
A Support Vector Method for Optimizing Average Precision

Yisong Yue
Cornell University
Ithaca, NY, USA

yyue@cs.cornell.edu

Thomas Finley
Cornell University
Ithaca, NY, USA

tomf@cs.cornell.edu

Filip Radlinski
Cornell University
Ithaca, NY, USA

filip@cs.cornell.edu

Thorsten Joachims
Cornell University
Ithaca, NY, USA
tj@cs.cornell.edu

ABSTRACT
Machine learning is commonly used to improve ranked re-
trieval systems. Due to computational difficulties, few learn-
ing techniques have been developed to directly optimize for
mean average precision (MAP), despite its widespread use
in evaluating such systems. Existing approaches optimiz-
ing MAP either do not find a globally optimal solution,
or are computationally expensive. In contrast, we present
a general SVM learning algorithm that efficiently finds a
globally optimal solution to a straightforward relaxation of
MAP. We evaluate our approach using the TREC 9 and
TREC 10 Web Track corpora (WT10g), comparing against
SVMs optimized for accuracy and ROCArea. In most cases
we show our method to produce statistically significant im-
provements in MAP scores.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Algorithm, Theory, Experimentation

Keywords
Machine Learning for Information Retrieval, Support Vector
Machines, Ranking

1. INTRODUCTION
State of the art information retrieval systems commonly

use machine learning techniques to learn ranking functions.
However, most current approaches do not optimize for the
evaluation measure most often used, namely Mean Average
Precision (MAP).

Instead, current algorithms tend to take one of two gen-
eral approaches. The first approach is to learn a model that
estimates the probability of a document being relevant given

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-597-7/07/0007 ...$5.00.

a query (e.g., [18, 14]). If solved effectively, the ranking with
best MAP performance can easily be derived from the prob-
abilities of relevance. However, achieving high MAP only
requires finding a good ordering of the documents. As a re-
sult, finding good probabilities requires solving a more diffi-
cult problem than necessary, likely requiring more training
data to achieve the same MAP performance.

The second common approach is to learn a function that
maximizes a surrogate measure. Performance measures op-
timized include accuracy [17, 15], ROCArea [1, 5, 10, 11,
13, 21] or modifications of ROCArea [4], and NDCG [2, 3].
Learning a model to optimize for such measures might result
in suboptimal MAP performance. In fact, although some
previous systems have obtained good MAP performance, it
is known that neither achieving optimal accuracy nor ROC-
Area can guarantee optimal MAP performance[7].

In this paper, we present a general approach for learning
ranking functions that maximize MAP performance. Specif-
ically, we present an SVM algorithm that globally optimizes
a hinge-loss relaxation of MAP. This approach simplifies
the process of obtaining ranking functions with high MAP
performance by avoiding additional intermediate steps and
heuristics. The new algorithm also makes it conceptually
just as easy to optimize SVMs for MAP as was previously
possible only for accuracy and ROCArea.

In contrast to recent work directly optimizing for MAP
performance by Metzler & Croft [16] and Caruana et al.
[6], our technique is computationally efficient while finding
a globally optimal solution. Like [6, 16], our method learns
a linear model, but is much more efficient in practice and,
unlike [16], can handle many thousands of features.

We now describe the algorithm in detail and provide proof
of correctness. Following this, we provide an analysis of run-
ning time. We finish with empirical results from experiments
on the TREC 9 and TREC 10 Web Track corpus. We have
also developed a software package implementing our algo-
rithm that is available for public use1.

