

Al for Adaptive Experiment Design

Yisong Yue

Goal-Oriented Experiment Design

- Iterative & adaptive
- Utility maximizing (find best outcome)

Many Applications (Goal-Oriented)

Robotics & Control

image credit @ mwfarmandfield

Drug Discovery

Protein Engineering

image credit @ creativebiomart

Material Science

Al for Goal-Oriented Experiment Design

Hypothesis Space

Batch Supervised Learning

Data Collected Up Front!

Experiment Design as Interactive Learning

- Collect data on the fly
 - Not available a priori

• Limited budget on data collection

• How to choose?

Three Modes of Interactive Learning

- Goal: Discover truth
- E.g., model of world
- Maximize accuracy

(Bayesian) Optimization

- **Goal:** Best single prediction
- E.g., best protein
- Maximize final utility

Multi-Armed Bandits

- Goal: Utility over time
- E.g., recommender systems
- Maximize utility over time

Focus of Talk

Learning Setup

Given: input space X **Unknown:** fitness F(x)=y **Maintain:** posterior P(F|D) (D=measurements)

Update posterior P(F|D)

Upper Confidence Bound: $\operatorname{argmax}_{x} \mu(x) + \beta \sigma(x)$ Posterior Sampling: $\operatorname{argmax}_{x} f(x), f^{P}(F|D)$

Active Learning Simple Example

- 1 feature
- Learn threshold function

Active Learning Simple Example

- 1 feature
- Learn threshold function

Comparison with Passive/Batch Learning

- # samples to be within ε of true model
- Passive Learning:

• Active Learning:

(Bayesian) Optimization Example

X = space of proteins F(x) = fitness landscape

Bandits Example

- How to split trials to collect information
- Static Experimental Design
 - Standard practice
 - (pre-planned)

http://en.wikipedia.org/wiki/Design_of_experiments

Bandits Example

• Adapt experiments based on outcomes

Each Experiment Matters ("Cumulative Regret")

Monica Almeida/The New York Times, left

Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin cancer in a medical trial; Brandon Ryan had to go without it.

http://www.nytimes.com/2010/09/19/health/research/19trial.html

Comparison (Active Learning, Optimization, Bandits)

- Similarities:
 - Same interaction protocol
 - Query F(x)
 - "Sequential experimental design"

- Active Learning: learn F(x) as accurately as possible Discovering "truth"
- (Bayesian) Optimization: find maximizer F(x*)
- Bandits: maximize $\sum_{i} F(x_i)$

Each experiment matters "Regret Minimization"

Best result only

Challenges

Volatile Utility Landscapes

High Dimensionality https://phys.org/news/2022-04-deep-decodefunctional-properties-proteins.html

Distribution Shift

Training Data

on Antibodies

Experiment on

Enzymes

M103

Multi-Objective (Safety & Efficacy)

Low Fidelity

Imperfect & Heterogeneous Experiments

Real Applications are Complicated!

New constraints & complexity

Basic Recipe

Choose Objective (can be multiple)

Choose Representation

https://phys.org/news/2022-04-deep-decodefunctional-properties-proteins.html

Choose Algorithm

Choose Experiment Platforms

Example: Engineering Active Site of Protoglobin

*Par*Pgb-LQ

Design Problem:

find the optimal set of mutations on 5 sites for high yield and selectivity for **1**, the *cis* product **Design space:** 20⁵ = 3.2 million variants

Example: Computational Antibody Design

Raul Astudillo

Cheng

Tom Desautels

Research Questions

- How do we scale in a principled way?
- How do we quantify **uncertainty**?
- How can we design methods for larger scope?
- How can we develop **full-stack** algorithmic exploration?

Work in Progress: Advice Welcome!

Thought Experiment: What point should we choose next?

Value of Information

- Informal Definition: how much information (in expectation) the measurement tells us about our desired goal
- Desired goal is task-dependent:
 - Best solution
 - Pareto frontier
 - Most accurate model
- **Decision Policy:** choose experiment with highest Vol

Measures of Vol:

- Posterior Mean: won't learn that much
- Highest Uncertainty: learn useless information
- Optimistic: Either good solution or pruned design space
- Highest from Sample: similar to optimistic in expectation

Upper Confidence Bound

Posterior Sampling

Well understood in classic settings! (convergence guarantees, applications)

Simple models (Gaussian Processes) Low dimensional Simple objectives **Requires calibrated uncertainty!**

Measures of vor:

- Posterior Mean: won't learn that much
- Highest Uncertainty: learn useless information
- Optimistic: Either good solution or pruned design space
- Highest from Sample: similar to optimistic in expectation

Upper Confidence Bound

Posterior Sampling

Example Application: Treating Lower Spine Injuries

Yanan

Sui

Clinical Experiments

Rest of This Talk

Goal: Find Optimal Design

- Use **deep learning** for modeling & uncertainty quantification
- Design problem **out of distribution** (w.r.t. prior data)

