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ABSTRACT
We present a theoretically well-founded retrieval model for
dynamically generating rankings based on interactive user
feedback. Unlike conventional rankings that remain static
after the query was issued, dynamic rankings allow and an-
ticipate user activity, thus providing a way to combine the
otherwise contradictory goals of result diversification and
high recall. We develop a decision-theoretic framework to
guide the design and evaluation of algorithms for this in-
teractive retrieval setting. Furthermore, we propose two
dynamic ranking algorithms, both of which are computa-
tionally efficient. We prove that these algorithms provide re-
trieval performance that is guaranteed to be at least as good
as the optimal static ranking algorithm. In empirical evalu-
ations, dynamic ranking shows substantial improvements in
retrieval performance over conventional static rankings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—relevance feedback, retrieval models

General Terms
Algorithms, Theory

Keywords
Diversified Retrieval, Relevance Feedback, Decision Theory

1. INTRODUCTION
With the dominance of short, one- or two-word queries in

many retrieval settings, most queries are ambiguous at some
level. For such ambiguous queries, there is often no single
ranking that satisfies all users and query intents. While
result diversification aims to provide a “compromise rank-
ing” that provides some utility for all intents, diversification
necessarily sacrifices recall and there is a danger that a di-
versified ranking will not adequately satisfy the information
needs of any of the users.
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In this paper, we propose a retrieval model that goes be-
yond the conventional single-ranking approach. We define
a decision-theoretic model that naturally combines diversity
with high recall on all query intents. The key idea is to
make the ranking “dynamic” – namely, allowing it to change
in response to user interactions after the query was issued.

From the user’s perspective, this may look as illustrated
in Figure 1. This interface is inspired by and adapted from
the SurfCanyon.com search engine [9], but other result lay-
outs are also possible. In this example, the user first receives
a conventional diversified ranking in response to the query
“SVM” (Figure 1, left). However, by clicking or mousing
over a result that matches the user’s intent, additional in-
dented results are inserted into the original ranking1 (Fig-
ure 1, middle). This process can be repeated multiple levels
deep (Figure 1, right). We argue that this interaction is
natural, since the process resembles navigating a drop-down
menu and since users are already familiar with result inden-
tation. In the example, the indented results have greatly
improved recall for the user’s information need on the learn-
ing method “Support Vector Machine”. While there is only
a single relevant document in the original ranking, the final
ranking covers many aspects of the learning method.

From the system’s perspective, the task is no longer the
prediction of a single ranking, but instead of a tree of results.
This “dynamic ranking tree” (see Section 3) describes how
users can interact with the results (i.e. expand results), and
what indented rankings they will see in response. Instead of
predicting a single ranking, the retrieval system can optimize
the ranking tree so that users with various intents will find
many relevant results given their intent-specific interactions.
Intuitively, the system must construct the ranking tree so
that diversity in the top-level ranking provides appropriate
leads for all intents, while the lower levels provide additional
relevant results and allow for further refinement.

This paper makes the following contributions towards this
interactive retrieval setting, which we call “Dynamic Ranked
Retrieval”. First, we propose a concise decision-theoretic
model for reasoning about and evaluating Dynamic Ranked
Retrieval systems that can generalize conventional measures
such as nDCG to the interactive setting. Optimizing ex-
pected retrieval performance in this model naturally leads
to a well-founded trade-off between diversity and recall, pro-
viding a sound theoretical basis for developing retrieval al-
gorithms. Second, we present two such algorithms for pre-
dicting ranking trees. Both algorithms are efficient, and we

1Alternatively, one could show additional results to the right
of the original ranking in a multi-column layout.



Figure 1: Example of user interacting with dynamic ranking.

prove that they always perform at least as well as conven-
tional static ranking systems for a large class of performance
measures. Third, we empirically show that these Dynamic
Ranked Retrieval algorithms can provide substantial gains in
retrieval quality for ambiguous queries compared to the best
static ranking (e.g. improving Prec@10 by 15-20 percentage
points on TREC diversity tasks). Fourth, since Dynamic
Ranked Retrieval requires knowledge about dependencies
between multiple documents, we show that generalized mod-
els of these dependencies can be learned and integrated into
our algorithms.

2. RELATED WORK
Our work lies at the intersection of two research directions,

diversified retrieval and relevance feedback, with an aim to-
wards modeling interactive retrieval settings. Both research
directions seek to address the issue of query ambiguity, i.e.
when the information need or intent is unclear given the
query. Prior work on diversified retrieval and prior work on
relevance feedback have been largely complementary (and
disjoint). This paper demonstrates that the modeling of
interactive retrieval settings can benefit substantially from
considering the two aspects simultaneously.

Diversified Retrieval. Result diversification is com-
monly used to provide good coverage for a given query [19].
The prediction goal is typically stated (with varying degrees
of formality) as minimizing the worst case scenario of a user
finding no or few relevant documents among the top re-
sults. This can be naturally approached by retrieving a set
of results that optimizes for some compromise between (es-
timated) relevance and novelty [7, 28]. Developing suitable
evaluation measures remains an active and growing research
direction (cf. [28, 27, 8, 2]).

More recently, researchers have tackled diversified retrieval
by viewing it as a coverage problem. Here, the goal is to di-
rectly optimize the number of users “covered” (e.g. users
who find at least one relevant result) [27, 20, 2, 11]. When
a gold standard measure of coverage is unavailable at test
time, one can instead use a proxy coverage measure or model
(possibly learned from a labeled training set) based on read-
ily available features of the candidate documents [27, 11].

