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Interleaving is an increasingly popular technique for evaluating information retrieval systems based on
implicit user feedback. While a number of isolated studies have analyzed how this technique agrees with
conventional offline evaluation approaches and other online techniques, a complete picture of its efficiency
and effectiveness is still lacking. In this paper we extend and combine the body of empirical evidence regard-
ing interleaving, and provide a comprehensive analysis of interleaving using data from two major commercial
search engines and a retrieval system for scientific literature. In particular, we analyze the agreement of
interleaving with manual relevance judgments and observational implicit feedback measures, estimate the
statistical efficiency of interleaving, and explore the relative performance of different interleaving vari-
ants. We also show how to learn improved credit-assignment functions for clicks that further increase the
sensitivity of interleaving.
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1. INTRODUCTION

Proper evaluation of search quality is essential for developing effective information
retrieval systems. While the conventional approach of using expert judgments has
proven itself effective in many respects [Voorhees and Harman 2005], it has at least
two limitations. First, expert judgments may not reflect the actual relevance and util-
ity that users experience while using a retrieval system, especially since judges often
cannot reliably estimate the users’ intents (as analyzed, for example, in Chapelle and
Zhang [2009, Section 6] and Agrawal et al. [2009, Section 5.3.1]). Second, its associated
cost and turnaround times are substantial and often prohibitive. As such, more flexible
and efficient evaluation methods are required—especially for applications with re-
source constraints including desktop search, personalized web search, intranet search,
helpdesk support, and academic literature search.
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These limitations have motivated research on alternative approaches to retrieval
evaluation, especially approaches based on observable user behavior such as clicks,
query reformulations, and response times [Kelly and Teevan 2003]. This offers several
potential advantages. Unlike expert judgments, usage data can be collected at essen-
tially zero cost, is available in real time, and reflects the judgments of the users rather
than those of judges far removed from the users’ context at the time of the information
need. The key problem with retrieval evaluation based on usage data lies in its proper
interpretation, in particular understanding how certain observable statistics relate to
retrieval quality.

In this article, we analyze the interleaving approach [Joachims 2002, 2003; Radlinski
et al. 2008] to solving this key problem. The basic idea behind all variants of the inter-
leaving approach is to perform paired online comparisons of two rankings. This involves
merging the two rankings into a single interleaved ranking, and then presenting the
interleaved ranking to the user. The algorithm used to produce the interleaved ranking
is designed to be “fair,” so that users’ clicks can be interpreted as unbiased judgments
about the relative quality of the two rankings. In this way, interleaving interactively
modifies, in a controlled experiment, the search results presented to the user so that
the observed user behavior (i.e., clickthrough) is more interpretable. This avoids the
problem of post-hoc interpretation of observational data common to most other ap-
proaches to interpreting implicit feedback [Fox et al. 2005; Kelly 2005; Agichtein et al.
2006; Dupret et al. 2007; Craswell et al. 2008].

We aim to provide a comprehensive body of evidence regarding its effectiveness,
accuracy, and limitations. Specifically, this paper reviews, analyzes, and extends the
Balanced Interleaving and Team-Draft Interleaving methods [Joachims 2002; Radlin-
ski et al. 2008]. The analysis relies on results from a new large-scale field study on
the Yahoo! search engine, tied into published and additional unpublished data from
experiments on the Bing search engine [Radlinski and Craswell 2010], and the full-
text search of the ArXiv.org repository of scientific articles [Radlinski et al. 2008; Yue
et al. 2010]. After introducing the two interleaving methods and the systems used for
evaluation in the next two sections, we validate and analyze interleaved evaluation
by answering a series of specific questions. We ask whether interleaving agrees with
the conventional evaluation approach based on relevance judgments collected from ex-
perts; whether it agrees with other online metrics; how the statistical sensitivity and
reliability of these different alternatives compares; and how to select among different
credit-assignment schemes for clicks. Finally, we address the limitations of interleaved
evaluation as compared to other approaches in depth.

To provide a complete picture of interleaving as an evaluation technique, this paper
combines new data and experiments with data and results from past collaborations
with other authors. In particular, we would like to acknowledge the contributions of
Madhu Kurup [Radlinski et al. 2008, 2010a], Nick Craswell [Radlinski and Craswell
2010], and Yue Gao and Ya Zhang [Yue et al. 2010].

2. RETRIEVAL EVALUATION AND RELATED WORK

Retrieval quality is most commonly evaluated using one of two approaches: either by
using manual judgments of the relevance of documents to queries, or by using observa-
tions of how users behave when presented with search results. The former is usually
called the Cranfield approach [Cleverdon et al. 1966]. It relies on relevance judgments
provided by trained experts, and is commonly used when comparing ranked retrieval
systems, such as part of the annual TREC conferences [Voorhees and Harman 2005].
Given a query, the expert judge must provide a label that specifies the relevance of each
document on a graded or binary relevance scale. Given a ranking produced in response
to a query, the judgments for the top-ranked documents can then be aggregated using
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metrics such as Normalized Discounted Cumulative Gain (NDCG), Average Precision
(AP) or Precision at K. Across many queries, the mean of these metrics measure the
quality of the ranking function (for further details see Manning et al. [2008]).

Since obtaining relevance judgments is both time consuming and expensive [Allan
et al. 2008; Carterette et al. 2008], substantial research has focused on how to reduce
the amount of labeling effort necessary for reliable evaluation [Soboroff et al. 2001;
Buckley and Voorhees 2004; Aslam et al. 2005; Carterette et al. 2006]. However, a ben-
efit of the Cranfield approach is that it produces reusable training and test collections
for future research. In addition to the expense of manual labeling, a second challenge
of any judgment-based approach is that judges may be unable to infer the user’s ac-
tual information need simply based on the query issued. This can lead to relevance
judgments that inaccurately reflect user utility. For instance, it is known that different
users often issue the same textual query while having different information needs or
intents [Teevan et al. 2007]. This difficulty can be exacerbated when evaluating re-
trieval systems that require judges to have appropriate expert background knowledge,
such as retrieval engines for specialized user groups (e.g., medical practitioners) or
specialized document collections (e.g., digitial video collections). Third, even when ex-
pert judgments are available for computing standard metrics, some metrics have been
shown to not necessarily correlate with user-centric performance measures [Turpin
and Scholer 2006].

Rather than relying on expert relevance judgments, a popular contrasting approach
is to evaluate retrieval performance based on implicit feedback directly from the users.
Such methods can generally be grouped into two classes, namely Absolute Metrics and
Pairwise Preferences. Most prior works fall into the former category, and assume that
metrics computed from observable user behavior change monotonically with retrieval
quality. In the simplest case, single actions such as clicking or reading time are used
as substitutes for explicit relevance judgments [Lieberman 1995; Boyan et al. 1996;
Joachims et al. 1997; Morita and Shinoda 1994; White et al. 2002; Liu et al. 2007].
Evaluations and categorizations of such approaches can be found in [Kelly 2005; White
et al. 2005; Kelly and Teevan 2003]. More sophisticated approaches combine multiple
observable actions to infer user satisfaction at the document, query, or session level
[Claypool et al. 2001; Oard and Kim 2001; Fox et al. 2005; Carterette and Jones 2007;
Huffman and Hochster 2007]. For instance, Fox et al. [2005] present an approach for
predicting session-level user satisfaction from indicators such as time spent on result
pages and how the session was terminated (e.g., by closing the browser window or by
typing a new Internet address). A key issue here is dealing with presentation bias (e.g.,
the position of results in the ranking), which has motivated approaches to correct for
presentation bias [Dupret et al. 2007; Becker et al. 2007; Craswell et al. 2008; Chapelle
and Zhang 2009]. Related to this, Wang et al. [2009] showed that the frequency with
which users skip search results can be used to measure ranking relevance. Kelly and
Teevan [2003] give an overview of many additional absolute metrics.

Methods based on Pairwise Preferences provide an alternative to such Absolute
Metrics. Rather than assuming that user behavior provides an absolute quality score,
preference methods merely assume that the better of two (or more) options can be
identified based on user behavior. One example is the heuristic that clicked results
are preferred over results previously skipped in the ranking [Joachims 2002; Radlin-
ski and Joachims 2006; Joachims et al. 2007] and more sophisticated variants thereof
[Radlinski and Joachims 2005; Agichtein et al. 2006]. Interleaving as studied in this pa-
per is a Pairwise Preference method as well. However, unlike most preference methods,
its goal is to directly assess the relative quality of different rankings, rather than first
eliciting the relevance of individual documents. Furthermore, it actively intervenes in
the presentation of results to avoid biases.
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ALGORITHM 1: Balanced Interleaving
Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
I ← (); ka ← 1; kb ← 1;
AFirst ← RandomBit() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . decide which ranking gets priority
while (ka ≤ |A|) ∧ (kb ≤ |B|) do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . if not at end of A or B

if (ka < kb) ∨ ((ka = kb) ∧ (AFirst = 1)) then
if A[ka] �∈ I then I ← I + A[ka] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append next A result
ka ← ka + 1

else
if B[kb] �∈ I then I ← I + B[kb] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append next B result
kb ← kb + 1

end if
end while
Output: Interleaved ranking I

The first interleaving method, called Balanced Interleaving, was proposed in
Joachims [2002, 2003]. However, the idea of mixing search results from multiple re-
trieval systems for evaluation was already present in Kantor [1988]. It was sketched as
a method for having users provide explicit relevance judgments, but to our knowledge
was never implemented or empirically tested. In addition to the Balanced Interleav-
ing method, we will also provide a detailed evaluation of the Team-Draft Interleaving
method proposed in Radlinski et al. [2008].

The first larger-scale user study investigating the accuracy of interleaving was per-
formed by Ali and Chang [2006] on the Yahoo! Web Search engine. Aggregated over
a distribution of queries, they found Balanced Interleaving to accurately reflect the
relative quality of two retrieval functions as determined by set-level ratings of human
experts. They also investigated the per-query correlation between the preference gen-
erated by interleaving and the expert-judged preference between two rankings. They
found the correlation to be high for navigational queries and queries with one dom-
inating user intent. For general queries, the correlation is only moderate, but it is
unclear to what extent this is due to noise or biases of the interleaving method, or due
to ambiguity of the query leading to low interjudge agreement.

He et al. [2009] conducted a simulation-based comparative evaluation of Balanced
and Team-Draft interleaving. Using manual judgments of individual documents, they
simulated user click behavior to determine which interleaving method provides a less
noisy signal. They considered a broad range of query and user types, and found that
Balanced Interleaving generally performs as well as or better than Team-Draft Inter-
leaving. They also proposed a new scoring scheme for Balanced Interleaving, which
performed well in their simulations. Conversely, Hofmann et al. [2011] found Team-
Draft Interleaving to outperform Balanced Interleaving in simulations, and proposed
an improved algorithm to further increase the sensitivity of interleaving.

3. INTERLEAVING ALGORITHMS

Interleaving experiments [Joachims 2002, 2003] formulate retrieval evaluation as a
paired comparison test between two rankings. Paired comparison tests are one of the
central experiment designs used in sensory analysis [Laming 1986]. When testing a
perceptual quality of an item (e.g., taste, sound), it is widely recognized that absolute
(Likert-scale) evaluations are difficult to perform. Instead, subjects are presented with
two or more alternatives and are asked to identify a difference or state a preference.
In the simplest case, subjects are asked to choose between two alternatives.
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The key design issue for a paired comparison test between two retrieval functions is
the method of presentation. As outlined in Joachims [2003], the design should (a) be
blind to the user with respect to the underlying conditions, (b) be robust to biases in
the user’s decision process that do not relate to retrieval quality, (c) not substantially
alter the search experience, and (d) lead to clicks that reflect the user’s preference. The
naive approach of simply presenting two rankings side by side would clearly violate
(c), and it is not clear whether biases in user behavior allow for meaningful clicks.

Interleaving methods address these problems by merging the two rankings A and B
into a single interleaved ranking I, which is presented to the user. The retrieval system
observes clicks on the documents in I and attributes them to A, B, or both, depending
on the origin of the document. The goal is to make the interleaving process and click
attribution as “fair” as possible with respect to biases in user behavior (e.g., position bias
[Joachims et al. 2007]), so that clicks in the interleaved ranking I can be interpreted
as unbiased feedback for a paired comparison between A and B. The precise definition
of “fair” varies for different interleaving methods, but all have the goal of equalizing
the influence of biases on clicks in I for A and B. This equalization of behavioral biases
is conjectured to be more reliable than explicitly quantifying and correcting for bias
after data collection. Furthermore, unlike absolute metrics (e.g., clickthrough rate,
abandonment rate, see Section 6), interleaving methods do not assume that observable
user behavior changes with retrieval quality on some absolute scale. Rather, they
assume users can identify the preferred alternative in a direct comparison.

The following two sections present the methods of Balanced Interleaving and Team-
Draft Interleaving, which differ in the way duplicate documents are treated. The pre-
sentation of the methods follows that in Radlinski et al. [2008, 2010a].

