task-dependent:
• Best solution

• Pareto frontier

• Most accurate model

• Decision Policy: choose experiment with highest VoI



• Posterior Mean: won’t learn that much

• Highest Uncertainty: learn useless information

• Optimistic: Either good solution or pruned design space

• Highest from Sample: similar to optimistic in expectation

Posterior Sampling

Upper Confidence Bound
Measures of VoI:



• Posterior Mean: won’t learn that much

• Highest Uncertainty: learn useless information

• Optimistic: Either good solution or pruned design space

• Highest from Sample: similar to optimistic in expectation

Posterior Sampling

Upper Confidence Bound
Measures of VoI:

Well understood in classic settings!
(convergence guarantees, applications)

Simple models (Gaussian Processes)
Low dimensional 
Simple objectives
Requires calibrated uncertainty!



Example Application: Treating Lower Spine Injuries

49 mm

10 mm

Medtronic 
human 
array

Image source: 
williamcapicottomd.com

SCI Patient

Each patient is unique

109 possible configurations!Joel 
Burdick

Yanan
Sui



Clinical Experiments



Rest of This Talk

Embedding Uncertainty Quantification 
& Decision Making

Orchestrator

Output: 
Portfolio of Antibodies



Goal: Find Optimal Design

Experiment Designer Experiment Platform

Experiment

Measurement

self-tuning system

• Use deep learning for modeling & uncertainty quantification

• Design problem out of distribution (w.r.t. prior data)



Option 1: Deep Kernel Learning

Deep Kernel Gaussian Process

(previously hand crafted)

https://arxiv.org/abs/1511.02222 

• Input to NN can be any existing representation

• Learn DK from scratch during experimentation
• Update NN after each round of measurements

https://arxiv.org/abs/1511.02222


Option 2: Frequentist Ensembles

Training data
Bootstrapped 

Versions

Bootstrapped 
Versions

Bootstrapped 
Versions

Empirical
Distribution
of Predictions



Comparison
Jason
YangActive Learning-Assisted Directed Evolution, Yang, et al., (under review)



Comparison
Jason
YangActive Learning-Assisted Directed Evolution, Yang, et al., (under review)

Frequentist Ensembles 
are Most Calibrated!
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Recall: Engineering Active Site of Protoglobin

Jason
Yang

1
cis product

2
trans product

Design Problem: 
find the optimal set of mutations on 5 sites

for high yield and selectivity for 1, the cis product

Design space:
205 = 3.2 million variants



Results
• 96 experiments per round
• Posterior sampling
• Standard directed evolution ineffective (highly epistatic)

Better

B
et

te
r

B
et

te
r

Active Learning-Assisted Directed Evolution, Yang, et al., (in preparation)



Deep Kernel Learning Revisited
(Let’s be fully Bayesian!)

Normal DKL: Point estimate of DK

P(DK) P(GP|DK)

Given Data S: P(DK|S) P(GP|DK,S)



Bayesian Optimization with Bayesian Deep Kernel Learning

• Key challenge: computing posterior P(DK|S)
• P(DK) = Prior over NN weights

• P(DK|S) = Posterior of NN weights

• Two Options:
• Stochastic Variational Inference (fast, inaccurate)

• MCMC (slow, more accurate)

Bowden, Yeh, Astudillo, et al. (in preparation)

James
Bowden

Chris
Yeh

Raul
Astudillo



Preliminary Results

Note: implementation highly non-trivial.  Will release code soon!



Story so Far

Calibration is Hard! Value of Information requires extra reasoning

  How to compute VoI at scale (or side-step it)?
• Computational

• Statistical Calibration



Aside #1: Directly Learn Value of Information

Learning to Make Decisions via Submodular Regularization, Ayya Alieva, et al., ICLR 2021

Ayya
Alieva

Prior Experiments

Simulate Policy

Measure VoI 
(post hoc)

Regression

(x1, y1, x2, y2, x3, y3, …)

Experiments

Measurements

Training Data: 
Input: (x<i,y<i, xi)
Target: VoI of yi

VoI Model

Update Policy

Key Insight: 

regularize to 

“look like” 
submodular



Preliminary Results
(Train VoI model on one antibody task, deploy on new task)
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Learning to Make Decisions via Submodular Regularization, Ayya Alieva, et al., ICLR 2021

Our Approach

Propensity for 
protein binding 
to break apart



Aside #2: Decision-Aware Uncertainty Calibration

Conformal 
Calibration

End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv

Uncertainty-Aware Decision Policy

Deploy / Simulate

Reward

Backprop

Backprop

Chris
Yeh

Nico
Christianson

𝑧⋆ 𝑥 = arg min
𝑧

max
ො𝑦∈Ω(x)