Relevance Feedback. In the relevance feedback setting,
feedback from users or expert judges are used to augment

the query in order to generate more informative models of
the information need [23]. At a high level, there are three
types of relevance feedback: explicit feedback from users
or expert judges, implicit feedback collected from users as
they interact with the system, and pseudo feedback, which
is collected without any human response. Such feedback is
used to build a more refined model of user intent. Well-
known methods include vector space model approaches [22,
24], language model approaches [18, 29], and query expan-
sion approaches [4, 10, 5]. These methods all follow the
same general motivation: the resulting query intent should
be close with respect to a chosen similarity measure to the
documents provided by relevance feedback.

Interactive Retrieval. Broadly speaking, interactive
retrieval refers to any retrieval setting where the system
and its users exchange multiple rounds of interaction per
query or session. Since user interactions by definition pro-
vide feedback to the retrieval system, relevance feedback can
be viewed as a special case of interactive retrieval. At a high
level, user interactions can be categorized along two dimen-
sions: explicit versus implicit feedback, and system-driven
versus user-driven interactions.

System-driven interactions involve the retrieval system di-
rectly asking users to provide (explicit) feedback in order to
better understand the information need. Examples include
explicitly asking users to select the most relevant documents
from a presented pool [25, 26], or asking users which facets
(or subtopics) best capture their query intent [30]. While
intrusive to the user experience, such approaches can be ef-
fective when dealing with difficult queries [26].

User-driven interactions involve settings where the re-
trieval system makes recommendations that users can ac-
cept or ignore, or creates an interface for users to provide
more feedback if the users choose to do so. Typically, the
retrieval system responds to a sequence of queries within a
particular session with recommendations, such as additional
results or query reformulation suggestions [15, 3]. Users pro-
vide implicit feedback when they click on results or accept
a suggested query reformulation. Such feedback can then
be used to provide more useful recommendations when re-
sponding to subsequent queries in the session [6].

In this space of related work, our goal is to develop a gen-
eral decision-theoretic framework for reasoning about entire



Figure 2: Illustration of a dynamic ranking tree.

sequences of interactions, similar to [12]. We focus on a sim-
ple user-driven interaction setting which naturally combines
diversity and relevance feedback, can accommodate both ex-
plicit and implicit feedback, and is well suited for modeling
existing interactive retrieval systems such as [9]. Our work
also has an affinity to models for faceted search [16], but
does not assume any meta-data about facets. Finally, our
user interaction model is similar to Incremental Relevance
Feedback [1] in that each relevance feedback signal immedi-
ately and incrementally affects the next result to display.

3. DYNAMIC RANKED RETRIEVAL
We now formalize the goal of Dynamic Ranked Retrieval

into a well-founded yet simple decision-theoretic model. The
core component is the notion of a ranking tree, which re-
places the static ranking of a conventional retrieval system.
An example is shown in Figure 2. The nodes in the tree
correspond to individual results (i.e. documents), and each
user’s search experience corresponds to a path in the tree.
The path a particular user takes depends on that user’s ac-
tions, in particular whether the user decides to expand a
result to view the corresponding indented ranking. Expand-
ing a result corresponds to taking the right branch of the
corresponding node in the ranking tree, and skipping corre-
sponds to taking the left branch. Mapping the ranking tree
in Figure 2 to the example in Figure 1, the user skipped over
D1 = “ServiceMaster”, expanded D7 = “SVM Wikipedia”,
and then expanded D8 = “SVM-light”.

For simplicity, we first consider the setting where users
act according to the following deterministic interaction pol-
icy, which we call πdet: users always expand (go right) at
nodes representing relevant documents and skip (go left)
non-relevant documents. Note that users with different query
intents consider different documents as relevant, and so will
take different paths through the tree. We will explore other
user policies later, in particular policies involving noisy user
behavior.

It is now very natural to score the retrieval quality of a
particular user’s search experience via the documents en-
countered on her path through the ranking tree. Note that
the traversed path corresponds to the final dynamic ranking
presented in the user’s browser, so that the i-th document on
the traversed path corresponds to the i-th document the user
sees. Thus, the traversed path is essentially a user-specific
ranking, which we can evaluate using existing performance
measures like nDCG, average precision, or Precision@k.

More formally, let P (r|q) denote the distribution of infor-
mation needs r for query q. Each information need r (i.e.
relevance profile) is a vector of relevance judgments, with
one judgment for each document in the collection. This
models the fact that different users issuing the query q will

Table 1: Example of rel. profile distribution P (R|q).
P (ri) d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 . . .

r1 0.2 1 1 1 0 0 0 0 0 0 0 0 0 . . .
r2 0.2 1 0 0 1 1 0 0 0 0 0 0 0 . . .
r3 0.2 0 0 0 0 0 1 1 0 0 0 0 0 . . .
r4 0.2 0 0 0 0 0 0 1 1 1 0 0 0 . . .
r5 0.2 0 0 0 0 0 0 0 0 0 1 1 0 . . .

consider different sets of documents as relevant. Let Ψ be
a ranking tree for query q. Then a user’s relevance profile
r and interaction policy π determine her path σ through Ψ.
For πdet defined above, this path is deterministic. For noisy
user behavior where the probability of expanding a result
d is no longer 0 or 1, a user’s experience will be sampled
from a distribution of paths, P (σ|Ψ, r, π), where π is now
a non-deterministic interaction policy. We assume that all
users behave according to a common interaction policy π
(e.g. expand relevant results w.p. 75%), and differ only in
which documents they find relevant.