3.1. Balanced Interleaving Method

The first interleaving method, called Balanced Interleaving, was proposed in Joachims
[2002, 2003]. The name reflects the intuition that the results of the two rankings A
and B should be interleaved into a single ranking I in a balanced way. This particular
method ensures that any top k results in I always contain the top ka results from A
and the top kb results from B, where ka and kb differ by at most 1. Intuitively, a user
reading the results in I from top to bottom will have always seen an approximately
equal number of results from both A and B.

It can be shown that such an interleaved ranking always exists for any pair of
rankings A and B, and that it is computed by Algorithm 1 [Joachims 2003]. The al-
gorithm constructs this ranking by maintaining two pointers, namely ka and kb, and
then interleaving greedily. The pointers always point at the highest ranked result in
the respective original ranking that is not yet in the combined ranking. To construct I,
the lagging pointer among ka and kb is used to select the next result to add to I. Ties
are broken randomly.

Two examples of such combined rankings are presented in the column “Balanced” of
Figure 1. The left column assumes ranking A wins a tie-breaking coin toss, while the
right column assumes that ranking B wins the toss.

Given an interleaving I of two rankings presented to the user, one can derive a
preference statement from the user’s clicks. For this, we assume that the user examines
results from top to bottom (as supported by eye-tracking studies [Joachims et al. 2007]).
We denote the number of links in I that the user considers as l. For analysis, we assume
that l is known and fixed a priori. This means that the user has l choices to click on,
and an almost equal number came from A and from B. As such, a randomly clicking
user has an approximately equal chance of clicking on a result from A as from B. If we
see more clicks on results from one of the two retrieval functions, then we can infer a
preference.
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Input Interleaved Rankings
Ranking Balanced Team-Draft

Rank A B A first B first AAA BAA ABA ...
1 a b a b aA bB aA

2 b e b a bB aA bB

3 c a e e cA cA eB

4 d f c c eB eB cA

5 g g d f dA dA dA

6 h h f d fB fB fB...
...

...
...

...
...

...
...

Fig. 1. Examples illustrating how Balanced and Team-Draft Interleaving combine input rankings A and B
over different randomizations. Superscript for the Team-Draft interleavings indicates team membership.

More formally, let A = (a1, a2, . . .) and B = (b1, b2, . . .) be two input rankings we wish
to compare. Let I = (i1, i2, . . .) be the combined ranking computed by the Balanced
Interleaving algorithm, and let c1, c2, . . . be the ranks of the clicked documents in I. To
estimate the number of choices l that the user considered, Joachims [2003] proposed
to use the rank of the lowest click observed, namely l ≈ cmax = maxi ci. Furthermore,
to derive a preference between A and B, one compares the number of clicks in the top

k = min{ j : (icmax = aj) ∨ (icmax = bj)} (1)

results of A and B. Intuitively, k is the minimum value such that {a1, . . . , ak} union
{b1, . . . , bk} includes all documents in (i1, . . . , il). The number ha of clicks attributed to
A and the number hb of clicks attributed to B is computed as

ha = |{c j : ic j ∈ (a1, . . ., ak)}| (2)
hb = |{c j : ic j ∈ (b1, . . ., bk)}|. (3)

If ha > hb, we infer a preference for A, if ha < hb we infer a preference for B, and if
ha = hb, we infer no preference and declare a tie.

To further illustrate how preferences are derived from clicks in the interleaved rank-
ing, suppose the user clicked on documents b and e in either of the two balanced
interleavings shown in Figure 1. Here, k = 2, since l = 3 and the top 3 documents in I
were constructed by combining the top 2 results from A and B. Both clicked documents
are in the top 2 of ranking B, but only one (b) is in the top 2 of ranking A. Hence the
user has expressed a preference for ranking B.

We use statistical hypothesis tests to decide whether users show a significant prefer-
ence for one retrieval function on a distribution of queries. In the simplest case, one can
use the binomial sign test to decide whether users prefer rankings from one retrieval
function significantly more often than those from the other [Radlinski et al. 2008].

For convenience, we will use a single statistic to quantify the degree of preference and
summarize the outcome of an interleaving experiment. For this purpose, we first define
two quantities wins(A) and wins(B). wins(A) is incremented by 1 for any query where
A was preferred (ha > hb). When B was preferred (ha < hb), wins(B) is incremented by
1. ties(A, B) is incremented by 1 if the users click on at least one result, but ha = hb.
Queries without clicks are ignored. We can now define the statistic

�AB = wins(A) + 1
2 ties(A, B)

wins(A) + wins(B) + ties(A, B)
− 0.5 (4)

to summarize an interleaving experiment. A positive value of �AB indicates that A 	 B,
a negative value indicates that B 	 A. For example if ranker A is preferred to ranker
B for 40% of the queries, B is preferred to A for 30% of the queries, and the remaining
30% of queries are ties, this would correspond to �AB = 5%. This counting of binary
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ALGORITHM 2: Team-Draft Interleaving
Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
Init: I ← (); TeamA ← ∅; TeamB ← ∅;
while (∃i : A[i] �∈ I) ∧ (∃ j : B[ j] �∈ I) do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . if not at end of A or B

if (|TeamA| < |TeamB|) ∨
((|TeamA| = |TeamB|) ∧ (RandBit() = 1)) then
k ← mini{i : A[i] �∈ I} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in A not yet in I
I ← I + A[k]; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I
TeamA ← TeamA ∪ {A[k]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to A

else
k ← mini{i : B[i] �∈ I} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . top result in B not yet in I
I ← I + B[k] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . append it to I
TeamB ← TeamB ∪ {B[k]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . clicks credited to B

end if
end while
Output: Interleaved ranking I, TeamA, TeamB

wins and losses is the most basic scoring scheme, and we will explore more nuanced
credit assignment methods in Sections 9 and 10.

One drawback of using Equation (1) is that it can potentially lead to biased results
for Balanced Interleaving in some cases, especially when rankings A and B are almost
identical up to a small shift or insertion. For example, suppose we have two rankings,
A = (a, b, c, d) and B = (b, c, d, a). Depending on which ranking wins the tie breaking
coin toss in Algorithm 1, interleaving will either produce I = (a, b, c, d) or I = (b, a, c, d).
In both cases, a user who clicks uniformly at random on one of the results in I would
produce a preference for B more often than for A, which is clearly undesirable. This is
because all the documents except a are ranked higher by ranking B, and k is defined as
the minimum cutoff that includes all documents. The following alternative interleaving
approach does not suffer from this problem.

3.2. Team-Draft Interleaving Method

The Team-Draft Interleaving method, introduced in Radlinski et al. [2008], follows the
analogy of selecting teams for a friendly team-sports match. When assigning teams,
one common approach is to first select two team captains. These captains then take
turns selecting players for their team. We can use an adapted version of this algorithm
for creating interleaved rankings. Suppose each document represents a player, and
rankings A and B are the preference orders of the two team captains. In each round,
the captains pick the next player by selecting their most preferred player that is still
available, add the player to their team, and append the player to the interleaved
ranking I. We randomize which captain gets to pick first in each round. The algorithm
is summarized in Algorithm 2, and the column “Team-Draft” of Figure 1 gives three
illustrative examples (for example, the column “BAA” indicates that captain B picked
first in the first round, and that captain A picked first in the second and third rounds).

To derive a preference between A and B from the observed clicking behavior in I,
again denote the ranks of the clicks in the interleaved ranking I = (i1, i2, . . .) with
c1, c2, . . .. We then attribute the clicks to ranking A or B based on which ranking
selected the clicked results (or, in the team sport analogy, which team that player was
playing for). In particular,

ha = |{c j : ic j ∈ TeamA}| (5)
hb = |{c j : ic j ∈ TeamB}|. (6)
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If ha > hb we infer a preference for A, if ha < hb we infer a preference for B, and if
ha = hb we infer no preference. For the example in Figure 1, a user clicking on b and e in
the AAAranking will click two members of TeamB (hb = 2) and none in TeamA (ha = 0).
This generates a preference for B. Note that the randomized alternating assignment
of documents to teams and ranks in I ensures that, unlike for Balanced Interleaving,
a randomly clicking user will produce equally many preferences for A and for B in
expectation. This avoids the problem of Balanced Interleaving described at the end of
Section 3.1.

Analogous to Balanced Interleaving, we define the quantities wins(A), wins(B),
ties(A, B), and �AB as in Equation (4).

While Team-Draft Interleaving has desirable behavior with respect to a random
(i.e. noninformative) user, one can also construct examples for Team-Draft Interleaving
where the wrong preference is returned. Consider an ambiguous query, where 49% of
the users have intent A, 49% have intent B, and 2% have intent C. Assume that all
users with intent A are satisfied by document a, all users with intent B are satisfied
by document b, and all users with intent C are satisfied by document c. Ranking
R1 = (a, b, . . .) will therefore satisfy 98% of all users with the top two results, while
ranking R2 = (b, c, . . .) will satisfy only 51%. However, assuming that users make only
a single click on the very first relevant document they encounter, it is easy to verify that
R2 will win under Team-Draft Interleaving (as well as under Balanced Interleaving)
in 51% of the comparisons. An alternative construction demonstrating a bias in Team
Draft Interleaving is presented in Hofmann et al. [2011, Section 3.2].

Whether an interleaving method exists that does not exhibit such issues is an open
question, and we will revisit this question with further discussion in Section 11. Fur-
thermore, in Sections 9 and 10 we will discuss methods that address some of these
issues by assigning credit for clicks in a more refined manner. In general, however, it
is not clear whether such biases in the comparison of two individual rankings really
distort the evaluation of two retrieval functions, since one is evaluating many rank-
ing pairs over a distribution of queries. If erroneous preferences occur uniformly in
both directions, they merely add noise but do not change which ranking function wins
more often. We will therefore now investigate the accuracy of interleaving evaluation
empirically over a wide range of settings.

4. EXPERIMENT DESIGN AND SEARCH ENGINES USED

To explore the accuracy of interleaving evaluation compared to manual judgments and
to conventional implicit feedback metrics, we conducted experiments on three search
engines: the ArXiv.org full-text search engine,1 the Bing web search engine,2 and the
Yahoo! web search engine.3 We now describe how these experiments were designed,
what retrieval functions were compared, and what was measured in the experiments.

4.1. Experiment Types

Each experiment on each search engine was designed to address a specific question,
and we ensure that every major conclusion is verified in at least two separate experi-
ments and search engines. Experiments were selected to cover different search settings
and user populations. Furthermore, we used sets of retrieval functions where the dif-
ference in retrieval quality ranges from large to very small. We distinguish two types
of experiments, which we term Noncomparative and Paired-Comparison, respectively.

1http://search.arxiv.org.
2http://bing.com.
3http://www.yahoo.com.
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In noncomparative experiments, each experiment condition corresponds to a single
retrieval function that is shown to a random sample of users. We refer to such ran-
dom samples as buckets. Non-comparative experiments are used to estimate absolute
metrics such as clickthrough rate and abandonment rate for each retrieval function.

In paired-comparison experiments, the experimental condition corresponds to a pair
of retrieval functions that is presented via one of the interleaving methods. Using a
randomly sampled bucket of users, the respective preference score �AB for the pair of
retrieval functions as defined in Equation (4) can be estimated from the clicks.

We now describe the experiment setup for each search engine.

4.2. ArXiv.org Full-Text Search

ArXiv.org is a digital collection of more than 700,000 academic articles. It is used
daily by many thousands of users, predominantly scientists from the fields of physics,
mathematics, and computer science. Hundreds of visitors use its full-text search engine
on any particular day. Search results are presented similar to a web-search engine,
grouping 10 results per page. For each result, the system shows authors, title, year, a
query-sensitive snippet, and the ArXiv identifier of the paper. A “click” is registered
whenever a user follows a hyperlink associated with a result. These clicks lead to a
metadata page from where the full article is available for download. Radlinski et al.
[2008] instrumented this search engine for the experiments on this collection. The
following provides an overview of the experiment design for ArXiv.org. More details
can be found in Radlinski et al. [2008].

Two triplets of retrieval functions were designed so that their relative retrieval qual-
ity is known by construction. Starting with an initial (hand-tuned) ranking function
called EA, several other ranking functions were derived by artificially degrading EA. In
particular, EA scores each document by computing the match between the query and
several document fields like authors, title, abstract, full text, etc. A degraded retrieval
function, BA, was derived by ignoring fields and aggregating most metadata into a sin-
gle field. An even stronger degradation was achieved by the third retrieval function,
AA, which randomly reorders the top 11 results of BA. It is reasonable to conclude that,
by construction, EA 	BA 	AA, using the notation fi 	 f j to indicate that the retrieval
quality of ranking function fi is better than that of f j .

To create a second triplet of ranking functions that shows a more subtle difference
in retrieval quality, performance was degraded in a different way. Starting again with
the ranking function EA, DA randomly selects two documents in the top 5 positions
and swaps them with two random documents from ranks 7 through 11. This swapping
pattern is then replicated on all later result pages. Increasing the degradation, CA

randomly selects four documents to swap. This provides a second triplet of ranking
functions, where by construction EA 	 DA 	 CA.

Users were randomly but permanently assigned to one experimental condition based
on an MD5-hash of their IP address. This MD5-hash is also the seed for any random
computations during a search.