2. THE LEARNING PROBLEM
Following the standard machine learning setup, our goal

is to learn a function h : X → Y between an input space
X (all possible queries) and output space Y (rankings over
a corpus). In order to quantify the quality of a prediction,
ŷ = h(x), we will consider a loss function ∆ : Y × Y → <.
∆(y, ŷ) quantifies the penalty for making prediction ŷ if the
correct output is y. The loss function allows us to incorpo-
rate specific performance measures, which we will exploit

1http://svmrank.yisongyue.com



for optimizing MAP. We restrict ourselves to the supervised
learning scenario, where input/output pairs (x,y) are avail-
able for training and are assumed to come from some fixed
distribution P (x,y). The goal is to find a function h such
that the risk (i.e., expected loss),

R∆
P (h) =

Z
X×Y

∆(y, h(x))dP (x,y),

is minimized. Of course, P (x,y) is unknown. But given
a finite set of training pairs, S = {(xi,yi) ∈ X × Y : i =
1, . . . , n}, the performance of h on S can be measured by
the empirical risk,

R∆
S (h) =

1

n

nX
i=1

∆(yi, h(xi)).

In the case of learning a ranked retrieval function, X de-
notes a space of queries, and Y the space of (possibly weak)
rankings over some corpus of documents C = {d1, . . . ,d |C|}.

We can define average precision loss as

∆map(y, ŷ) = 1−MAP(rank(y), rank(ŷ)),

where rank(y) is a vector of the rank values of each doc-
ument in C. For example, for a corpus of two documents,
{d1, d2}, with d1 having higher rank than d2, rank(y) =
(1, 0). We assume true rankings have two rank values, where
relevant documents have rank value 1 and non-relevant doc-
uments rank value 0. We further assume that all predicted
rankings are complete rankings (no ties).

Let p = rank(y) and p̂ = rank(ŷ). The average precision
score is defined as

MAP(p, p̂) =
1

rel

X
j:pj=1

Prec@j,

where rel = |{i : pi = 1}| is the number of relevant docu-
ments, and Prec@j is the percentage of relevant documents
in the top j documents in predicted ranking ŷ. MAP is the
mean of the average precision scores of a group of queries.

2.1 MAP vs ROCArea
Most learning algorithms optimize for accuracy or ROC-

Area. While optimizing for these measures might achieve
good MAP performance, we use two simple examples to
show it can also be suboptimal in terms of MAP.

ROCArea assigns equal penalty to each misordering of a
relevant/non-relevant pair. In contrast, MAP assigns greater
penalties to misorderings higher up in the predicted ranking.
Using our notation, ROCArea can be defined as

ROC(p, p̂) =
1

rel · (|C| − rel)

X
i:pi=1

X
j:pj=0

1[p̂i>p̂j ],

where p is the true (weak) ranking, p̂ is the predicted rank-
ing, and 1[b] is the indicator function conditioned on b.

Doc ID 1 2 3 4 5 6 7 8
p 1 0 0 0 0 1 1 0

rank(h1(x)) 8 7 6 5 4 3 2 1
rank(h2(x)) 1 2 3 4 5 6 7 8

Table 1: Toy Example and Models

Suppose we have a hypothesis space with only two hy-
pothesis functions, h1 and h2, as shown in Table 1. These

two hypotheses predict a ranking for query x over a corpus
of eight documents.

Hypothesis MAP ROCArea
h1(x) 0.59 0.47
h2(x) 0.51 0.53

Table 2: Performance of Toy Models

Table 2 shows the MAP and ROCArea scores of h1 and
h2. Here, a learning method which optimizes for ROC-
Area would choose h2 since that results in a higher ROC-
Area score, but this yields a suboptimal MAP score.

2.2 MAP vs Accuracy
Using a very similar example, we now demonstrate how

optimizing for accuracy might result in suboptimal MAP.
Models which optimize for accuracy are not directly con-
cerned with the ranking. Instead, they learn a threshold
such that documents scoring higher than the threshold can
be classified as relevant and documents scoring lower as non-
relevant.

Doc ID 1 2 3 4 5 6 7 8 9 10 11
p 1 0 0 0 0 1 1 1 1 0 0

rank(h1(x)) 11 10 9 8 7 6 5 4 3 2 1
rank(h2(x)) 1 2 3 4 5 6 7 8 9 10 11

Table 3: Toy Example and Models

We consider again a hypothesis space with two hypothe-
ses. Table 3 shows the predictions of the two hypotheses on
a single query x.