We can now apply standard retrieval measures and define
the expected retrieval performance for a particular query q
and ranking tree Ψ as

U(Ψ|q, π) =
X

r

X
σ

U(σ|r)P (σ|Ψ, r, π)P (r|q). (1)

The overall quality of the retrieval algorithm A is then sim-
ply the expectation over the distribution of queries,

U(A|π) =
X

q

U(A(q)|q, π)P (q). (2)

The utility U(σ|r) of a path σ given a relevance profile r can
be measured by any conventional ranked retrieval measure.
In particular, one can define the following dynamic exten-
sions of Precision at k (Prec@k), average precision (AP@k),
discounted cumulative gain (DCG@k), and normalized dis-
counted cumulative gain (nDCG@k) [17]. Let σi denote the
i-th document on the user’s path, |r| denote the number of
relevant documents in relevance profile r, and δ(·) be a bi-
nary indicator function. Then these standard retrieval mea-
sures can be expressed as utility functions of the form:

Prec@k: U(σ|r) =
1

k

kX
i=1

rσi (3)

AP@k: U(σ|r) =
1

min{k, |r|}
kX

i=1

Pi
j=1 rσj

i
δ(rσj=1) (4)

DCG@k: U(σ|r) =

kX
i=1

rσi

log2(i + 1)
(5)

nDCG@k: U(σ|r) =
1

DCG∗(r)

 
kX

i=1

rσi

log2(i + 1)

!
(6)

The normalization constant DCG∗(r) for nDCG corresponds
to the utility of the best possible ranking for the given rel-
evance profile. Note that an estimate of U(A|π) can easily
be computed by sampling q, r and σ as is typically done for
static ranked retrieval.

Conventional static ranked retrieval corresponds to the
special case where users always choose the left branch and
never expand results. Note that for this user policy, our



Algorithm 1 StaticMyopic for Static Ranking

1: Init: StaticMyopic(q,D) = StaticMyopic(q,D, ())
2: Recurse: StaticMyopic(q,D, σ)
3: d = argmaxd∈D

˘P
r(U(σ ⊕ d|r) − U(σ|r))P (r|q)¯

4: n = StaticMyopic(q,D \ {d}, σ ⊕ d)
5: return(list(d, n))

evaluation model in Eq. (2) reduces to the intent-aware eval-
uation measures proposed in [2]. For this special case of
rankings σ, we will use the abbreviated notation U(σ|q) to
refer to the expected utility defined in Eq. (1). In addi-
tion, if the query is unambiguous and there is only a single
relevance profile r (i.e. P (r|q) = 1), then our evaluation
measures reduce to the conventional definitions of Prec@k,
AP@k, DCG@k, and nDCG@k.

To illustrate the dynamic ranking model, consider again
the ranking tree example Ψ shown in Figure 2 that was com-
puted for some fixed query q. Table 1 shows the relevance
profiles of five query intents for query q. Assuming those in-
tents have uniform probability P (ri|q) = 1/5 and users fol-
low policy πdet, a user with relevance profile r1 will follow the
path (d1, d2, d3, ...) and will encounter all three relevant doc-
uments in the first three positions. This leads to a DCG@4
of 2.13. Similarly, users with profile r2 will follow the path
(d1, d2, d4, d5, ...), where only d2 is not relevant, resulting in
a DCG@4 of 1.93. Users with profiles r3, r4, and r5 will
experience DCG@4 values of 1.06, 1.56, and 0.93, respec-
tively. Taking the expectation over all profiles, the dynamic
DCG@4 of the ranking tree Ψ is DCG@4(Ψ|q, πdet) = 1.52.
Note that the best possible static ranking σ can only achieve
DCG@4(σ|q) = 0.84 for this distribution of relevance pro-
files.

4. ALGORITHMS
When query ambiguity is ignored, it is well known that

sorting by probability of relevance (or by expected marginal
utility) produces the best possible ranking for virtually all
evaluation measures proposed to date [21]. This is known as
the “probability ranking principle”. But for measures that
account for query ambiguity, such as the measures defined
above and their special cases proposed in [2], the situa-
tion is less clear. In particular, how can one compute a
ranking tree, or even a static ranking, to achieve high ex-
pected performance over the distribution of intents for a
given query? Furthermore, for practical settings, the dy-
namic ranking algorithms should not be substantially more
computationally expensive than conventional ranking algo-
rithms. In the following, we first consider the case of static
ranking, and then propose two efficient algorithms for com-
puting dynamic ranking trees for which we give performance
guarantees relative to the optimal static ranking.

4.1 Algorithm for Static Ranking
Before presenting the algorithms for constructing dynamic

ranking trees, we first consider how to construct a static
ranking with high expected performance under the measures
discussed above. Algorithm 1, which we call StaticMyopic,
can be seen as the straightforward extension of the probabil-
ity ranking principle to the case of ambiguous queries. We
will show in Section 5 that StaticMyopic produces optimal
static rankings for DCG, nDCG, and Prec@k, but, surpris-
ingly, is not optimal for AP.