Data was collected in three phases, as summarized in Table I. Each phase consisted
of six experimental conditions to which users were uniformly assigned. In the non-
comparative experiments, some obvious crawlers were removed, since they would have
substantially distorted metrics like abandonment rate (see Section 6). Also, we first
computed any statistic in the non-comparative experiments for each user, and only
then averaged over all users. This gives all users equal “vote” and improves robustness.
In the comparative experiments, both Balanced and Team-Draft interleaving were
evaluated. No data cleaning was done for the interleaving experiments, since these
metrics are naturally robust to crawlers.
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Table I.
Summary of experiments conducted and data collected. “Non-Comp” refers to non-
comparative experiments, “Balanced” to Balanced Interleaving, and “Team-Draft” to
Team-Draft Interleaving. The subscript in the function name refers to the search
engine.

Experimental Condition Number of Number of
Type Function(s) Searches Days First Day

A
rX

iv

Non-Comp EA 3,754 30 Jan 27, 2008
Non-Comp BA 4,008 30 Jan 27, 2008
Non-Comp AA 3,798 30 Jan 27, 2008
Non-Comp EA 3,919 38 Dec 19, 2007
Non-Comp DA 3,908 38 Dec 19, 2007
Non-Comp CA 3,439 38 Dec 19, 2007
Balanced EA 	BA 3,410 30 Jan 27, 2008
Balanced EA 	AA 3,510 30 Jan 27, 2008
Balanced BA 	AA 3,785 30 Jan 27, 2008
Balanced EA 	DA 3,860 38 Dec 19, 2007
Balanced EA 	CA 4,036 38 Dec 19, 2007
Balanced DA 	CA 3,848 38 Dec 19, 2007

Team-Draft EA 	BA 4,268 37 Mar 15, 2008
Team-Draft EA 	AA 4,157 37 Mar 15, 2008
Team-Draft BA 	AA 4,911 37 Mar 15, 2008
Team-Draft EA 	DA 4,128 37 Mar 15, 2008
Team-Draft EA 	CA 4,560 37 Mar 15, 2008
Team-Draft DA 	CA 4,406 37 Mar 15, 2008

B
in

g

Team-Draft BB 	AB 220,000 4 July 21, 2009
Team-Draft CB 	AB 190,000 4 Aug 4, 2009
Team-Draft CB 	BB 220,000 4 Aug 11, 2009
Team-Draft DB 	CB 220,000 4 July 7, 2009
Team-Draft FB 	EB 220,000 4 Sept 1, 2009

Ya
h

oo
!

Non-Comp AY 73.9 M 33 Mar 17, 2010
Non-Comp BY 10.4 M 33 Mar 17, 2010
Non-Comp CY 41.8 M 33 Mar 17, 2010
Non-Comp DY 72.4 M 33 Mar 17, 2010
Balanced DY 	CY 13.9 M 42 May 12, 2010
Balanced DY 	BY 1.5 M 5 Apr 14, 2010
Balanced DY 	AY 677,000 2 Apr 7, 2010
Balanced CY 	BY 1.5 M 5 Apr 14, 2010
Balanced CY 	AY 680,000 2 Apr 7, 2010
Balanced BY 	AY 1.6 M 5 Apr 9, 2010

4.3. Bing Web Search

Team-Draft Interleaving was implemented on the Bing web search engine, and it was
fielded to a small fraction of US users for five pairs of previously developed Web search
retrieval functions [Radlinski and Craswell 2010]. The pairs of retrieval functions
can be split into two sets, based on the magnitude of the differences between the
ranking functions. The first set uses three retrieval functions, named AB, BB, and
CB, which represent major revisions of the web search ranker. Experiment BB 	AB

compared rankers AB and BB, with experiments CB 	BB and CB 	AB named analogously.
The differences between these rankers involve changes of over half a percentage point,
in absolute terms, of MAP and NDCG. Although such differences can be considered
small, they are also of similar magnitude to those commonly reported in research
publications.

The remaining two pairs of retrieval functions involve smaller modifications to the
ranking system, we term these DB 	CB and FB 	EB. The overall differences involve
changes in retrieval performance of under 0.2 percentage points of MAP and NDCG.
Such differences are typical for incremental changes made during algorithm develop-
ment. This is one reason why very sensitive methods like interleaving are needed to
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compare functions at reasonable costs during the development cycle. The pair DB 	CB

involves a small change in search engine parameters, resulting in a small effect on
many queries. The pair FB 	EB involves a change in the processing of some rare queries,
resulting in a large effect on a small fraction of queries.

During the experiment, the rankings produced by Team-Draft Interleaving were
shown to a small fraction of Bing users over multiple days until 220,000 user searches
with non-adult queries with clicks had been observed.4 The experiments were per-
formed in succession over two months from July 2009, with each experiment run on
the same days of the week (Tuesday through Friday) to avoid any weekday/weekend
effects. A summary of the experiments is given in Table I.

In addition to the online experiments, manual relevance judgments were collected
as well. Specifically, judgements for approximately 12,000 queries previously sampled
from the search engine workload were gathered during the same time period when the
interleaving experiments were performed. The relevance of the top results returned
by each ranker in the interleaving experiments was assessed by trained judges on
a five-point scale ranging from “bad” to “perfect.” As MAP requires binary relevance
judgments, binarized versions of the ratings were created by taking the top two levels
as relevant, and bottom three as nonrelevant. These rating were then used to measure
difference in MAP5 and NDCG@5 for each pair of retrieval functions.

4.4. Yahoo! Web Search

Balanced Interleaving was implemented and fielded on the Yahoo! web search engine.
A bucket of users from the US market was assigned to each experiment performed,
consisting of a small percentage6 of incoming traffic. We compared all pairings of four
ranking functions. Function AY was the current production version at the time of the
comparison. Functions BY, CY and DY were candidate functions for the next release,
trained on a larger training set and with more features than function AY. Functions
CY and DY are most similar: they were trained with the same algorithm, but different
parameters. Function BY was trained using a different objective function.

Table I summarizes the online experiments that were conducted between March and
May 2010 for all six pairs of retrieval functions. The Balanced Interleaving algorithm
was used for all comparative experiments. Furthermore, all retrieval functions were
also fielded in the noncomparative experiment setup to compute absolute metrics such
as clickthrough and abandonment rate.

The four noncomparative experiments—one for each ranking function—were run si-
multaneously over more than a month. The interleaving experiments lasted for shorter
periods of time, either two or five days. The only exception is the interleaving experi-
ment comparing functions CY and DY. These functions are extremely close in terms of
relevance, and the original 5 day bucket was not long enough to reach a statistically
significant conclusion. It was therefore reprogrammed to run for 42 days.

Similar to the experiments on Bing, manual relevance judgments were gathered for
the Yahoo! experiments. 2,000 queries were sampled for manual judging, focussing
on DCG@5 as the performance measure. All four retrieval functions have very similar
DCG@5 scores, and the maximum relative difference7 between them is 0.65%. Ranking
the functions by DCG@5 suggests the ordering DY 	 CY 	 BY 	 AY. However, none of

4With the exception of the CB 	AB pair, for which only 190,000 user searches were collected.
5Note that instead of measuring MAP down to a deep rank (such as 1,000 in TREC), we limit ourselves
to only the top ten documents due to the large number of documents that would otherwise have had to be
assessed. Essentially, we assume that anything not in the top 10 is unranked.
6This percentage varied between experiments.
7Computed with respect to the inferior ranking function, that is, δ = a−b

min(a,b) .
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these differences is statistically significant at the 95% level according to the bootstrap
method described in the following section. Much like the functions tested in Bing,
this closeness in retrieval quality is typical when trying to improve an already highly
optimized production function, where no single change provides a substantial gain.

4.5. Statistical Methodology

Wherever possible we use bootstrap estimators [Efron and Tibshirani 1993] to eval-
uate the statistical significance of our findings. Unlike methods based on parametric
statistical models, bootstrap methods require fewer assumptions and provide a unified
approach to the various statistical inference problems we encountered.

In particular, we use the bootstrap percentile method [Shao and Tu 1995] to com-
pute confidence intervals for point estimates. Given n independently and identically
distributed observations X1, . . . , Xn ∼ P(X), let θ̂ be an estimator (e.g., the sample
mean) of some unknown quantity θ (e.g., the population mean). Two statistics θ̂l and
θ̂u of X1, . . . , Xn are a (1 − α)-confidence interval, if P(θ ∈ [θ̂l, θ̂u]) ≥ 1 − α. If not noted
otherwise, we use two-sided confidence intervals with equal confidence coefficient α

2 in
each tail. Our default value for α is 0.05, which results in 95% confidence intervals.

The boostrap percentile method computes the confidence bounds θ̂l and θ̂u by approxi-
mating the population distribution P(X) with the empirical distribution of the observed
sample. It then uses the lower and upper α/2-percentiles of the empirical distribution
as the values of θ̂l and θ̂u. This is a well-justified approximation for large n that is know
to provide accurate confidence sets [Shao and Tu 1995].

To compute the percentiles of the empirical distribution, we use the Monte Carlo
method. In particular, we draw k bootstrap-samples (i.e., sampling with replacement)
of size n from the observed sample and compute θ̂ for each sample. The lower confidence
bound θl is the �αk

2 �-th lowest value of θ̂ , and the upper confidence bound is the �αk
2 �-th

highest value of θ̂ . If not noted otherwise, we use k = 10,000 since larger values of k
did not provide substantial improvements in accuracy.

In some of the following experiments we must also measure the reliability of an
estimator for sample sizes n′ smaller than n. For example, we might want to know
whether Team-Draft Interleaving would have already provided confident results with
only half the data, that is, n′ = n/2. It is easy to compute confidence intervals using
the bootstrap percentile method simply by using n′ = n/2 during the Monte Carlo
simulation.

Furthermore, we can use the same bootstrap approximation and the Monte Carlo
method to directly estimate the consistency of a decison D after n′ observations. For
example, D may be binary decision indicating whether Team-Draft Interleaving prefers
retrieval function A or B after n′ observations. Note that D is a random variable, since it
depends on a sample. To estimate P(D|n′), one can use the fraction of the k Monte-Carlo
samples on which D takes any particular value. For clarity, this method is summarized
in Algorithm 3.

5. DOES INTERLEAVING AGREE WITH EXPERT ASSESSMENTS?

The first question we address in detail is whether the ranking identified as better by
interleaving is also judged as better by human experts. In the case of ArXiv.org, the
expert judgment results from the designed degradation of the retrieval functions. On
Yahoo! and Bing, we compare the outcome of interleaving evaluations to relevance
differences as measured using MAP, DCG and NDCG [Manning et al. 2008]. Note that
one should not treat human judgments as the ground truth. Rather, agreement between
expert judgments and interleaving builds confidence that both methods accurately
reflect user satisfaction with search results (see Section 11 for a detailed discussion).
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ALGORITHM 3: Bootstrap Monte Carlo Method for Consistency Estimation.
Input: Data X, decision rule D, bootstrap sample size n′.
k = 10,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Number of repetitions
f [] = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Counter for outcomes
for i = 1 to k do

X∗ = sample with replacement of size n′ from X.
d = value of D on sample X∗.
f [d] = f [d] + 1

end for
Return: P̂(D = d|n′) = f [d]/k

Table II.
Interleaving results for EA 	BA 	AA and EA 	DA 	CA ranking function triplets
on ArXiv.org. The numbers show �AB (in percentage) per Equation (4). Bold
numbers are statistically significantly greater than zero with 95% confidence.

EA 	BA BA 	AA EA 	AA EA 	DA DA 	CA EA 	CA

Balanced 4.32 2.54 5.38 1.74 3.06 3.83
Team-Draft 5.23 3.52 12.92 2.05 1.96 4.92

5.1. Agreement in the Direction of Preference

For ArXiv.org, as described in Section 4.2, five ranking functions were created by
intentionally degrading a well performing ranking function. We now evaluate whether
the direction of the interleaving preference agrees with this degradation by design.
While independent expert judgments were not performed, two of the authors of this
paper inspected a sample of the results and agreed that retrieval quality was degraded
as expected. These results were previously published in Radlinski et al. [2008].

Table II shows that interleaving agrees with the design on all 6 pairwise compar-
isons. For both interleaving methods, the sign of �AB (as defined in Equation (4)) is
always positive, reflecting the expected ordering in both EA 	BA 	AA and EA 	DA 	CA.
Computing confidence intervals for �AB as described in Section 4.5, the bold entries
in Table II indicate where the expected difference in wins/losses is significantly differ-
ent from zero. While the remaining two pairs fail the 95% confidence level, they are
significant at the 90% level.

For Bing, we compare the preferences from interleaving with conventional expert
judgments. For each interleaved pair of ranking functions, Figure 2 shows absolute dif-
ference in NDCG@5 and MAP versus the value of �AB using Team-Draft Interleaving.
These results were previously published in [Radlinski and Craswell 2010]. The error
bars indicate 95% confidence intervals for expert judgments and interleaving computed
from k = 1,000 bootstrap samples. Whenever there is a significant difference in either
NDCG or MAP (i.e., the vertical error bars do not intersect with zero), interleaving
agrees with the direction of preference. Furthermore, interleaving is significant for all
pairs. Note that the apparent disagreement on DB 	CB simply indicates that according
to expert judgments ranker DB is slightly better but not statistically significantly, while
interleaving finds ranker CB significantly preferred. In other words, interleaving finds
a significant preference while expert judgments do not.