Hypothesis MAP Best Acc.
h1(q) 0.56 0.64
h2(q) 0.51 0.73

Table 4: Performance of Toy Models

Table 4 shows the MAP and best accuracy scores of h1(q)
and h2(q). The best accuracy refers to the highest achiev-
able accuracy on that ranking when considering all possi-
ble thresholds. For instance, with h1(q), a threshold be-
tween documents 1 and 2 gives 4 errors (documents 6-9 in-
correctly classified as non-relevant), yielding an accuracy of
0.64. Similarly, with h2(q), a threshold between documents
5 and 6 gives 3 errors (documents 10-11 incorrectly classi-
fied as relevant, and document 1 as non-relevant), yielding
an accuracy of 0.73. A learning method which optimizes
for accuracy would choose h2 since that results in a higher
accuracy score, but this yields a suboptimal MAP score.

3. OPTIMIZING AVERAGE PRECISION
We build upon the approach used by [13] for optimiz-

ing ROCArea. Unlike ROCArea, however, MAP does not
decompose linearly in the examples and requires a substan-
tially extended algorithm, which we describe in this section.

Recall that the true ranking is a weak ranking with two
rank values (relevant and non-relevant). Let Cx and Cx̄ de-
note the set of relevant and non-relevant documents of C for
query x, respectively.



We focus on functions which are parametrized by a weight
vector w, and thus wish to find w to minimize the empirical
risk, R∆

S (w) ≡ R∆
S (h(·;w)). Our approach is to learn a

discriminant function F : X × Y → < over input-output
pairs. Given query x, we can derive a prediction by finding
the ranking y that maximizes the discriminant function:

h(x;w) = argmax
y∈Y

F (x,y;w). (1)

We assume F to be linear in some combined feature repre-
sentation of inputs and outputs Ψ(x,y) ∈ RN , i.e.,

F (x,y;w) = wT Ψ(x,y). (2)

The combined feature function we use is

Ψ(x,y) =
1

|Cx| · |C x̄|
X

i:di∈Cx

X
j:dj∈Cx̄

[yij (φ(x, di)− φ(x, dj))] ,

where φ : X × C → <N is a feature mapping function from
a query/document pair to a point in N dimensional space2.
We represent rankings as a matrix of pairwise orderings,
Y ⊂ {−1, 0, +1}|C|×|C|. For any y ∈ Y, yij = +1 if di is
ranked ahead of dj , and yij = −1 if dj is ranked ahead of di,
and yij = 0 if di and dj have equal rank. We consider only
matrices which correspond to valid rankings (i.e, obeying
antisymmetry and transitivity). Intuitively, Ψ is a summa-
tion over the vector differences of all relevant/non-relevant
document pairings. Since we assume predicted rankings to
be complete rankings, yij is either +1 or −1 (never 0).

Given a learned weight vector w, predicting a ranking (i.e.
solving equation (1)) given query x reduces to picking each
yij to maximize wT Ψ(x,y). As is also discussed in [13],
this is attained by sorting the documents by wT φ(x, d) in
descending order. We will discuss later the choices of φ we
used for our experiments.

3.1 Structural SVMs
The above formulation is very similar to learning a straight-

forward linear model while training on the pairwise dif-
ference of relevant/non-relevant document pairings. Many
SVM-based approaches optimize over these pairwise differ-
ences (e.g., [5, 10, 13, 4]), although these methods do not
optimize for MAP during training. Previously, it was not
clear how to incorporate non-linear multivariate loss func-
tions such as MAP loss directly into global optimization
problems such as SVM training. We now present a method
based on structural SVMs [19] to address this problem.

We use the structural SVM formulation, presented in Op-
timization Problem 1, to learn a w ∈ RN .

Optimization Problem 1. (Structural SVM)

min
w,ξ≥0

1

2
‖w‖2 +

C

n

nX
i=1

ξi (3)

s.t. ∀i,∀y ∈ Y \ yi :

wT Ψ(xi,yi) ≥ wT Ψ(xi,y) + ∆(yi,y)− ξi (4)

The objective function to be minimized (3) is a tradeoff
between model complexity, ‖w‖2, and a hinge loss relaxation
of MAP loss,

P
ξi. As is usual in SVM training, C is a

2For example, one dimension might be the number of times
the query words appear in the document.