Algorithm 2 DynamicMyopic for Dynamic Ranking

1: Init: DynamicMyopic(q,D, π)
= DynamicMyopic(q,D, π, (), ())

2: Recurse: DynamicMyopic(q,D, π, σ, γ)
3: d=argmaxd∈D

˘P
r(U(σ⊕d|r)−U(σ|r))P (r|q,π,Cσ =γ)

¯
4: l = DynamicMyopic(q, D \ {d}, π, σ ⊕ d, γ ⊕ [0])
5: r = DynamicMyopic(q, D \ {d}, π, σ ⊕ d, γ ⊕ [1])
6: return(tree(d,l,r))

Algorithm 1 is a greedy method that iteratively appends
(denoted by ⊕) the document with the highest expected gain
in utility,

d = argmax
d∈D

(X
r

(U(σ ⊕ d|r) − U(σ|r))P (r|q)
)

(7)

= argmax
d∈D

(X
r

U(σ ⊕ d|r)P (r|q)
)

.

We call the quantity inside the curly brackets of Eq. (7) the
marginal utility U(d|q, σ) of d given σ. Solving the argmax
requires only a single pass through the candidate set D.2

Summing over the relevance profiles is inexpensive if the
number of profiles with non-zero probability is small, as it
is for the TREC datasets used for our experiments.

Note that for measures like DCG and Prec@k, the utility
gain U(σ ⊕ d|r) − U(σ|r) depends only on the relevance rd

of d and the current length of σ, but not on the full rele-
vance profile r or the specific documents in σ. We call such
functions modular (see Section 5 for a precise definition).
Given a modular performance measure, the marginal utility
in Eq. (7) can be rewritten as

U(d|q, σ) = f(|σ|)
X
rd

rdP (rd|q),

where P (rd|q) is the (marginal) probability of relevance of
document d, and f(|σ|) depends only on the length of σ (see
Table 2). Thus the argmax can be simplified to

d = argmax
d∈D

8<
:
X
rd

rdP (rd|q)
9=
; .

It is now easy to see that, for modular performance mea-
sures, StaticMyopic is equivalent to sorting the documents
by expected utility as in conventional retrieval systems. The
same simplification applies to nDCG@k after scaling each
relevance profile by 1/DCG∗(r). However, this simplifica-
tion does not apply to AP@k.

4.2 Algorithms for Dynamic Ranking
In the following, we propose two efficient algorithms for

constructing dynamic ranking trees. Both algorithms build
ranking trees top-down by recursively adding child nodes
to the current leaves (similar to most decision-tree learning
algorithms). Unlike StaticMyopic, document selection is
performed by conditioning on the sequence of user interac-
tions (e.g. result expansions and skips) that led the user to
that node.

2In practice, one would generate a reasonably-sized candi-
date set (a few hundred documents) using a conventional
retrieval function as a filter.



Algorithm 3 DynamicLookahead for Dynamic Ranking

1: Init: DynamicLookahead(q,D, π)
= DynamicLookahead(q,D, π, (), ())

2: Recurse: DynamicLookahead(q,D, π, σ, γ)
3: d = argmaxd∈D {
4:

P
r(U(σ ⊕ d|r) − U(σ|r))P (r|q, π, Cσ = γ)

5: +P (Cd =0|q, π, Cσ =γ)Ûl + P (Cd =1|q, π, Cσ =γ)Ûr

6: }
7: l = DynamicLookahead(q, D \ {d}, π, σ ⊕ d, γ ⊕ [0])
8: r = DynamicLookahead(q, D \ {d}, π, σ ⊕ d, γ ⊕ [1])
9: return(tree(d,l,r))

4.2.1 Dynamic Myopic Algorithm
The first algorithm, called DynamicMyopic (see Algo-

rithm 2), can be thought of as the natural extension of
StaticMyopic. When creating a new leaf node, Dynam-
icMyopic keeps track of the path σ leading to this node, as
well as the sequence γ ∈ {0, 1}∗ of skips/expands required
to navigate there. It then selects a document that most
improves the utility of the updated path,

d = argmax
d∈D

(X
r

(U(σ ⊕ d|r) − U(σ|r))P (r|q, π, Cσ = γ)

)

= argmax
d∈D

(X
r

U(σ ⊕ d|r)P (Cσ = γ|q, r, π)P (r|q, π)

P (Cσ = γ|q, π)

)

= argmax
d∈D

(X
r

U(σ ⊕ d|r)P (Cσ = γ|q, r, π)P (r|q)
)

.

We use Cσ to denote the random variable describing the
skips/expands for the documents in σ. Therefore, P (Cσ =
γ|q, r, π) is the probability that a user with relevance pro-
file r and interaction policy π will visit the current node in
the tree. The second equality above follows from two ap-
plications of the law of conditional probabilities, and the
last equality follows from observing that the denominator
is constant and that the distribution of relevance profiles is
assumed to not depend on the user interaction policy (i.e.
P (r|q, π) = P (r|q)). Similar to StaticMyopic, solving the
argmax requires only one pass through the documents in the
candidate set D.

Note that it is not necessary to explicitly generate the
entire ranking tree for each query or user session. In par-
ticular, it suffices to generate solely the branches that are
currently displayed to the user. In other words, solving the
argmax in Line 2 of Algorithm 2 can be done lazily – it is
only explicitly required after the user session has traversed
to that particular node in the ranking tree.

Analogous to StaticMyopic, the argmax for Prec@k,
DCG, and nDCG@k can be rewritten using only the marginal
distributions P (rd|q, π, Cσ = γ) of d ∈ D.

d = argmax
d∈D

8<
:
X
rd

rdP (rd|q, π, Cσ = γ)

9=
;

In the learning experiments in Section 7, we will directly
estimate the relevance distribution P (rd|q, π, Cσ = γ) using
a linear model, which is very efficient to evaluate.

4.2.2 Dynamic Lookahead Algorithm
The second algorithm, called DynamicLookahead (see

Algorithm 3), uses a lookahead estimate when determining

Table 2: Instantiating Prec@k, DCG, and nDCG as
modular functions according to Eq. (8).