 𝑓(𝑥, ො𝑦, 𝑧)

                              s.t. 𝑔 𝑥, ො𝑦, 𝑧 ≤ 0

Backprop



Preliminary Results (battery storage)

Shape of uncertainty set

Two Step

End-to-EndTa
sk

 L
o
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C

o
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End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv



Rest of This Talk

Embedding Uncertainty Quantification 
& Decision Making

Orchestrator

Output: 
Portfolio of Antibodies



Recall: Computational Antibody Design

Rosetta
Orchestrator

Rosetta

Rosetta

Rosetta Output: Portfolio of AntibodiesTom 
Desautels

Cloris 
Cheng

Raul 
Astudillo



Complex Objectives

True Model
(Expensive to 

Query)

Argmax

Level Set
(everything above threshold)

Shortest Path
(connected solution)

(Diverse) Top K

Pareto Frontier

Output

Computation Protein 
Design Setting



Problem Setup: Bayesian Algorithm Execution
https://arxiv.org/abs/2104.09460 

Probabilistic Model

True Model
(Expensive to Query)

Base Algorithm
Output

Shortest Path, Level Set, 
Top K, Pareto Frontier, …

Classic Algorithm Execution

Bayesian Algorithm Execution

Base Algorithm

Experiment Designer
True Model

Output

https://arxiv.org/abs/2104.09460


Revisiting Value of Information

• Informal Definition: how much information (in expectation) the 
measurement tells us about our desired goal

• How to quantify VoI for best output of Base Algorithm?
• Direct formulation is intractable!



Practical Bayesian Algorithm Execution via Posterior Sampling
Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Cloris 
Cheng

Raul 
Astudillo

True Objective
Posterior Mean

Sampled Function

Threshold

Example for Level Set in 1D Space

Goal: Identify All Points Above Threshold
           With Few Queries of True Objective



Cloris 
Cheng

Raul 
Astudillo

True Objective
Posterior Mean

Sampled Function

Level Set on Sampled Function

Threshold

Practical Bayesian Algorithm Execution via Posterior Sampling
Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Goal: Identify All Points Above Threshold
           With Few Queries of True ObjectiveExample for Level Set in 1D Space



Cloris 
Cheng

Raul 
Astudillo

True Objective
Posterior Mean

Sampled Function

Posterior Uncertainty on Level Set

Level Set on Sampled Function

Threshold

Practical Bayesian Algorithm Execution via Posterior Sampling
Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Goal: Identify All Points Above Threshold
           With Few Queries of True ObjectiveExample for Level Set in 1D Space



Cloris 
Cheng

Raul 
Astudillo

True Objective
Posterior Mean

Sampled Function

Posterior Uncertainty on Level Set

Level Set on Sampled Function

Threshold

Query Point

Practical Bayesian Algorithm Execution via Posterior Sampling
Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Goal: Identify All Points Above Threshold
           With Few Queries of True ObjectiveExample for Level Set in 1D Space



Benefits of PS-BAX

• Computationally efficient
• 15x-400x faster than baseline

• Straightforward to implement
• Batch parallel experiments

• Asymptotically consistent

Practical Bayesian Algorithm Execution via Posterior Sampling, 
Cheng*, Astudillo*, Desautels, Yue, NeuIPS 2024



Level Set Experiments

PS-BAX is ~400x faster than INFO-BAX

B
 E T T E R



Drug Discovery Application (DiscoBAX)
Choose K=10 interventions (reward = best intervention)
Dataset from Project Achilles (https://www.biorxiv.org/content/10.1101/720243)
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https://arxiv.org/abs/2312.04064 
PS-BAX is ~30x faster than INFO-BAX

Tau Protein Assay Intergeron 𝛄 Assay

https://www.biorxiv.org/content/10.1101/720243
https://arxiv.org/abs/2312.04064


Summary of Results

Calibration is Hard! Work on Real 
Applications

Progress on Scaling to Complex Settings

Beneficial to Focus
UQ Capacity on Decisions



• Active Learning-Assisted Directed Evolution, Yang, et al., bioRxiv

• Bayesian Optimization with Bayesian Deep Kernel Learning, Bowden, Yeh, Astudillo, et al. (in preparation)

• Practical Bayesian Algorithm Execution via Posterior Sampling, Cheng*, Astudillo*, et al., NeurIPS 2024

• End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv

• Learning to Make Decisions via Submodular Regularization, Alieva, et al., ICLR 2021
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