Algorithm 1 Cutting plane algorithm for solving OP 1
within tolerance ε.
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Wi ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y;w) ≡ ∆(yi,y) + wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y;w)
7: compute ξi = max{0, maxy∈Wi H(y;w)}
8: if H(ŷ;w) > ξi + ε then
9: Wi ←Wi ∪ {ŷ}

10: w← optimize (3) over W =
S

iWi

11: end if
12: end for
13: until no Wi has changed during iteration

parameter that controls this tradeoff and can be tuned to
achieve good performance in different training tasks.

For each (xi,yi) in the training set, a set of constraints
of the form in equation (4) is added to the optimization
problem. Note that wT Ψ(x,y) is exactly our discriminant
function F (x,y;w) (see equation (2)). During prediction,
our model chooses the ranking which maximizes the discrim-
inant (1). If the discriminant value for an incorrect ranking
y is greater than for the true ranking yi (e.g., F (xi,y;w) >
F (xi,yi;w)), then corresponding slack variable, ξi, must be
at least ∆(yi,y) for that constraint to be satisfied. There-
fore, the sum of slacks,

P
ξi, upper bounds the MAP loss.

This is stated formally in Proposition 1.

Proposition 1. Let ξ∗(w) be the optimal solution of the
slack variables for OP 1 for a given weight vector w. Then
1
n

Pn
i=1 ξi is an upper bound on the empirical risk R∆

S (w).
(see [19] for proof)

Proposition 1 shows that OP 1 learns a ranking function
that optimizes an upper bound on MAP error on the train-
ing set. Unfortunately there is a problem: a constraint is
required for every possible wrong output y, and the num-
ber of possible wrong outputs is exponential in the size of
C. Fortunately, we may employ Algorithm 1 to solve OP 1.
Algorithm 1 is a cutting plane algorithm, iteratively intro-
ducing constraints until we have solved the original problem
within a desired tolerance ε [19]. The algorithm starts with
no constraints, and iteratively finds for each example (xi,yi)
the output ŷ associated with the most violated constraint.
If the corresponding constraint is violated by more than ε we
introduce ŷ into the working setWi of active constraints for
example i, and re-solve (3) using the updated W. It can be
shown that Algorithm 1’s outer loop is guaranteed to halt
within a polynomial number of iterations for any desired
precision ε.

Theorem 1. Let R̄ = maxi maxy ‖Ψ(xi,yi)−Ψ(xi,y)‖,
∆̄ = maxi maxy ∆(yi,y), and for any ε > 0, Algorithm 1
terminates after adding at most

max

�
2n∆̄

ε
,
8C∆̄R̄2

ε2

�

constraints to the working set W. (see [19] for proof)

However, within the inner loop of this algorithm we have



to compute argmaxy∈Y H(y;w), where

H(y;w) = ∆(yi,y) + wT Ψ(xi,y)−wT Ψ(xi,yi),

or equivalently,

argmax
y∈Y

∆(yi,y) + wT Ψ(xi,y),

since wT Ψ(xi,yi) is constant with respect to y. Though
closely related to the classification procedure, this has the
substantial complication that we must contend with the ad-
ditional ∆(yi,y) term. Without the ability to efficiently find
the most violated constraint (i.e., solve argmaxy∈Y H(y,w)),
the constraint generation procedure is not tractable.

3.2 Finding the Most Violated Constraint
Using OP 1 and optimizing to ROCArea loss (∆roc), the

problem of finding the most violated constraint, or solving
argmaxy∈Y H(y,w) (henceforth argmax H), is addressed in
[13]. Solving argmax H for ∆map is more difficult. This is
primarily because ROCArea decomposes nicely into a sum
of scores computed independently on each relative order-
ing of a relevant/non-relevant document pair. MAP, on the
other hand, does not decompose in the same way as ROC-
Area. The main algorithmic contribution of this paper is an
efficient method for solving argmax H for ∆map.