The experiments on Yahoo! are analogous to those for Bing, but use Balanced Inter-
leaving instead of Team-Draft Interleaving. For each interleaved pair of Yahoo rank-
ing functions, Figure 3 shows the relative8 DCG@5 difference between the ranking
functions interleaved versus �AB using Balanced interleaving. All points lie in the
positive quadrant. This means that the direction of the preference agrees with expert

8All relative differences δ are computed with respect to the inferior ranking function, that is, δ = a−b
min(a,b) .
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Fig. 2. Agreement between expert judgments and interleaving on the Bing search engine. The interleaving
signal is the �AB quantity defined in Equation (4). The bars around each point indicate confidence intervals
computed by bootstrap.
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Fig. 3. Agreement between expert judgments and interleaving on Yahoo! search, similarly to Figure 2.

judgments in all cases. However, while the interleaving signal is significant for all pairs,
the confidence intervals for DCG@5 difference are large and not significant (because
only 2,000 judged queries are available).
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Table III.
Correlation between expert judgments and interleaving on the Bing
and Yahoo search engine, computed across all pairs interleaved on
each system. Bootstrapped correlation involved resampling from the
judged queries and the interleaved impressions, and then measuring
correlation.

Bootstrapped
Setting Interleaving Metric Correlation correlation
Bing Team-Draft NDCG@5 0.882 0.864 ± 0.048

Team-Draft MAP 0.689 0.669 ± 0.104
Yahoo! Balanced DCG@5 0.696 0.417 ± 0.419

Table IV.
Summarizing the interleaving signals � (in percentage) for
all triplets A 	 B 	 C using the full unsampled data. In
all cases, they satisfy strong stochastic transitivity, �AC >

max{�AB,�BC }.
Ranking function Interleaving signal

A B C �AC �AB �BC
EA BA AA 5.38 4.32 2.54
EA DA CA 3.83 1.74 3.06
CB BB AB 1.38 1.17 0.92
CY BY AY 0.54 0.50 0.16
DY BY AY 0.56 0.54 0.16
DY CY AY 0.56 0.03 0.54
DY CY BY 0.54 0.03 0.50

5.2. Correlation of the Magnitude of Difference

The previous section showed that the direction of preference predicted by interleav-
ing agreed with the direction of preference derived from expert relevance judgments
whenever the latter was significant. In this section we go a step further by analyzing
the agreement of the magnitudes of these preferences signals. More precisely, how do
the differences in editorial metric correlate with the interleaving signal?

Figures 2 and 3 show that, for the Bing experiments, NDCG@5 is highly correlated
with interleaving, while MAP is somewhat less correlated. For the Yahoo! experiments,
DCG@5 also appears to be well correlated with interleaving, although the relatively
small number of queries for editorial judgments (2,000) induces large error bars on the
DCG differences.

The correlations corresponding to these plots are shown in Table III. The bootstrap
correlation is computed by taking bootstrap samples of queries from both the expert-
judgment corpus as well as the interleaving buckets. For each iteration of the Monte
Carlo algorithm, the correlation is computed. The mean and standard deviation of
these correlations is then reported in the last column of Table III.

A similar study was conducted on a smaller scale by Ali and Chang [2006]. In that
study, a correlation between interleaving and side-by-side relevance assessments was
computed across 89 queries. The authors reported a correlation of 0.40, which is sub-
stantially smaller than the correlations shown in Table III. This can be explained by
the various differences in experimental design—most notably due to the fact that the
correlation in Ali and Chang [2006] was computed at the query level. Query-level mea-
surements tend to be substantially more noisy and less reliable than the aggregate
measures considered in this article.

5.3. Internal Consistency of Interleaving Preferences

Using the results presented in this section, we can also analyze the internal consistency
of interleaving preferences. In particular, Table IV shows that a magnitude-preserving
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property called strong stochastic transitivity [Kozielecki 1981] is satisfied for all inter-
leaving preferences evaluated thus far in this section. This property implies that for
any triplet A 	 B 	 C, we have

�AC ≥ max{�AB,�BC}. (7)

Properties such as strong stochastic transitivity provide internal consistency, or struc-
ture, that allows for efficient selection of the best amongst a set of functions (e.g., as
formulated in the Dueling Bandits Problem [Yue et al. 2009; Yue and Joachims 2011]).

5.4. Summary

We found that both interleaving algorithms reliably agree with judgments collected
from experts whenever both outcomes are statistically significant. Furthermore,
the magnitude of �AB shows substantial correlation with the magnitude of NDCG
difference, and somewhat less with DCG and MAP difference. Finally, all the values
of �AB exhibit strong stochastic transitivity.

6. DO ABSOLUTE METRICS AND INTERLEAVED EVALUATION AGREE?

Noncomparative experiments are the conventional approach for estimating the quality
of a ranking function based on implicit user feedback (see Section 2 for a discussion of
relevant related work). Each ranking function is fielded on a different bucket of users,
and absolute metrics are estimated for each bucket. The estimated values are then used
to order the ranking functions, assuming that the metrics change monotonically with
retrieval quality. We now explore several absolute metrics that quantify the clicking and
session behavior of users, and verify whether they do indeed order ranking functions by
their retrieval quality. Furthermore, we investigate the agreement of absolute metrics
with the preferences elicited via interleaving, which we have already established to
agree with expert judgments.

6.1. Absolute Metrics

We measured the following ten absolute metrics, including the metrics used in Radlin-
ski et al. [2008]. They reflect the key observable actions that users can choose to perform
after issuing a query: clicking, reformulating or abandoning the search.

Abandonment Rate The fraction of queries for which no results were clicked on.
Reformulation Rate The fraction of queries that were followed by another query

during the same session.
Queries per Session The average number of queries issued by a user during a

session.
Clicks per Query The average number of results that are clicked for each query.
Clicks@1 The fraction of queries for which there was a click on the

top-ranked document.
pSkip† The average of one minus the number of clicked documents

divided by the rank of the lowest click (i.e. the fraction of
documents viewed but not clicked) [Wang et al. 2009].

Max Reciprocal Rank† The average value of 1/r, where r is the rank of the highest
ranked result clicked on.

Mean Reciprocal Rank† The average value of the mean of 1/ri over the ranks ri of all
clicks for each query.

Time to First Click† The median time from query being issued until first click on
any result.

Time to Last Click† The median time from query being issued until last click on
any result.
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Table V. Hypothesized Change of the Absolute Metrics with
Decreasing Retrieval Quality

Metric Hypothesis Rationale
Abandonment rate ↗ (more bad result sets)
Reformulation rate ↗ (more need to reformulate)
Queries per session ↗ (more need to reformulate)
Clicks per query ↘ (fewer relevant results)
Clicks@1 ↘ (top result is worse)
pSkip ↗ (more skipped results)
Max reciprocal rank ↘ (top results are worse)
Mean reciprocal rank ↘ (more need for many clicks)
Time to first click ↗ (good results are lower)
Time to last click ↘ (fewer relevant results)

Table VI.
Results of the absolute metrics comparison on the ArXiv data. The numbers are the relative
difference (in percent) of the absolute metric between the two functions to be compared.
The signs are set such that a positive number means that the comparison outcome is in
agreement with the hypothesized change in Table V.

EA 	BA BA 	AA EA 	AA EA 	DA DA 	CA EA 	CA

Abandonment Rate 6.22 0.14 6.35 −3.56 2.61 −0.86
Reformulation Rate 3.86 1.30 5.12 0.82 −0.84 −0.01
Queries per Session 1.90 1.86 3.73 −0.70 −3.90 −4.62
Clicks per Query 28.26 4.16 33.59 −5.17 3.49 −1.86
Clicks@1 36.01 −2.93 32.02 −11.77 35.65 19.68
pSkip 2.28 3.00 5.22 −2.38 12.51 10.43
Max Reciprocal Rank 6.48 0.48 6.99 −3.80 14.69 10.33
Mean Reciprocal Rank 3.67 0.51 4.20 −4.86 18.45 12.69
Time to First Click −3.33 6.25 3.12 −0.00 12.50 12.50
Time to Last Click 4.59 −5.22 −0.87 24.04 −18.11 1.57
Balanced Interleaving �AB 4.32 2.54 5.38 1.74 3.06 3.83
Team-Draft Interleaving �AB 5.23 3.52 12.92 2.05 1.96 4.92

A session is defined as a sequence of interactions (clicks or queries) between a user
and the search engine where less than 30 minutes pass between subsequent interac-
tions. When computing the metrics marked with †, we exclude queries with no clicks to
avoid conflating this metric with abandonment rate. For each metric, we hypothesize
in Table V how we expect the metric to change as retrieval quality decreases. Even if
the hypothesized directions of change are incorrect, we at least expect these metrics to
change in a consistent direction as retrieval quality decreases.9

6.2. Results

For ArXiv.org, Table VI lists the relative differences of the absolute metrics for all
pairwise comparisons in EA 	BA 	AA and in EA 	DA 	CA. The absolute values of the
respective metrics can be found in Radlinski et al. [2008], with the exception of Clicks@1
and pSkip. A positive number in Table VI indicates that the change in the absolute
metric is consistent with the hypothesis of Table V. For example, the value of 6.22 in
the top left corner of Table VI means that the abandonment rate of EA is lower than
that of BA by 6.22%. Note again that the relative difference is always computed with
respect to the inferior ranking function.

We observe that none of the metrics consistently follows the hypothesized behavior.
The number of pairs A 	 B where the observed value follows (�) or opposes (�) the
hypothesized change is summarized in the “weak” columns of Table VII. It shows that,
for example, the abandonment rate agrees with the hypothesis for four pairs of ranking

9Although these metrics can be very noisy at the query-level, we should expect them to change consistently
with (average) retrieval quality when aggregrated over a large sample of queries.
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Table VII.
Comparing the number of correct (“�”) and false (“�”)
preferences implied by an absolute metric or interleaving,
aggregated over the “EA 	BA 	AA” and the “EA 	DA 	CA”
comparisons on ArXiv. A preference is weakly cor-
rect/false, if observed value follows/contradicts the hy-
pothesis. A preference is significantly correct/false, if the
difference between the observed values is statistically
significant (95%) in the respective direction.

weak significant
� � � �

Abandonment Rate 4 2 2 0
Reformulation Rate 4 2 0 0
Queries per Session 3 3 0 0
Clicks per Query 4 2 2 0
Clicks@1 4 2 4 0
pSkip 5 1 2 0
Max Reciprocal Rank 5 1 3 0
Mean Reciprocal Rank 5 1 2 0
Time to First Click 4 1 0 0
Time to Last Click 3 3 1 0
Balanced Interleaving 6 0 6 0
Team-Draft Interleaving 6 0 4 0

functions (EA 	 BA, BA 	 AA, EA 	 AA and DA 	 CA). However, for the remaining two
pairs, it changes in the opposite direction. Even more strongly, none of the absolute
metrics even changes strictly monotonically with retrieval quality.

The lack of consistency with the hypothesized change could partly be due to measure-
ment noise, since the elements of Table VII are estimates of a population mean/median.
The column “significant” of Table VII shows for how many pairs A 	 B the difference
in the hypothesized direction of change (�) or its opposite (�) is significant based on
the 95% bootstrap confidence intervals. We do not see a significant difference for more
than four out of the six pairs A 	 B for any of the absolute metrics. With the exception
of Max Reciprocal Rank and Clicks@1, even the “large difference” pairs EA 	 AA and
EA 	 CA are not consistently significant for any of the metrics. This suggests that, at
best, substantially more data is needed to use these absolute metrics reliably, making
them unsuitable for low-volume search applications like desktop search, digital library
search, and intranet search.

We performed a similar analysis on Yahoo!, but using orders of magnitude more
data. Recall from Table I that each of the Yahoo! functions was evaluated using tens of
millions of queries. We drop the session-based metrics (reformulation rate, and queries
per session) since they did not appear to be predictive of ranking quality in previous
experiments.

The results are listed in Table VIII. Only one of the absolute metrics, Clicks@1,
always agrees with the ranking of the retrieval functions by DCG@5. Furthermore, if we
consider correlation with DCG@5 as a measure of quality of these metrics, the highest
correlation achieved by any absolute metric is 0.43 (again, by Clicks@1). Table IX
summarizes the performance of these absolute metrics. Most of the differences are
statistically significant at the 95% confidence level, but some still lack significance
even after millions of queries.

The number of clicks per query does not seem to follow any meaningful pattern,
which was already noted in Chapelle et al. [2009]. This can be explained as follows. On
the one hand, one would expect fewer clicks per query if the results are less relevant.
This is probably true for informational queries. On the other hand, for navigational
queries, when the navigational result is not at the top of the ranking, the user may
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Table VIII.
Results of absolute metric comparison on Yahoo! dataset. The first row is the DCG5 averaged over a
set of 2,000 queries. The next 8 rows are the relative difference (%) between each metric for each pair
of ranking functions. The last row is the deviation from 50% for interleaving. For all metrics, a positive
number indicates that the second function is to preferred to the first one. The last column is the correlation
coefficient between a given metric and the DCG, computed across the 6 pairs of functions.