Prec@k DCG nDCG
f(i) δ(i ≤ k) 1/ log(i + 1) 1/ log(i + 1)

U(d, r) rd rd rd/DCG∗(r)

which document to select as a new child node. Rather than
considering only a document’s immediate marginal utility,
the algorithm chooses the document d which maximizes the
marginal utility plus the (approximate) utilities Ûl and Ûr

of its two subtrees. We approximate Ûl and Ûr using Stat-
icMyopic, which we will show to provide a lower bound on
the utility of each subtree.

Note that the complexity of solving the argmax of Dy-
namicLookahead for Prec@k, DCG@k, and nDCG@k, is
O(|D|2 log |D|), compared to O(|D|) for DynamicMyopic.
We will empirically evaluate the benefit of this computa-
tional expense.

5. THEORETICAL ANALYSIS
We first introduce a notion called modularity3 which will

be useful for proving our theoretical results.

Definition 1. We call a utility function U modular if,
for any static ranking σ, it satisfies the following form:

U(σ|r) =

kX
i=1

f(i)U(σi|r), (8)

where f(i) is non-negative and monotonically decreasing func-
tion, and U(σi|r) is a non-negative utility function of a sin-
gle document that does not depend on rank position.

Linear combinations of modular functions are also mod-
ular, so the expected utility of a static ranking algorithm
Astatic, U(Astatic) from Eq. (2), is modular if the per-query
expected utility, U(Astatic|q) from Eq. (1), is modular.

It is relatively straightforward to see that instantiating
Eq. (2) with Prec@k, DCG@k, or nDCG@k results in a
modular utility function (see Table 2). Note that although
Eq. (2) is defined for dynamic ranking algorithms, the mod-
ularity property applies only with respect to static rankings.

5.1 Analyzing Static Rankings
As discussed in Section 4.1, for modular utility functions,

StaticMyopic reduces to sorting by expected utility of the
individual documents. As such, Theorem 1 below follows
immediately from Definition 1.

Theorem 1. StaticMyopic and the Probability Rank-
ing Principle both produce optimal static rankings for mod-
ular utility functions.

However, it can be shown that both StaticMyopic and
sorting by expected utility (i.e. the probability ranking prin-
ciple) can be suboptimal for AP when the query is ambigu-
ous.

Observation 1. Both StaticMyopic and the Probabil-
ity Ranking Principle can produce suboptimal static rankings
for average precision and AP@k.
3Our definition of modularity is a special case of the more
general definition of modularity for set-based utility func-
tions (cf. [13]).



Consider the following counterexample. Consider a candi-
date set D with three documents for a query q with two rele-
vance profiles r1 = (1, 0, 0) and r2 = (0, 1, 1). Let P (r1|q) =
1/3 and P (r2|q) = 2/3. Then for position one of the static
ranking, all three documents achieve the maximum marginal
utility w.r.t. AP@k (with k ≥ 3) of 1/3. However, the opti-
mal static rankings are (2, 3, 1) and (3, 2, 1) with an AP@k
of 0.78, while the best possible ranking that starts with doc-
ument 1 (e.g. (1, 2, 3)) has an AP@k of only 0.72.

In the above counterexample, if one modifies the prob-
abilities of the two relevance profiles to be uniformly 1/2,
then applying the Probability Ranking Principle by sorting
by expected relevance can also be suboptimal.

5.2 Analyzing Dynamic Rankings
We now investigate the performance gain that dynamic

ranking trees can achieve over static rankings. We first de-
fine the performance criterion, which we call adaptivity gain.

Definition 2. For a specified utility function U and user
interaction policy π, the adaptivity gain of (dynamic) rank-
ing algorithm A is

U(A|π) − U(StaticMyopic).

We will show in the following that both DynamicMy-
opic and DynamicLookahead always achieve non-negative
adaptivity gain, i.e. they will never perform worse than
StaticMyopic.

We first introduce some notation. Specifically, we need
notation to describe the behavior of our ranking algorithms
when conditioned on a pre-existing context (σ, γ), which con-
sists of a list of already presented documents σ and their
click information γ. Such context, for instance, can be gen-
erated by first running some other retrieval algorithm. Most
notably, the per-query utility function in Eq. (1) now be-
comes a conditional utility measure.

In the following notation, we will suppress the query q for
brevity. Given a pre-existing context (σ, γ), we can write
the conditional utility of a ranking tree Ψ as

U(Ψ|π, σ, γ) = X
r

X
σ′

U(σ ⊕ σ′|r)P (σ′|Ψ, r, π, Cσ = γ)P (r|Cσ = γ, π)

!

− U(σ|r),
which reduces to the unconditional utility defined in Eq. (1)
in the case where the pre-existing context (σ, γ) is empty.
We only consider algorithms that never show repeat docu-
ments, i.e. the σ′ in the summation above is always disjoint
from σ. For modular utility functions, we can write the
conditional utility of a static ranking σ′ as

U(σ′|π, σ, γ) =

k−|σ|X
i=1

U(σ′
i|π, σ, γ), (9)

where

U(d|π, σ, γ) = f(i + |σ|)
X

r

U(d|r)P (r|Cσ = γ, π).

We can thus also consider adaptivity gain for conditional
utilities by computing

U(A|π, σ, γ) − U(StaticMyopic|π, σ, γ).

We will also use the shorthand notations of SM, DM
and DL for StaticMyopic, DynamicMyopic and Dynam-
icLookahead, respectively.