Option 1: Deep Kernel Learning

(previously hand crafted)

Gaussian Process

- Input to NN can be any existing representation
- Learn DK from scratch during experimentation
 - Update NN after each round of measurements

Option 2: Frequentist Ensembles

Empirical Distribution of Predictions

Comparison

Active Learning-Assisted Directed Evolution, Yang, et al., (under review)

Jason

Yang

Comparison

Active Learning-Assisted Directed Evolution, Yang, et al., (under review)

Jason

Yang

Recall: Engineering Active Site of Protoglobin

*Par*Pgb-LQ

Design Problem:

find the optimal set of mutations on 5 sites for high yield and selectivity for **1**, the *cis* product **Design space:** 20⁵ = 3.2 million variants

Results

- 96 experiments per round
- Posterior sampling
- Standard directed evolution ineffective (highly epistatic)

Active Learning-Assisted Directed Evolution, Yang, et al., (in preparation)

Deep Kernel Learning Revisited

(Let's be fully Bayesian!)

Bayesian Optimization with Bayesian Deep Kernel Learning

Bowden, Yeh, Astudillo, et al. (in preparation)

- Key challenge: computing posterior P(DK|S)
 - P(DK) = Prior over NN weights
 - P(DK|S) = Posterior of NN weights
- Two Options:
 - Stochastic Variational Inference (fast, inaccurate)
 - MCMC (slow, more accurate)

Chris

Yeh

James Bowden Raul Astudillo

Preliminary Results

Note: implementation highly non-trivial. Will release code soon!

Story so Far

Calibration is Hard!

Value of Information requires extra reasoning

How to compute Vol at scale (or side-step it)?

- Computational
- Statistical Calibration

Aside #1: Directly Learn Value of Information

Ayya Alieva

Learning to Make Decisions via Submodular Regularization, Ayya Alieva, et al., ICLR 2021

Preliminary Results (Train Vol model on one antibody task, deploy on new task)

Learning to Make Decisions via Submodular Regularization, Ayya Alieva, et al., ICLR 2021

Aside #2: Decision-Aware Uncertainty Calibration

End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv

Preliminary Results (battery storage)

End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv

Rest of This Talk

Recall: Computational Antibody Design

Raul Astudillo

Cheng

Tom Desautels

Complex Objectives

Problem Setup: Bayesian Algorithm Execution

https://arxiv.org/abs/2104.09460

Revisiting Value of Information

- Informal Definition: how much information (in expectation) the measurement tells us about our desired goal
- How to quantify Vol for best output of Base Algorithm?
 - Direct formulation is intractable!

Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Example for Level Set in 1D Space

Goal: Identify All Points Above Threshold With Few Queries of True Objective

Cloris Cheng

Raul Astudillo

Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Example for Level Set in 1D Space

Goal: Identify All Points Above Threshold With Few Queries of True Objective

Cloris Cheng

Raul Astudillo

Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Example for Level Set in 1D Space

Goal: Identify All Points Above Threshold With Few Queries of True Objective

Cheng*, Astudillo*, Desautels, Yue, NeurIPS 2024

Example for Level Set in 1D Space

Goal: Identify All Points Above Threshold With Few Queries of True Objective

Cloris Cheng

Astudillo

Benefits of PS-BAX

- Computationally efficient
 - 15x-400x faster than baseline

- Straightforward to implement
 - Batch parallel experiments
- Asymptotically consistent

Practical Bayesian Algorithm Execution via Posterior Sampling, Cheng*, Astudillo*, Desautels, Yue, NeuIPS 2024

Level Set Experiments

PS-BAX is ~400x faster than INFO-BAX

Drug Discovery Application (DiscoBAX)

Choose K=10 interventions (reward = best intervention)

Dataset from Project Achilles (<u>https://www.biorxiv.org/content/10.1101/720243</u>)

Tau Protein Assay

Intergeron γ Assay

PS-BAX is ~30x faster than INFO-BAX

https://arxiv.org/abs/2312.04064

Summary of Results

1.0 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 Expected confidence

Work on Real Applications

Jason Yang

Chris Yeh

Cloris Cheng

Raul Astudillo

James Bowden

Ayya Alieva

Nico Christianson

Steve Mayo

Aceves

Tom Desautels

Frances Arnold

Yuxin Chen

Adam Wierman

Song

- Active Learning-Assisted Directed Evolution, Yang, et al., *bioRxiv*
- Bayesian Optimization with Bayesian Deep Kernel Learning, Bowden, Yeh, Astudillo, et al. (in preparation)
- Practical Bayesian Algorithm Execution via Posterior Sampling, Cheng*, Astudillo*, et al., NeurIPS 2024
- End-to-End Conformal Calibration for Optimization Under Uncertainty, Yeh, Christianson, et al., arXiv
- Learning to Make Decisions via Submodular Regularization, Alieva, et al., ICLR 2021