BY 	AY CY 	AY DY 	AY CY 	BY DY 	BY DY 	CY Corr.
DCG5 0.27 0.50 0.65 0.23 0.38 0.16 1
Abandonment Rate −0.214 0.084 0.228 0.298 0.441 0.144 0.16
Clicks per Query −0.365 −0.033 −0.097 0.334 0.269 −0.064 −0.11
Clicks@1 0.049 0.245 0.844 0.196 0.795 0.597 0.43
pSkip −0.039 0.140 0.465 0.180 0.504 0.326 0.38
Max Reciprocal Rank −0.069 0.155 0.527 0.224 0.596 0.371 0.35
Mean Reciprocal Rank −0.014 0.178 0.599 0.192 0.613 0.420 0.40
Time to First Click 0.646 0.245 0.381 −0.403 −0.266 0.137 0.28
Time to Last Click −0.725 −0.282 −0.233 0.446 0.496 0.050 −0.23
Balanced Interleaving �AB 0.160 0.543 0.559 0.504 0.537 0.035 0.69

Table IX.
Similarly to Table VII, number of correct and false pref-
erences on the Yahoo! data.

weak significant
� � � �

Abandonment Rate 5 1 5 1
Clicks per Query 2 4 2 3
Clicks@1 6 0 5 0
pSkip 5 1 5 0
Max Reciprocal Rank 5 1 5 0
Mean Reciprocal Rank 5 1 5 0
Time to First Click 4 2 3 1
Time to Last Click 3 3 2 3
Balanced Interleaving 6 0 6 0

click on several results before finding the navigational result. Thus, this metric could
both increase or decrease as the ranking function deteriorates. A similar argument
could be made for time to last click: a time increase can either be due to more relevant
results (user engaged) or worse results (user struggles to find what he needs).

Interleaving correctly predicts the preference for each function pair, and the inter-
leaving signal �AB shows a 0.69 correlation with the difference in DCG, as already
noted in Table III.

6.3. Summary

For all absolute metrics, most differences are not statistically significant on the ArXiv
dataset, indicating a substantially lower sensitivity than interleaving. While the ab-
solute metrics become mostly significant on the Yahoo! data, even the best absolute
metrics (i.e., Clicks@1, pSkip, Max Reciprocal Rank, and Mean Reciprocal Rank) are
substantially less correlated with DCG@5 than interleaving.

7. HOW MUCH CLICK DATA IS NEEDED TO OBTAIN A STATISTICALLY RELIABLE
PREFERENCE?

The results in the previous section have already indicated that different metrics differ
in sensitivity and reliability. The more sensitive an implicit feedback signal, the less
data is needed and the faster one can act upon the evaluation results. Before compar-
ing the sensitivity of interleaving to that of human judgments in Section 8, we first
investigate the sensitivity of interleaving in comparison to the absolute metrics.
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For this purpose, we used Algorithm 3 from Section 4.5 to estimate how confidently
a given metric predicts a preference between two retrieval functions given n′ queries.
Here, n′ is typically much smaller than the size of the full dataset X. In particular, to
estimate the sensitivity of interleaving for ranking functions A and B, we repeatedly
draw bootstrap samples X∗

AB of n′ queries from the overall dataset XAB, compute the
preference on each X∗

AB according to interleaving, and count the fraction of times the
preference goes each direction. The respective fraction is an estimate of Pr(A 	m B|n′),
the probability that metric m will prefer A over B after n′ queries. For the absolute
metrics, we use an analogous resampling procedure that draws two bootstrap samples
X∗

A and X∗
B, each of size n′, from the corresponding noncomparative experiment.

7.1. Results

The results for the six pairs of ArXiv.org retrieval functions are plotted in Figure 4.
The x-axis indicates the number of queries n, while the y-axis shows the probability
that a metric disagrees with the true preference. The metrics for which the probability
is increasing as a function of the data size are the ones which do not agree with the
true preference. Note that at the extreme right of these plots (i.e., resampling the data
at the same size as the original size), a value under 0.05 corresponds to a statistically
significant agreement (with 95% confidence) in Tables II and VII.

In most cases, the interleaving methods reach a high level of confidence much faster
than conventional methods based on absolute metrics. This difference is most notable
for the “large-difference” pairs EA 	 AA and EA 	 CA, where less than a third of the data
would have sufficed to state a confident preference. The two interleaving methods show
similar sensitivity and no method emerges as a clear winner.

Figure 5 shows analogous plots for the Yahoo! data, but using a log-scale on the x-axis
due to the large amount of data. In addition, since different buckets vary greatly in
the number of queries (see Table I), the sizes of the resampled data were absolute and
not a fraction of the original data as in Figure 4. The plots show the probability that
each absolute metric or interleaving disagrees with the DCG@5 difference resulting
from expert judgments. As expected (and consistent with the positive numbers in the
last row of Table VIII), this probability drops to zero for interleaving on all pairs of
retrieval functions. Furthermore, interleaving typically produces a statistically reliable
preference after much less data than any absolute metric.10

We now quantify how much data interleaving saves in comparison to the abso-
lute metrics. We focus on comparing interleaving with Clicks@1, since Clicks@1 is the
only absolute metric that predicts the correct preference for all buckets. Furthermore,
Clicks@1 has the highest correlation with DCG@5 among the absolute metrics (see
Table VIII). Table X describes our results. There is only one pair for which interleaving
was less sensitive than Clicks@1. In all others, interleaving was much more sensitive,
significantly reducing the number of queries needed by over an order of magnitude.

From an application perspective, the quantity of interest is the evaluation duration
required to produce reliable results. Note that this is not necessarily equivalent to
the number of queries as considered above, since a temporally consecutive sequence of
queries may not be an independent and identically distributed sample. We therefore
verify the above results using a variant of Algorithm 3 that uses a different resampling
protocol. In particular, we use the sequence-based resampling protocol described in
Algorithm 4 on ranking functions BY and DY. We chose these two functions due to their
relatively large difference in relevance and ample amount of logged queries, both in the
interleaving and noncomparative buckets. This estimator no longer draws bootstrap

10Note that, for a given x value on these plots, an absolute comparison uses twice as much data as an
interleaved comparison, since two non-comparative buckets need to be run for absolute metrics.
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Fig. 4. Probability (as approximated via Algorithm 3) that evaluation based on implicit feedback disagrees
with the true preference, plotted individually for the six preference pairs of EA 	BA 	AA and EA 	DA 	CA. The
x-axis is the amount of data relative to the size of the original data.
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Fig. 5. Analogous to Figure 4, but on the Yahoo! search data. The x-axis is the number of user queries used.
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ALGORITHM 4: Bootstrap Monte Carlo Method Using Resampling of Sequences.
Require: Data X, time span τ
1: f = 0; g = 0
2: for i = 1 . . . 100 do
3: Subsample uniformly non-comparative buckets BY and DY such that they have the same

query rate as the interleaved bucket DY 	BY.
4: for t = 1 . . . (Tmax − τ ) do
5: Get all data from the 3 buckets between time t and t + τ .
6: if BY wins according to interleaving then f = f + 1
7: if BY wins according to Clicks@1 in noncomparative buckets then g = g + 1
8: end for
9: end for
10: P(BY 	interDY |τ ) = f/(100(Tmax − τ )).
11: P(BY 	C@1DY |τ ) = g/(100(Tmax − τ )).

Table X.
Results comparing ratio of data required by Clicks@1 versus balanced interleaving
for the Yahoo! dataset. We first computed Pr(A 	C@1 B|n′) for Clicks@1 by resam-
pling n′ queries from both buckets, where n′ is the number of queries in the smaller
of the two buckets. We then calculated the number of queries n′′ for interleaving
to reach the same preference probability. Finally, we report the ratio n′/n′′ of the
two data set sizes. Values larger than 1 indicate that interleaving requires less data
relative to Clicks@1.

BY 	AY CY 	AY DY 	AY CY 	BY DY 	BY DY 	CY

Data Ratio n′/n′′ 379.1 193.1 17.8 270.7 18.9 0.69
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Fig. 6. Probability that Clicks@1 and Balanced Interleaving identify an inconsistent preference between BY

and DY after a given duration of data collection. The methodology is summarized in algorithm 4.

samples with replacement, but samples entire sequences of queries as they were issued
in the respective Yahoo! buckets. In particular, it first subsamples the noncomparative
buckets to yield the same quantity of data as the interleaving bucket. The algorithm
then slides a window of length τ over the time series and computes the fraction of times
the preference prediction is consistent with the full dataset. The results are shown in
Figure 6. The interleaving bucket requires around one hour to reach an inconsistency
under 0.01, whereas the non-comparative buckets require slightly more than one day.
The ratio in efficiency is about 22, which is in line with the 18.9 reported in the Table VI.

ACM Transactions on Information Systems, Vol. 30, No. 1, Article 6, Publication date: February 2012.



6:24 O. Chapelle et al.

More generally, we observe no substantial change in conclusions drawn from this time
based analysis and from the standard bootstrap (i.e., Figure 5).

7.2. Summary

We find that the interleaving methodology is very sensitive and can reveal small differ-
ences in retrieval quality with relatively small query samples. In comparison, absolute
metrics typically need orders of magnitude more data to confidently detect any differ-
ence (in either the correct or the incorrect direction). We conjecture that the advantages
of interleaving over absolute measurements are due to the following two differences in
experiment design. First, interleaving appears to have increased sensitivity because it
is a paired test, paired on both queries and users. Second, by directly eliciting a pref-
erence between two alternatives, interleaving appears to more directly and reliably
measure differences in relevance.

8. WHAT IS THE VALUE OF A CLICK RELATIVE TO A JUDGED QUERY?

For conventional evaluation using manually judged queries, information retrieval re-
searchers have a good understanding of the number of manual judgments required for
reliable evaluation [Voorhees and Buckley 2002; Sanderson and Zobel 2005]. Analogous
to this question, we now assess how many clicks are required for interleaving to pro-
duce results comparable in statistical reliability to those from manual judgments. In
particular, we investigate how many clicks are needed to replace one manually judged
query. The Bing results in this section extend the analysis from Radlinski and Craswell
[2010].

8.1. Results

To estimate the relative value of a click in interleaving compared to a manual relevance
judgment, we use the following procedure. Following Algorithm 3, we start with the set
of about 12,000 judged queries on the Bing search engine. From this set, we subsample
n′ queries (with replacement) and measure NDCG@5 for each ranker on this sample,
repeating the sampling k = 1,000 times for each n′. We then count the fraction of
bootstrap samples where each ranker scored higher, ignoring cases when the scores
were identical. The result is an estimate of the probability p that NDCG@5 prefers
one ranking function over the other after n′ queries. Using the resampling procedure
that produced Figures 4 and 5, we now find the number of impressions n′′ necessary to
obtain the same preference probability p for interleaving. Figure 7 plots n′ vs. n′′.

More specifically, the top plot of Figure 7 considers NDCG@5 as the conventional
evaluation metric, and the bottom plot considers MAP. Each curve corresponds to a
pair of ranking functions, and each point shows the number of judged queries n′ vs.
the number of interleaved queries n′′ to achieve a particular level of consistency p. The
pairs of rankers for which the direction of change of NDCG or MAP is not statistically
significant with 95% confidence using 10,000 queries are omitted.

The relationship between judged queries and interleaving impressions is approxi-
mately linear in all cases, with some variations depending on the pair of rankers being
compared. On average, one judged query is approximately equivalent to ten clicked
queries using interleaving. Further breaking the analysis down from queries to docu-
ments, manually judging one query corresponds to judging five to ten documents for
NDCG@5 (depending on whether the input rankers agree on the top results). As such,
one judged (query, document) pair appears to provide as much evaluation sensitivity
as one or two queries with clicks. As can be seen in the lower plot of Figure 7, when
evaluating with MAP even more queries need to be judged by expert judges relative to
the number of clicked queries necessary.
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Fig. 7. Number of judged queries versus number queries with clicks necessary with interleaving to obtain
the consistency p on Bing, using NDCG@5 (top plot) and MAP (bottom plot).

The same evaluation performed on Yahoo! shows a correspondence between judged
and interleaved queries that is consistent with the Bing results. However, the number
of queries judged on the Yahoo corpus is substantially smaller, hence the results are
very noisy. Therefore, we do not include the corresponding plot.

8.2. Summary

We find that approximately ten interleaved queries with clicks provide equivalent
evaluation power as compared to one manually judged query. Assuming that each
manually judged query requires at least five document judgments, then feedback from
two interleaved queries corresponds to at least one judged document. It is unclear,
however, how consistent these relationships are across different document collections
and user populations.

9. HOW SENSITIVE IS INTERLEAVING TO DIFFERENT CLICK AGGREGATION SCHEMES?

Thus far we have used the simple scheme in Equation (4) to convert clicks into a
preference between two interleaved rankings. In general, the ranking that gets more
clicks wins the comparison, and the ranking function with more wins over a sample
of queries is preferred overall. This basic scoring scheme ignores multiple aspects,
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for example, that some clicks may be more informative than others and that some
wins may be more definitive than others. In this section we explore a number of more
sophisticated click credit assignment and aggregation strategies. Our goal is to evaluate
the sensitivity of these methods for correctly identifying the superior ranking function.