We now prove the following useful lemma, which compares
the utility of StaticMyopic with the utility of a ranking
algorithm that performs one iteration of DynamicMyopic
followed by StaticMyopic for the remainder (i.e. a ranking
tree where the root node has two subrankings).

Lemma 1. For any modular utility function U , any pre-
existing context (σ, γ), and any known user interaction pol-
icy π, we have

U(SM|π, σ, γ) ≤
U(d∗|π, σ, γ) +

X
γ′∈{0,1}

U(SM|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ).

where d∗ = argmaxd∈D\σ U(d|π, σ, γ).

Proof. We can write U(SM|π, σ, γ) as

U(SM|π, σ, γ) = max
σ′ U(σ′|π, σ, γ)

= U(d∗|π, σ, γ) + max
σ′ U(σ′|π, σ ⊕ d∗, γ), (10)

where Eq. (10) follows from the definition of modular func-
tions. We can further write the max term in Eq. (10) as

max
σ′ U(σ′|π, σ ⊕ d∗, γ)

= max
σ′

X
γ′∈{0,1}

U(σ′|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ)

≤
X

γ′∈{0,1}
max

σ′ U(σ′|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ)

=
X

γ′∈{0,1}
U(SM|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ),

which completes the proof.

Theorem 2. For modular utility function U , DynamicMy-
opic has a non-negative adaptivity gain for any pre-existing
context (σ, γ) and user interaction policy π.

Proof. We prove this by induction on the remaining in-
teraction length k. The base case k = 1 is trivial. In the
inductive case, we assume for interaction length k − 1 that
DynamicMyopic has non-negative adaptivity gain for any
pre-existing context and user interaction policy.

Using Lemma 1 and its definition of d∗, we can write
the conditional utility of StaticMyopic, U(SM|π, σ, γ), as
bounded by

≤ U(d∗|π, σ, γ) +
X

γ′∈{0,1}
U(SM|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ)

≤ U(d∗|π, σ, γ) +
X

γ′∈{0,1}
U(DM|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ)

= U(DM|π, σ, γ),

where the last inequality follows from the inductive hypoth-
esis, and the last equality follows from observing that d∗ is
the document that is selected by DynamicMyopic.

Theorem 3. For modular utility function U , Dynami-
cLookahead has a non-negative adaptivity gain for any
pre-existing context (σ, γ) and user interaction policy π.



Proof. We prove this by induction on the remaining in-
teraction length k. The base case k = 1 is trivial. In the
inductive case, we assume for interaction length k − 1 that
DynamicLookahead has non-negative adaptivity gain for
any pre-existing context and user interaction policy.

Using Lemma 1 and its definition of d∗, we can write
the conditional utility of StaticMyopic, U(SM|π, σ, γ), as
bounded by

≤ U(d∗|π, σ, γ) +
X

γ′∈{0,1}
U(SM|π, σ ⊕ d∗, γ ⊕ γ′)P (γ′|π, Cσ = γ)

≤ max
d∈D\σ

(
U(d|π, σ, γ)

+
X

γ′∈{0,1}
U(SM|π, σ ⊕ d, γ ⊕ γ′)P (γ′|π, Cσ = γ)

)
. (11)

Note that Eq. (11) is exactly the criterion optimized by
DynamicLookahead in Algorithm 3. Let d∗∗ denote the
maximizer of Eq. (11). We can write Eq. (11) as

= U(d∗∗|π, σ, γ) +
X

γ′∈{0,1}
U(SM|π, σ ⊕ d∗∗, γ ⊕ γ′)P (γ′|Cσ = γ, π)

≤ U(d∗∗|π, σ, γ) +
X

γ′∈{0,1}
U(DL|π, σ ⊕ d∗∗, γ ⊕ γ′)P (γ′|Cσ = γ, π)

= U(DL|π, σ, γ),

where the last inequality follows from the inductive hypoth-
esis, and the last equality follows from observing that d∗∗ is
the document that is selected by DynamicLookahead.

The two theorems characterize the performance of the dy-
namic algorithms w.r.t. the optimal static ranking. Compar-
ing to the optimal static ranking seems to be a promising di-
rection also for future theoretical results, since constructing
trees with good approximation factor to the optimal trees is
known to be computationally intractable [13]. However, fur-
ther restrictions to the problem setting may allow proving
stronger performance guarantees w.r.t. both baselines.

6. EVALUATING THE ADAPTIVITY GAIN
The previous section showed that the dynamic rankings

computed by DynamicMyopic and DynamicLookahead
are always at least as good as the static ranking computed
by StaticMyopic, i.e. the adaptivity gain (Definition 2) is
never negative. But is there actually a substantial benefit?
We explore this question empirically on two datasets: the
TREC 6-8 Interactive Track, which we will refer to as In-
teractive, and the Diversity Task of the TREC 18 Web
Track on the Clueweb collection, which we will refer to as
Web.