9.1. Click Aggregation Strategies

Generalizing the notation from Section 3, let �(Q) denote any aggregate statistic of
a credit assignment strategy computed over an empirical sample of query logs Q.
Each logged query (q, Ca, Cb) ∈ Q contains the clicks, Ca and Cb, credited to the two
retrieval functions. We only consider queries which have at least one logged click, that
is, ∀(q, Ca, Cb) ∈ Q, |Ca ∪ Cb| > 0. In each of the methods described below, the sign
of �(Q) indicates the direction of preference. We evaluate the following aggregation
strategies.

Binary (Original). For each query, we call the binary scoring rule the one which
assigns full credit to the ranking that receives more clicks,

�bin(Q) =
∑

(q,Ca,Cb)∈Q

sign(|Ca| − |Cb|), (8)

which is equivalent to Equation (4), since the two always have the same sign.
Click. For each query, the click scoring rule computes the difference in click counts

for the two rankings,

�click(Q) =
∑

(q,Ca,Cb)∈Q

|Ca| − |Cb|. (9)

This assumes that each click contributes equal credit, rather than each query.
Normalized Click. For each query, the normalized click scoring rule computes the

difference in click counts for the two rankings normalized by the total number of clicks
for that query,

�norm(Q) =
∑

(q,Ca,Cb)∈Q

|Ca| − |Cb|
|Ca ∪ Cb| . (10)

This assumes that each query contributes an equal amount of total credit (regardless of
the number of clicks for the query). However, unlike the binary scoring rule, the credit
of any query is split proportional to the number of clicks that each ranking received.

Balanced Interleaving-specific Scoring Strategies. In the case of Balanced Interleav-
ing, we consider three additional scoring rules that result from using an alternative
method to crediting clicks to each retrieval function. Recall from Section 3.1 that, for
any query, the clicks credited to each retrieval function, Ca and Cb, are those that are
above some rank threshold k (see Equation (1)) in original rankings A and B. One
can alternatively credit each click to the original ranking, either A or B, that ranked
the clicked document higher (or to both if there is a tie). This leads to the following
“click-direct” credit assignment methods: for each logged query (q, Ca, Cb) ∈ Q, each
click is assigned to Cd

a or Cd
b depending on which original ranking ranked the clicked

result higher (the d superscript is used to denote the click-direct sets of clicks).
Binary-Direct. This is exactly the binary scoring rule defined above except using the

click-direct entries, (q, Cd
a , Cd

d).
Click-Direct. This is exactly the click scoring rule defined above except using the

click-direct entries, (q, Cd
a , Cd

d).
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Normalized Click-Direct. This is exactly the normalized click scoring rule defined
above except using the click-direct entries, (q, Cd

a , Cd
d).

Team-Draft Interleaving-specific Scoring Strategies. In the case of Team-Draft Inter-
leaving, recall that the scoring algorithm always creates a preference for one of the
rankers when there is one click: this click will be on a result from Team A or Team
B. This scoring scheme leads to unnecessary variance when the rankings A and B are
very similar. We therefore also define a slightly modified scoring proposed by Radlinski
and Craswell [2010], which we call “deduped” scoring. If A and B share identical top
k results, a click on any of these results is ignored and not counted towards ha and hb
in Equations (5) and (6). In other words, suppose that both input rankings place docu-
ments d1 through dk in the top k positions. Any clicks on these results would previously
create a preference based solely on the random team preference bit, and cannot include
any information. Thus, for each logged query (q, Ca, Cb) ∈ Q, each click is assigned to
C ′

a or C ′
b only if it is not in the shared top k results. Not counting the clicks in the top k

will not bias the outcome of Team-Draft interleaving, but will decrease the variance of
the experiment.

Deduped Binary. This is exactly the binary scoring rule defined above except using
the deduped entries, (q, C ′

a, C ′
b).

Deduped Click. This is exactly the click scoring rule defined above except using the
deduped entries, (q, C ′

a, C ′
b).

Deduped Normalized Click. This is exactly the normalized click scoring rule defined
above except using the deduped entries, (q, C ′

a, C ′
b), and normalizing also using the

duplicate clicks C ′
t:

�′
norm(Q) =

∑
(q,Ca,Cb)∈Q

|C ′
a| − |C ′

b|
|C ′

a ∪ C ′
b ∪ C ′

t|
. (11)

Time-based Query Aggregation. We also evaluate multi-query aggregation strategies.
Intuitively, two queries issued in quick succession (e.g., with less than 1 minute delay
time) may belong to the same information seeking session. Thus, it may be beneficial
to compute the above measures over aggregated sessions as opposed to individual
queries. For our experiments, we defined sessions using a timeout threshold (i.e., two
consecutive queries with dwell time less than the timeout threshold are considered to
be from the same session).

9.2. Evaluation Methodology

We evaluate over a set of scored queries S(Q) = {s1, . . . , sn}, where si corresponds to the
score or credit assignment of the i-th query.11 It is easy to see that the sample mean
μS(Q) = 1

n

∑
si directly corresponds the scoring rules described above.

Assuming that μS(Q) is normally distributed (which is approximately true for large
n), then we can use the z-score to characterize the confidence of each method [Mood
et al. 1974]. We define the z-score of S ≡ S(Q) to be

zS = μS

σS

√
n, (12)

where n is the number of queries used, μS is the sample mean, and σS is the standard
deviation. Note that n can vary depending on how queries are aggregated into sessions
(i.e., using larger timeouts will result in larger sessions, and thus smaller n).

11For example, if using Equation (9), then si corresponds to the signed difference in clicks for the i-th query.
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Table XI.
Showing z-score scaled to binary z-score for different scoring strategies on ArXiv.org (top) and
Yahoo (bottom) for Balanced interleaving.

EA 	BA BA 	AA EA 	AA EA 	DA DA 	CA EA 	CA Median
Binary 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Click 1.14 0.99 1.25 1.11 1.00 1.04 1.08
Norm. Click 1.06 0.89 1.18 1.23 1.14 0.83 1.10
Binary-Direct 0.64 0.87 1.10 0.95 1.19 1.09 1.02
Click-Direct 0.41 0.85 0.69 1.01 1.40 1.14 0.93
Norm. Click-Direct 0.83 0.86 1.18 1.20 1.23 0.96 1.07

BY 	AY CY 	AY DY 	AY CY 	BY DY 	BY DY 	CY Median
Binary 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Click 0.89 1.00 0.98 1.01 1.00 1.15 1.00
Norm. Click 1.14 1.05 1.05 0.96 0.99 0.97 1.02
Binary-Direct 0.76 1.03 0.99 1.10 1.06 0.85 1.01
Click-Direct 0.38 0.98 0.95 1.18 1.09 1.13 1.035
Norm. Click-Direct 0.95 1.05 1.06 1.05 1.05 0.98 1.05

Since μS is normally distributed by assumption, the z-score of μS corresponds exactly
to its deviation from zero in a normal distribution with zero mean and unit variance.
This offers an intuitive way to interpret the z-score. For example, a z-score of zS = 2
corresponds to a confidence of approximately 95%.

9.3. Results

We evaluated using both the Balanced Interleaving Datasets (ArXiv.org and Yahoo!)
and the Team-Draft Interleaving datasets (ArXiv.org and Bing). For each interleaving
experiment, we compared the ratio of z-scores of the various click aggregation strate-
gies to the binary click strategy. This allows us to measure the relative differences
in sensitivity for each interleaving experiment. For example, a z-score ratio of 1.05
indicates that the proposed click aggregation strategy is 5% more confident than the
binary strategy. Since confidence increases at a rate of

√
n, this means the binary

strategy requires 1.052 ≈ 1.10 times more data to achieve the same confidence level.
Table XI shows the results for Balanced Interleaving on ArXiv.org and Yahoo!. The

last column of each table summarizes each row by its median. We observe that none
of the first three methods dominate the others, although the Normalized Click method
seems to be best overall. On the Yahoo! experiments, we find that Click-Direct versions
are typically slightly better than their counterparts.

Table XII shows the results for Team-Draft Interleaving on ArXiv.org and Bing. While
we again observe that none of the first three methods dominate the others, the deduped
methods are typically much more sensitive. This effect is more pronounced on the Bing
interleaving experiments, which is likely due to (1) the higher percentage of clicks at
the top rank positions for Web search as compared to scholarly paper search, and (2) the
ranking functions used on the ArXiv.org experiments often produce results that differ
at all positions, while the various Bing ranking functions often return the same top
results for most queries. For the Bing experiments, note that the dramatic difference
between the non-deduped and deduped metrics on FB 	EB is due to the experiment
affecting an especially small fraction of queries. Deduping removes clicks from queries
where two identical rankings were interleaved, after which the signal from interleaving
is much stronger on the remaining queries.

Table XIII shows the results the Normalized Click-Direct for Balanced Interleaving
on Yahoo! when aggregating multiple query sessions into a single session. This is
done using a timeout threshold: all queries issued within the timeout threshold of the
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Table XII.
Showing z-score scaled to binary z-score for different scoring strategies on ArXiv.org (top) and
Bing (bottom) for Team-Draft interleaving.

EA 	BA BA 	AA EA 	AA EA 	DA DA 	CA EA 	CA Median
Binary 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Click 1.25 0.78 0.84 0.71 0.36 0.91 0.81
Norm. Click 0.98 0.90 1.04 1.23 0.75 0.95 0.97
Deduped Binary 1.24 1.04 0.97 1.40 1.42 1.18 1.21
Deduped Click 1.38 0.81 0.83 1.00 0.58 1.02 0.91
Norm. Deduped Click 1.34 0.99 1.03 1.44 1.22 1.19 1.21

BB 	AB CB 	BB CB 	AB DB 	CB FB 	EB Median
Binary 1.00 1.00 1.00 1.00 1.00 1.00
Click 1.04 1.05 1.07 1.05 1.00 1.05
Norm. Click 1.00 0.97 0.98 0.97 1.01 0.98
Deduped Binary 1.35 1.60 1.55 1.52 2.86 1.55
Deduped Click 1.18 1.55 1.54 1.33 3.12 1.54
Norm. Deduped Click 1.48 1.58 1.57 1.50 2.87 1.57

Table XIII.
Same as bottom of Table XI, with Normalized Click-Direct, but where the counting and
normalization are done at the session level. Different rows correspond to different timeout
for the definition of a session.

Timeout (s) BY 	AY CY 	AY DY 	AY CY 	BY DY 	BY DY 	CY Median
0 0.95 1.05 1.06 1.05 1.05 0.98 1.05
10 0.94 1.05 1.06 1.05 1.06 0.99 1.05
20 0.95 1.06 1.08 1.06 1.06 1.02 1.06
50 1.02 1.08 1.08 1.05 1.05 1.06 1.055
100 1.10 1.09 1.09 1.00 1.02 1.03 1.06
200 1.17 1.09 1.10 0.96 0.99 1.00 1.045
500 1.32 1.07 1.06 0.88 0.90 0.81 0.98

previous query are considered to be in the same session. Using timeouts of 20 and
50 seconds both consistently, but only slightly, improve the z-score.

9.4. Summary

Click, Normalized Click, Binary-Direct, Click-Direct and Normalized Click-Direct scor-
ing have a small effect on the outcome of interleaving evaluations compared to Binary
scoring. However, Normalized Click-Direct tends to improve the sensitivity of Balanced
Interleaving. Deduped Click scoring has a large effect on the sensitivity of Team-Draft
Interleaving, improving sensitivity by over 50% on the Bing dataset. We also observe
small benefits from appropriately grouping queries into sessions.

10. HOW CAN ONE LEARN A MORE SENSITIVE CLICK SCORING STRATEGY?

One shortcoming of the scoring approaches considered in Section 9 is that they give
equal weight to all clicks on each query, which is likely to be suboptimal in practice.
For example, observing a user returning to the search results page immediately after
clicking on a result a is probably an indication that the landing page of a was not
relevant. Discounting such clicks should lead to a noise reduction in the interleaving
signal. We now examine whether one can learn a more refined click scoring function
that distinguishes between different types of clicks.

In this section, we evaluate the effectiveness of inverting the z-test first proposed in
Yue et al. [2010]. In Section 10.4 we reanalyze learning results from Yue et al. [2010]
for Team-Draft Interleaving on an extended ArXiv.org dataset, and in Section 10.5 we
present new learning results for Balanced Interleaving on a previously unanalyzed
extended Yahoo! dataset.
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10.1. Problem Formulation

Following Yue et al. [2010], we will use a linear model score(q, c) = w�ϕ(q, c) to score
clicks, where w is a vector of parameters to be learned and ϕ(q, c) returns a feature
vector describing each click c in the context of the entire query session q. Focusing on
the normalized click scoring rule, we can now rewrite �(Q) as

�w(Q) =
∑

(q,Ca,Cb)∈Q

w�	(q, Ca, Cb), (13)

where

	(q, Ca, Cb) = 1
|Ca ∪ Cb|

⎛
⎝∑

c∈Ca

ϕ(q, c) −
∑
c∈Cb

ϕ(q, c)

⎞
⎠ . (14)

Feature vectors ϕ(q, c) contain features that describe the click in relation to position in
the interleaved ranking, order, and presentation.

The idea behind learning is to find a scoring function that results in the most sensitive
hypothesis test. To illustrate this goal, consider the following hypothetical scenario
where the scoring function score(q, c) = w�ϕ(q, c) differentiates the last click of a
query session from other clicks within the same session. The corresponding feature
vector ϕ(q, c) would then have two binary features

ϕ(q, c) =
(

1, if c is last click; 0 otherwise
1, if c is not last click; 0 otherwise

)
. (15)

Assume for simplicity that every query session has 3 clicks, with “not last clicks” being
completely random while “last clicks” favor the better retrieval function with 60%
probability. Using the weight vector w� = (1, 1) (i.e., the conventional scoring function),
one will eventually identify the better retrieval function (typically after ≈280 queries
using a t-test with p = 0.05). However, the optimal weight vector w� = (1, 0) will
identify the better retrieval function much faster (typically after ≈150 queries), since
it eliminates noise from the non-informative clicks.

The learning problem can be thought of as an “inverse” hypothesis test: given data
for pairs (h, h′) of retrieval functions where we know h 	 h′, find the weights w that
maximizes the power of the test statistic on new pairs. More concretely, we assume
that we are given a set of ranking function pairings {(h1, h′

1), . . . , (hk, h′
k)} for which we

know without loss of generality that hi is better than h′
i, that is, hi 	 h′

i. This prefer-
ence may be known by construction (e.g., h′

i is a degraded version of hi), by running
interleaving until the conventional test statistic that scores each click uniformly be-
comes significant, or through some expensive annotation process (e.g., user interviews,
manual assessments).

For each pair (hi, h′
i), we assume that ni queries have been interleaved (ignoring

queries with no clicks). For each query qj , the clicks C j
a and C j

b for each ranking are
recorded in a triple (qj, C j

a, C j
b ). All triples are combined into one training sample

Q = ((q1, C1
a , C1

b ), . . . , (qn, Cn
a, Cn

b )).12 After training, the learned w and the resulting
scoring function �w will be applied to new pairs of retrieval functions (htest, h′

test) of yet
unknown relative retrieval quality.

12We are essentially treating all interleaving pairs as a single combined example. A more principled approach
may be to explicitly treat each interleaving pair as a separate example.
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10.2. Inverse z-Test

The z-test is the significance test that directly relates to the z-score (12) described
in Section 9.2 (the relationship will be made clear in the following). For any dataset,
the z-test assumes that the sample mean (e.g., the average normalized difference of
clicks) is normally distributed, which is approximately satisfied for large sample sizes.
As discussed in Section 9.2, the z-score corresponds exactly to the standard deviation
of a normal distribution with zero mean and unit variance. The z-test is then the
interpretation of the z-score into a p-value. For example, a z-test on a sample S with
z-score zS = 2 will yield a p-value of approximately 0.05 (i.e., 95% confidence).

We can write the z-score (12) of a set of logged queries Q as

μw(Q)
σw(Q)

√
n, (16)

where

μw(Q) = 1
n

∑
j

w�	
(
qj, C j

a, C j
b

)
,

and

σw(Q) =
√√√√1

n

∑
j

(
μw(Q) − w�	

(
qj, C j

a, C j
b

))2

=

√√√√√1
n

∑
j

[
w�	

(
qj, C j

a, C j
b

)]2 −
⎡
⎣1

n

∑
j

w�	
(
q, j, C j

a, C j
b

)
⎤
⎦

2

.

The inverse z-test is then the learning method that optimizes the statistical power of
a z-test, which amounts to finding the w that optimizes the z-score (16) on the training
set. This corresponds to solving the following optimization problem.

OPTIMIZATION PROBLEM 1 (INVERSE Z-TEST).

w∗ = argmax
w

1
n

∑
j w�	

(
qj, C j

a, C j
b

)
√

1
n

∑
j

[
w�	

(
qj,C

j
a,C j

b

)]2 − [ 1
n

∑
jw

�	
(
qj,C

j
a,C j

b

)]2

√
n

= argmin
w

1
n

∑
j

[
w�	

(
qj,C

j
a,C j

b

)]2 − [ 1
n

∑
jw

�	
(
qj,C

j
a,C j

b

)]2

1
n

[∑
j w�	

(
qj, C j

a, C j
b

)]2

= argmin
w

∑
j

[
w�	

(
qj, C j

a, C j
b

)]2

[ ∑
j w�	

(
qj, C j

a, C j
b

)]2 (17)

While (17) has two symmetric solutions, we are interested only in the one where∑
j w∗�	(qj, C j

a, C j
b) > 0. Using the abbreviated notation 
 j = 	(qj, C j

a, C j
b), this opti-

mization problem can be rewritten as

w∗ = argmin
w

w�[ ∑
j 
 j


�
j

]
w(

w� ∑
j 
 j

)2 = argmax
w

(
w� ∑

j 
 j
)2

w�[∑
j 
 j


�
j

]
w

. (18)
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For any w solving (18), cw with c > 0 is also a solution. We can thus rewrite (18) as

w∗ = argmax
w

⎡
⎣w� ∑

j


 j

⎤
⎦ s.t. w�

⎡
⎣∑

j


 j

�
j

⎤
⎦w = 1. (19)

Using the Lagrangian

L(w, α) = w� ∑
j


 j − α

⎛
⎝w�

⎡
⎣∑

j


 j

�
j

⎤
⎦w − 1

⎞
⎠ , (20)

and solving for zero derivative with respect to w and α, one arrives at a closed form
solution. Denoting 
 = ∑

j 
 j and � = ∑
j 
 j


�
j the solution can be written as

w∗ = �−1
√

��−1


.

While not used in our experiments, a regularized version of the covariance matrix �reg
can be used to prevent overfitting. One straightforward approach is to add a ridge
�reg = � + γ I, where I is the identity matrix13 and γ is the regularization parameter.

10.3. Evaluation Methodology

One difficulty in evaluating across different interleaving pairs is the fact that different
buckets contain different amounts of data. For instance, a pair of retrieval functions
that are inherently difficult to distinguish might have logged more data than an easier
to distinguish pair, so the z-score measure from (12) may not accurately reflect the
per-query gains in performance. For any dataset of scored queries S = {s1, . . . , sn}, we
will evaluate here using the query-normalized z-score,

z̄S = μS

σS
, (21)

for μS and σS as defined in Section 9.2. Intuitively, the query-normalized z-score mea-
sures the expected per-query contribution to the confidence of the aggregate statistic
μS. The z-score and query-normalized z-score are equivalent when comparing on a
single interleaving experiment, since the number of queries n is constant.

10.4. Experiments on ArXiv.org (Team-Draft Interleaving)

In this section, we re-analyze a subset of the learning results from [Yue et al. 2010] for
Team-Draft Interleaving. We trained a model using the inverse z-test on the six Team-
Draft Interleaving pairs from ArXiv.org (see Section 4.2). Afterwards, the learned model
was used to score queries on an extended ArXiv.org dataset described below.

The extended dataset from Yue et al. [2010] was generated by interleaving pairs of
retrieval functions without necessarily having knowledge of which retrieval function
is superior within each pair. For example, one retrieval function that we considered
modifies the original retrieval function by giving additional weight to query/title simi-
larity. It is a priori unclear whether this would result in improved retrieval quality. We
report the effectiveness of the inverse z-test on twelve interleaving experiments which
interleave all pairs of six distinct retrieval functions. Each interleaving experiment
was performed observing between 400 and 650 queries.

13One can alternatively use a partial identity matrix (with zeros in some of the diagonal entries). Then the
learning objective will only regularize the weights of features corresponding to nonzero diagonal entries.
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Fig. 8. Query-normalized z-score values of learned model versus baseline on extended ArXiv.org dataset.

The features used describe a diverse set of properties related to clicking behavior,
including the rank and order of clicks, and whether search result clicks led to a PDF
download on ArXiv.org.14 A total of 14 features were used. See Section 5.2 in Yue et al.
[2010] for a more detailed description.

The results are shown in Figure 8. The left graph plots the query-normalized z-
scores of the learned model versus the baseline (which scores all clicks equally) using
the Normalized Click scoring rule. We see that the learned model has improved the
expected per-query confidence on 10 of the 12 interleaving pairs. We also note that the
direction of the tests all agree (both the learned model and the baseline agree on which
retrieval function is preferred).

The right graph in Figure 8 plots the ratio of z-scores (i.e. the relative z-scores)
versus the query-normalized z-score of the baseline. This captures the relative gain in
sensitivity with respect to the inherent difficulty of the interleaving pair. The relative
gains are more substantial for interleaving pairs comparing more similar ranking
functions.15 The median relative z-score value is 1.37.16

10.5. Experiments on Yahoo! (Balanced Interleaving)

We also evaluated the inverse z-test for Balanced Interleaving using a new, previously
unanalyzed, extended Yahoo! dataset. This extended dataset contains 71 interleaving
experiments and is spread across 16 markets (e.g., Brazil, U.S., India), with 4 to 6
interleaving experiments conducted in each market. The six interleaving experiments
described in Section 4.4 represent the U.S. market in this dataset. The number of
query sessions logged varied between 139 thousand and 30 million, with a mean of
approximately 1.5 million and median of around 930 thousand.

Similar to Section 10.4, we used features that describe a diverse set of properties
related to clicking behavior. Given the size of the Yahoo! dataset, we used a more fine-
grained feature space with 51 features in total, which are summarized in the following.

(A) Functions of the click rank, such as log(rank) and
√

rank. These features are then
normalized either by the number of clicks or total score of that feature for the
query. (9 features)

(B) Indicator features of the click rank normalized by the # of clicks. We also use
versions that are only active for single-click queries and multi-click queries. (20
features)

(C) Indicator features of whether the click rank was below the top 4, with the same
normalization and variations as (B) above. (8 features)

14All search results correspond to research papers that are available for download.
15This is unsurprising since relative gains tend to be larger when the denominator values are smaller.
16This means the baseline typically requires 1.372 ≈ 1.88 times more data to achieve the same confidence.
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Fig. 9. Query-normalized z-score values of learned model versus baseline on extended Yahoo! dataset.

(D) Indicator features of whether the click was the first, last or a regression click, with
the same normalization as (B) above. We also use a version that is active only for
multi-click queries where the first click has rank > 1. (6 features)

(E) Indicator features of whether the dwell time of the click was at least 30, 60, 90 or
120 seconds. We use the same normalization as (B) above, and the same variations
as in (D) above. (8 features)

We performed leave-one-market-out testing, where we trained our model on 15 mar-
kets and compared with the baseline on interleaving experiments from the remaining
market. This is a realistic scenario for services such as commercial search engines.

The results are shown in Figure 9. The left graphs plot the query-normalized
z-scores of the learned model versus the baseline (which scores all clicks equally)
using the Normalized Click and Normalized Click-Direct scoring rules. In both cases,
we see that the learned model has improved the expected per-query confidence on most
of the interleaving experiments (48/71 for Normalized Click and 47/71 for Normalized
Click-Direct). When comparing the two learned models, we find the learned Normalized
Click-Direct model to have superior z-score in 50/71 of the interleaving pairs.

The right graphs in Figure 9 plot the ratio of z-scores versus the query-normalized
z-score of the baseline. This captures the relative gain in performance with respect to
the inherent difficulty of the interleaving pair. The median relative z-score values for
Normalized Click and Normalized Click-Direct are 1.09 and 1.25, respectively.17 For a
few of the difficult interleaving pairs, the learned model interprets user preferences to
be opposite of the baseline (i.e., the z-scores are negative; this happens in 4/71 cases
for Normalized Click and 7/71 cases for Normalized Click-Direct).

10.6. Summary

We find that the inverse z-test consistently improves the confidence of the resulting test
statistic for both the extended ArXiv.org and Yahoo! datasets, with 37% and 25% median
gains in relative confidence, respectively. For the Team-Draft Interleaving experiments

17This means the baseline typically require 1.092 ≈ 1.19 and 1.252 ≈ 1.56 times more data to achieve the
same confidence, respectively.
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on ArXiv.org, the learned scoring function is always in agreement with the baseline.
For the Balanced Interleaving experiments on Yahoo!, the learned scoring function
disagrees with the baseline for some interleaving pairs. Note that these disagreeing
interleaving pairs are always those where using the baseline scoring function shows
only a slight preference for one retrieval function in the interleaving pair.

11. LIMITATIONS, DISCUSSION, AND FUTURE WORK

Our empirical results suggest that Balanced and Team-Draft Interleaving are attrac-
tive online evaluation methods due to their reliability, efficiency, and widespread ap-
plicability. However, as already indicated throughout the paper, one should keep in
mind the inherent limitations of the experiments and of the methods themselves. We
now discuss these limitations in detail and suggest interesting directions for future
work.

As a general comment, we note that our study is a field study, and not a controlled
lab study with qualitative feedback. This inherently limits the types of evaluations we
can conduct. Furthermore, our experiments were conducted using small to moderate
numbers of retrieval functions, and only within a limited number of search domains. As
such, many properties of user behavior (many of which to be discussed in the following)
could not be reliably measured to high precision or generality in our study.