Both datasets are accompanied by queries with relevance
judgments for different subtopics. For each query, we con-
sider each of its subtopics to be the relevance profile of a
different information need. The relevance judgments are bi-
nary. On the Interactive dataset, the number of profiles
in each of the 20 topics ranges from 7 to 56, with an average
of 20. On average, a profile in the Interactive dataset is
associated with 3 relevant documents. On the Web dataset,
the number of profiles in each of the 50 topics ranges from 2
to 8 with a mean of 4.75, and the average number of docu-
ments relevant to a profile is 33. Unlike in the TREC evalua-
tion on Web, we do not discard relevance profiles where the
relevance judges did not find any relevant documents. On
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Figure 3: Adaptivity Gain on the Interactive
dataset for DynamicMyopic (gray) and Dynami-
cLookahead (light) with respect to StaticMyopic
(black). The errorbars show the standard error of
the respective adaptivity gain.
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Figure 4: Same as Figure 3, but for the Web dataset.

average, there are 0.75 such empty profiles per query. We
follow [8] and assume that both the distribution of queries
(topics) P (q) and the distribution of profiles (subtopics) for
each query P (R = r|q) is uniform. For Interactive, no
information about the distribution of topics and profiles is
given, so we assume that P (q) is uniform and P (R = r|q) is
proportional to the number of relevant documents in r.

An implementation of our algorithms and experiment set-
up is available at http://dynamicranking.joachims.org.

6.1 Experiment 1: Average Adaptivity Gain
For the first experiment, we eliminate all sources of un-

certainty to most directly compare the retrieval quality of
StaticMyopic, DynamicMyopic, and DynamicLooka-
head. In particular, all algorithms have perfect knowledge
of the relevance profiles and their distribution P (R = r|q),
and users behave deterministically according to πdet (i.e.
they always expand relevant documents in their relevance
profile, and never expand irrelevant documents). We mea-
sure performance using the dynamic variants of Prec@10,
AP@10, DCG@10, and nDCG@10 as defined in Section 3,
which reduce to the intent-aware metrics of Agrawal et al.
[2] for static ranking. When evaluating using each dynamic
ranking measure, we used that same measure as the utility
function for constructing the dynamic ranking tree.

Figure 3 and Figure 4 show average retrieval performance
for the Interactive and the Web datasets, respectively.
For all datasets and evaluation measures, the dynamic rank-
ing methods substantially outperform the static ranking.
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Figure 5: Adaptivity Gain of DynamicMyopic as a
function of Disjointness and Depth.

Using Prec@k as an example, the dynamic rankings improve
over the (best possible) static ranking by about 15 to 20
percentage points. To our surprise, there is no significant
difference in the quality of the dynamic rankings produced
by DynamicMyopic and DynamicLookahead.

6.2 Experiment 2: Influence Factors
To better understand what types of queries benefit most

from dynamic ranking, consider the plots in Figure 5, both of
which show the adaptivity gain of DynamicMyopic on the
y-axis. Each circle represents the adaptivity gain of a par-
ticular Interactive query, while each triangle represents
the adaptivity gain of a particular Web query. The x-axis
of Figure 5 (left) shows the “disjointness” of the relevance
profiles of a query, which is defined as follows. Denote with
Rel(q) the set of documents that are relevant to some profile
r of q. Then disjointness is defined as the negative logarithm
of the probability that a randomly selected document from
Rel(q) will be relevant to two relevance profiles sampled ac-
cording to P (R = r|q). Clearly, if there is only a single pro-
file (or multiple profiles that are very similar), disjointness
will be (close to) 0. Since this is a non-ambiguous query, the
adaptivity gain is low or 0. As can be seen in Figure 5, the
adaptivity gain generally increases with increasing disjoint-
ness for both datasets. Large adaptivity gains can therefore
be expected especially for highly ambiguous queries.

However, there is a second factor that influences the adap-
tivity gain. If all relevance profiles are disjoint and have only
a single relevant document, there is never a reason to expand
any documents, and it is easy to see that the adaptivity gain
is zero. Figure 5 (right) plots adaptivity gain of DCG@k
against “depth”, which we define as

P
r min{k, |r|}P (r|q).

The results show that dynamic ranking is most beneficial
when the depth of the profiles is sufficiently large.

6.3 Experiment 3: Noisy User Behavior
The previous experiments assumed that users behave de-

terministically according to the policy πdet, meaning that
they always expand relevant results and they never expand
a non-relevant result. In practice, user behavior will likely
be noisier, and we now explore how different levels of noise
influence the adaptivity gain.

To model noisy user behavior, consider the family of user
policies πε where users expand a relevant link with proba-
bility 1 − ε and expand a non-relevant link with probability
ε. Figures 6 and 7 show the adaptivity gain for DCG@10 for
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Figure 6: Adaptivity Gain depending on noise in
user behavior on the Interactive dataset.

0 0.1 0.2 0.3 0.4 0.5
1.8

2

2.2

2.4

2.6

epsilon (noise parameter)

D
C

G
D
@

10

 

 
Dynamic myopic
Dynamic lookahead
Static myopic

Figure 7: Adaptivity Gain depending on noise in
user behavior on the Web dataset.

different values of ε used both during the generation of the
ranking tree, and for evaluation. Adaptivity gain degrades
gracefully and remains substantial even for high levels of
noise. As expected, the adaptivity gain must be zero for
ε = 0.5, since the user interactions are random and do not
provide any information about the user’s intent.

Over all noise levels, there is no significant difference be-
tween DynamicMyopic and DynamicLookahead. We
therefore conclude that DynamicMyopic is preferable in
practical applications due to its superior efficiency.

7. LEARNING CONDITIONAL RELEVANCES
The previous experiments assumed that the distribution

of relevance profiles is known. But when the retrieval al-
gorithms are applied to new queries, one must estimate the
unconditional expected relevances P (rd|q) to apply Stat-
icMyopic, as well as the conditional expected relevances
P (rd|q, Cσ = γ, π) to apply DynamicMyopic and Dynam-
icLookahead for modular performance measures.

We now provide proof-of-concept that these quantities can
be learned from data. We split the learning problem into
three different logistic regression models: one which predicts
P (rd|q, Cσ = ∅), one for P (rd|q, π, Cσ = γ) where γ consists
entirely of“skips”, and one for P (rd|q, π, Cσ = γ) with mixed
“expands” and “skips”. We train those models using the LR-
TRIRLS software.4

Feature Generation. For both the Interactive and
the Web datasets, we first represent each document as a
set of fields in the vector space model. For Interactive,
these fields consist of the headline, full text, byline combined
with dateline, and a “summary abstract” consisting of the
first 100 words of the full text combined with any remaining
metadata.

For Web, the fields are the title, full text, URL combined
with author, and the “summary abstract.”

4http://komarix.org/ac/lr
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Figure 8: Leave-one-out performance of StaticMy-
opic (black) and DynamicMyopic (gray) on the Inter-
active (left) and Web (right) datasets. The error-
bars indicate standard error of the adaptivity gain.

In the P (rd|q) model, each document is represented by
a set of features which relate it to the query (e.g. the co-
sine similarity between each document field and the query).
While the second two logistic regression models also include
these features, they also utilize features which relate the
document to

the current context Cσ (e.g. the TFIDF cosine similarities
between the fields of the candidate document and the set of
expanded documents).

Training and Evaluation. We evaluate using leave-
one-query-out validation and left all parameters of the LR-
TRIRLS software at their default settings. Given the pre-
vious results, we focus on evaluating the adaptivity gain
of DynamicMyopic optimized for DCG@10, with πdet as
the user interaction policy. The candidate sets D consist of
all judged documents for Interactive, and all documents
judged relevant to some profile for Web. For Web, we fur-
ther restrict the candidate sets to the 50 million document
“WebB” subset for efficiency reasons.

To generate training data, since the number of candidate
documents that are irrelevant to a particular profile far out-
weigh the number of relevant documents, we randomly sub-
sample training examples to get a ratio of 1 relevant to 9
irrelevant examples. For the conditional models, we uni-
formly choose among examples with 1,2,3,4,5“expands”, and
0,1,2,3,4,5,10“skips”, generating 3, 333 training examples for
each of the three logistic regression models.

Results. The results of StaticMyopic and Dynam-
icMyopic are given in Figure 8. On both datasets, the av-
erage performance of the dynamic model is higher than the
static model for all combinations of datasets and evaluation
measures. Despite the small sample size of only 20 and 50
queries respectively, the difference is significant at the 95%-
level using a paired two-tailed Wilcoxon significance test in
all cases.

These results show that a simple linear logistic regression
approach can sufficiently model the conditional expected
relevances to get a substantial adaptivity gain. We con-
jecture that more sophisticated machine learning methods
specially designed for estimating P (rd|q, π, Cσ = γ) will fur-
ther improve the gain. It would also be interesting to learn
P (rd|q, π, Cσ = γ) directly from usage data.

8. DISCUSSION AND FUTURE WORK
We believe that the results presented in this paper make a

convincing case that dynamic ranked retrieval is a promising
area for future work. Dynamic ranked retrieval provides an
approach for overcoming the inherently limited performance
of using single static rankings for ambiguous queries. For
instance, for web search, we conjecture that it is much easier
to improve search quality by another 5 percentage points
in nDCG by moving to a dynamic retrieval model, instead
of trying to further optimize a (probably already close to
optimal) static ranking function.

Dynamic ranked retrieval occupies a “sweet spot” in the
spectrum of interactive retrieval where theoretical simplicity,
computational tractablility, and impact on user experience
meet. With respect to user experience, dynamic ranked re-
trieval does not require (but can accommodate) radically
different user interfaces. In fact, the first result the user
receives is a traditional-looking ranking, and our dynamic
ranked retrieval algorithms merely provide a well-founded
method for diversification. This makes the dynamic ranked
retrieval system usable even if users decide to never expand
any results. Nevertheless, we believe that users will easily
understand the inherent semantics of dynamic ranked re-
trieval, since they are already familiar with navigating drop-
down menus and result indentation in other contexts.

Many additional questions remain to be answered. From
a theoretical standpoint, finding the optimal policy tree is
computationally hard [13], but a more interesting direction
may be to investigate which retrieval measures and dynamic
ranking algorithms can provide stronger performance guar-
antees over the optimal static ranking. The range of possible
user interaction policies π also requires further exploration,
both in terms of additional policies as well as their verifica-
tion against actual user behavior. For example, our frame-
work assumes that user interests remain static throughout
the search session, which may often not hold in practice.

The broader goal is to design general retrieval frameworks
that can model increasingly richer interactive settings for a
wide variety of retrieval applications. Progress towards this
goal requires understanding and incorporating other forms of
implicit feedback [14]. It also requires modeling the relative
benefits of different types of recommendations [15], which
leads to the more general problem of jointly modeling user
interface design and content relevance.

9. CONCLUSIONS
This paper proposed a dynamic ranked retrieval model

which allows users to interactively expand the ranking to
further refine the information need. The model is based on
a concise decision-theoretic framework that naturally gen-
eralizes both the standard and the intent-aware static re-
trieval models. The framework provides a principled way
of evaluating dynamic retrieval systems, as well as a ba-
sis for deriving dynamic ranked retrieval algorithms. We
presented two such algorithms and prove theoretical guar-
antees for their retrieval quality. We also evaluated the algo-
rithms empirically and find that dynamic rankings can pro-
vide very substantial gains in retrieval performance. Finally,
we showed that the retrieval functions of these algorithms
can be learned from training data.
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