The rest of this section is organized as follows. In Sections 11.1 and 11.2, we provide
detailed discussions of two key limitations that arise immediately from our study on
applying interleaving methods to web and scholarly paper search. In Section 11.3, we
discuss other interesting future directions that are motivated by considering interleav-
ing methods in broader contexts.

11.1. Click versus Relevance

Interleaving evaluation relies on clicks as a signal of relevance. But this assumption is
not always true, at least not for conventional ways of defining relevance in Information
Retrieval [Cleverdon et al. 1966]. In this section, we review some findings of an earlier
analysis on the discrepancies between relevance inferred from clicks and relevance as
assessed by human experts [Chapelle and Zhang 2009] as well as providing further
observations. As we will see in the following, it is important to keep in mind that the
expert judgments should not necessarily be considered as ground truth for relevance.

A first cause of inconsistency is that clicks mostly measure the user’s expectation
of relevance, whereas editors judge the relevance of the destination page. The user’s
expectation is based on the summary shown, which usually consists of a title, short
text description, and destination web page address, along with visual cues such as
bolding of query words. Click-relevance disagreement can be divided into at least two
subcategories: cases where the relevance of the search result snippets is very different
from that of the landing page; and cases where users click based on the trustwor-
thiness of the page rather than the relevance of the page. The first sub-category is
most often related to the presentation of the title and summary of the url (cf. Yue
et al. [2010]). For instance, the summary might look attractive, with the result page
in fact being nonrelevant. The opposite effect is also possible, where the user may not
click on a relevant result if the user finds the information he was looking for directly
in the snippet. An example query for the second subcategory is “travel insurance”.
While many small insurance companies focus on selling travel insurance (more rele-
vance in terms of relevance judgment), users often click on sites of well-known insur-
ance companies for whom travel insurance is only a small fraction of their business.

This leads into a second potential cause of inconsistency, which arises due to the
difficulty in defining relevance. For instance, consider the query “adobe.” The company
home page www.adobe.com is usually considered the most relevant. However, few users
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who issue this query have a goal of just reaching the company home page. Most Web
search users click on the link to download Adobe’s most popular software, Acrobat
Reader. Another example query is “bank of america.” Most users prefer to click on
the online banking page www.bankofamerica.com/onlinebanking, while editors tend
to consider the company home page www.bankofamerica.com more relevant for this
query. Further cases illustrating the difficulty in defining relevance include: Acronyms
such as SIGIR and ambiguous queries such as jaguar (e.g., see Clarke et al. [2008])
where users have a single intent in mind while judges must estimate the relative
weight to give different possible meanings; queries where the relevance of results
changes over time, such as Iraq war [Kulkarni et al. 2011], often involve trading off
depth of information versus recency in addition to the challenge due to ambiguity
in this particular example; cases where the amount of information must be traded
off against the authoritativeness of results (e.g., a seemingly authoritative Wikipedia
page versus a nonauthoritative yet more detailed personal blog); queries where the
background knowledge of the user is relevant (e.g., information retrieval); settings
where the search results are personalized for individual users or groups of users;
potentially misspelled queries that may be meaningful (e.g., aim is often mistyped ai
[Radlinski et al. 2010b]).

Finally, standard summary metrics such as NDCG and MAP do not discount the
utility of documents with redundant information, whereas rankings that include a
diversity of views on a topic may be preferred by real users [Radlinski et al. 2009].

Given that editorial judgments and implicit relevance estimates from clicks do not
capture the same notion of relevance and can be seen as complementary, an even more
robust method of evaluation could be to combine both types of information into a single
metric. The best way to combine them is a question for further research.

11.2. Biases in Interleaving

As discussed in Section 3, one can adversarially construct cases where both Balanced
Interleaving and Team-Draft Interleaving produce biased preferences even for perfectly
rational and informative clicks. The problem lies in their definition of “fairness,” and
how it relates to multiple user intents and similarities between rankings. Given further
assumptions about these relationships (e.g. only non-ambiguous queries), it may be
possible to make theoretical statements about the accuracy of the interleaving methods
studied in this article. Whether a different interleaving method exists that is provably
unbiased without any assumptions is an open question. An interesting connection can
be drawn with social choice theory due to the resemblance between interleaving and
voting. Empirically, however, we find that both Balanced Interleaving and Team-Draft
Interleaving are highly accurate in determining the preference even between retrieval
functions of small quality difference.

One additional assumption of both interleaving methods is that user utility decom-
poses into clicks on individual documents in a ranking. Due to this focus on individual
documents, it is unclear how to evaluate more global qualities such as the diversity of
a set of documents. Similarly, it is unclear how to handle results not presented as a
linear ranking. An example is domain collapsing, where indented results are inserted
into a Web search ranking.

Finally, interleaving needs an observable action in order to draw any inference. As
such, current interleaving methods ignore the utility of results that yield no clicks
(e.g., returning the current time when searching for “current time”). However, with
high-resolution video cameras becoming popular, interleaving techniques may be able
to use eye-tracking as an additional source of feedback beyond clicks [Salojärvi et al.
2005; Moe et al. 2007; Buscher et al. 2008].
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11.3. Other Limitations and Future Research

Interleaving itself is an intervention that changes the search experience. Although in-
terleaving is minimally disruptive to the presentation format, the quality of the search
results will vary depending on the ranking functions used. It remains to characterize
or quantify the utility of the rankings produced by interleaving (as opposed to the in-
put rankings that are compared using interleaving). This is further complicated when
comparing ranking functions that optimize for global objectives such as diversity. For
example, two ranking functions that generate well diversified rankings might combine
to yield poorly diversified interleaved rankings.

While this article has focused on comparing small sets of retrieval functions, in prac-
tice one often needs to find the best retrieval function among a large set of n retrieval
functions. Assuming stochastic preferences are transitive, then there exist algorithms
for identifying the best ranking whose complexity scales as O(n) [Feige et al. 1994]. Fur-
thermore, one might also wish to account for the utility lost to the user (i.e. running an
interleaving experiment instead of using the best retrieval function that is known only
in hindsight). This issue of exploration versus exploitation is captured within a formal
model named the Dueling Bandits Problem [Yue and Joachims 2009; Yue et al. 2009;
Yue and Joachims 2011], which in this context effectively assumes that (A) the quality
of any interleaved ranking is bounded between the utilities of the original two rankings,
and (B) user preferences obey strong stochastic transitivity (see Equation (7)). Under
these assumptions it can be shown that the expected regret scales as O(n), which is
information-theoretically optimal [Yue et al. 2009]. However, while the assumption of
stochastic transitivity did indeed hold in all our experiments (see Section 5.3), due to
the relatively small number of retrieval functions tested, it is difficult to determine if
these properties apply generally for the interleaving mechanism.

The inverse z-Test method presented in Section 10 learns a click scoring function
w that maximizes z-score, or confidence, of the resulting test statistic �w. Another
interesting direction for future work is learning a (click) scoring function to optimize a
wider range of criteria that might better reflect practical concerns, such as minimizing
the p-value given a fixed budget of queries. For example, given a budget of ten thousand
queries, increasing the z-score of a very confident interleaving pair by 10% might
prove less beneficial than increasing the z-score of a less confident interleaving pair by
10%, despite the absolute gains for the first interleaving pair being greater. In such a
setting, the inverse z-Test would favor learning a scoring function that maximizes the
confidence of the first interleaving pair, which can be suboptimal in practice.

12. CONCLUSIONS

In this article, we explored two interleaving methods for unobtrusively eliciting pref-
erence feedback from observable user behavior. Using data from large-scale field stud-
ies on three different search engines, including scholarly search and commercial web
search, we provide the first comprehensive evaluation of interleaving compared to
other implicit feedback methods and conventional evaluation based on manual rele-
vance judgments. Our conclusions can be summarized as follows:

Does interleaving agree with expert assessments? Yes, preferences from interleaving
generally agreed with evaluation methods based on relevance judgments, and with
relevance differences known by construction.

Do absolute metrics and interleaving agree? Many absolute metrics derived from im-
plicit feedback did not agree with interleaving and with manual relevance judgments.
Clicks@1 is the absolute metric that showed the highest agreement.

How much click data is needed to obtain a statistically reliable preference? Interleav-
ing requires approximately 1–2 orders of magnitude less data than absolute metrics,
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with data requirements on the order of thousands to tens of thousands of queries for
detecting even small differences in retrieval quality.

What is the value of a click relative to a judged query? We found that clicks from
ten interleaved queries provide roughly the same statistical evaluation power as one
manually judged query. This makes interleaving substantially more economical and
timely than manual judgments.

How sensitive is interleaving to different click aggregation schemes? Varying the click
aggregation strategy generally yields small differences, with the deduped strategies in
Team-Draft Interleaving yielding the largest improvement. Aggregating queries into
longer sessions can also slightly improve the quality of the resulting test statistic.

How can one learn a more sensitive click scoring strategy? By applying the inverse
z-Test using a linear combination of click features, one can learn a more sensitive click
scoring strategy that appropriately weights the importance of different types of clicks.

Overall, our evidence suggests interleaving as an attractive methodology to comple-
ment or replace existing approaches based on manual judgments or absolute metrics,
especially in search applications where manual judgments are not economically fea-
sible. However, as discussed above in Section 11, further research is needed to fully
understand the range of search domains interleaving can effectively be applied to, as
well as its strengths and weaknesses across all domains.
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SALOJÄRVI, J., PUOLAMÄKI, K., AND KASKI, S. 2005. Implicit relevance feedback from eye movements. In Pro-
ceedings of the International Conference on Artificial Neural Networks (ICANN). W. Duch, J. Kacprzyk,
E. Oja, and S. Zadrozny, Eds., Springer, 513–518.

SANDERSON, M. AND ZOBEL, J. 2005. Information retrieval system evaluation: Effort, sensitivity and reliability.
In Proceedings of the ACM Conference on Research and Development in Information Retrieval (SIGIR).
162–169.

SHAO, J. AND TU, D. 1995. The Jackknife and Bootstrap. Springer.
SOBOROFF, I., NICHOLAS, C., AND CAHAN, P. 2001. Ranking retrieval systems without relevance judgments. In

Proceedings of the ACM Conference on Research and Development in Information Retrieval (SIGIR).
66–73.

TEEVAN, J., DUMAIS, S., AND HORVITZ, E. 2007. The potential value of personalizing search. In Proceedings of
SIGIR. 756–757.

TURPIN, A. AND SCHOLER, F. 2006. User performance versus precision measures for simple search tasks. In
Proceedings of the ACM Conference on Research and Development in Information Retrieval (SIGIR).
11–18.

VOORHEES, E. AND HARMAN, D. 2005. TREC: Experiment and Evaluation in Information Retrieval. MIT press.
VOORHEES, E. M. AND BUCKLEY, C. 2002. The effect of topic set size on retrieval experiment error. In

Proceedings of the ACM Conference on Research and Development in Information Retrieval (SIGIR).
316–323.

WANG, K., WALKER, T., AND ZHENG, Z. 2009. PSkip: estimating relevance ranking quality from web search
clickthrough data. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’09). ACM, New York, NY, 1355–1364.

WHITE, R., RUTHVEN, I., JOSE, J., AND VAN RIJSBERGEN, C. 2005. Evaluating implicit feedback models using
searcher simulations. ACM Trans. Inf. Syst. 23, 3, 325–361.

ACM Transactions on Information Systems, Vol. 30, No. 1, Article 6, Publication date: February 2012.



Large-Scale Validation and Analysis of Interleaved Search Evaluation 6:41

WHITE, R., RUTHVEN, I., AND JOSE, J. M. 2002. The use of implicit evidence for relevance feedback in web
retrieval. In Proceedings of the European Conference on Information Retrieval (ECIR). F. Crestani,
M. Girolami, and C. J. van Rijsbergen, Eds., Lecture Notes in Computer Science, vol. 2291, Springer,
93–109.

YUE, Y., BRODER, J., KLEINBERG, R., AND JOACHIMS, T. 2009. The K-armed Dueling Bandits Problem. In Proceed-
ings of the Annual Conference on Learning Theory (COLT).

YUE, Y., GAO, Y., CHAPELLE, O., ZHANG, Y., AND JOACHIMS, T. 2010. Learning more powerful test statistics for
click-based retrieval evaluation. In Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, New York, NY, 507–514.

YUE, Y. AND JOACHIMS, T. 2009. Interactively optimizing information retrieval systems as a dueling bandits
problem. In Proceedings of the International Conference on Machine Learning (ICML). 1201–1208.

YUE, Y. AND JOACHIMS, T. 2011. Beat the mean bandit. In Proceedings of the International Conference on
Machine Learning (ICML). 241–248.

YUE, Y., PATEL, R., AND ROEHRIG, H. 2010. Beyond position bias: Examining result attractiveness as a source of
presentation bias in clickthrough data. In Proceedings of the International World Wide Web Conference
(WWW). 1011–1018.

Received February 2011; revised October 2011; accepted December 2011

ACM Transactions on Information Systems, Vol. 30, No. 1, Article 6, Publication date: February 2012.