One useful property of ∆map is that it is invariant to swap-
ping two documents with equal relevance. For example, if
documents da and db are both relevant, then swapping the
positions of da and db in any ranking does not affect ∆map.
By extension, ∆map is invariant to any arbitrary permuta-
tion of the relevant documents amongst themselves and of
the non-relevant documents amongst themselves. However,
this reshuffling will affect the discriminant score, wT Ψ(x,y).
This leads us to Observation 1.

Observation 1. Consider rankings which are constrained
by fixing the relevance at each position in the ranking (e.g.,
the 3rd document in the ranking must be relevant). Every
ranking which satisfies the same set of constraints will have
the same ∆map. If the relevant documents are sorted by
wT φ(x, d) in descending order, and the non-relevant docu-
ments are likewise sorted by wT φ(x, d), then the interleav-
ing of the two sorted lists which satisfies the constraints will
maximize H for that constrained set of rankings.

Observation 1 implies that in the ranking which maxi-
mizes H, the relevant documents will be sorted by wT φ(x, d),
and the non-relevant documents will also be sorted likewise.
By first sorting the relevant and non-relevant documents,
the problem is simplified to finding the optimal interleaving
of two sorted lists. For the rest of our discussion, we assume
that the relevant documents and non-relevant documents
are both sorted by descending wT φ(x, d). For convenience,
we also refer to relevant documents as {dx

1 , . . . dx
|Cx|} = Cx,

and non-relevant documents as {dx̄
1 , . . . dx̄

|Cx̄|} = Cx̄.

We define δj(i1, i2), with i1 < i2, as the change in H from
when the highest ranked relevant document ranked after dx̄

j

is dx
i2 to when it is dx

i1 . For i2 = i1 + 1, we have

δj(i, i + 1) =
1

|Cx|

�
j

j + i
− j − 1

j + i− 1

�
−

2 · (sx
i − sx̄

j )

|Cx| · |Cx̄| , (5)

where si = wT φ(x, di). The first term in (5) is the change
in ∆map when the ith relevant document has j non-relevant

documents ranked before it, as opposed to j−1. The second
term is the change in the discriminant score, wT Ψ(x,y),
when yij changes from +1 to −1.

. . . , dx
i , dx̄

j , dx
i+1, . . .

. . . , dx̄
j , dx

i , dx
i+1, . . .

Figure 1: Example for δj(i, i + 1)

Figure 1 gives a conceptual example for δj(i, i + 1). The
bottom ranking differs from the top only where dx̄

j slides up
one rank. The difference in the value of H for these two
rankings is exactly δj(i, i + 1).

For any i1 < i2, we can then define δj(i1, i2) as

δj(i1, i2) =

i2−1X
k=i1

δj(k, k + 1), (6)

or equivalently,

δj(i1, i2) =

i2−1X
k=i1

�
1

|Cx|

�
j

j + k
− j − 1

j + k − 1

�
−

2 · (sx
k − sx̄

j )

|Cx| · |Cx̄|

�
.

Let o1, . . . , o|Cx̄| encode the positions of the non-relevant
documents, where dx

oj
is the highest ranked relevant docu-

ment ranked after the jth non-relevant document. Due to
Observation 1, this encoding uniquely identifies a complete
ranking. We can recover the ranking as

yij =

8>>><
>>>:

0 if i = j
sign(si − sj) if di, dj equal relevance

sign(oj′ − i′ − 0.5) if di = dx
i′ , dj = dx̄

j′

sign(j′ − oi′ + 0.5) if di = dx̄
i′ , dj = dx

j′

. (7)

We can now reformulate H into a new objective function,

H ′(o1, . . . , o|Cx̄||w) = H(ȳ|w) +

|Cx̄|X
k=1

δk(ok, |Cx|+ 1),

where ȳ is the true (weak) ranking. Conceptually H ′ starts
with a perfect ranking ȳ, and adds the change in H when
each successive non-relevant document slides up the ranking.

We can then reformulate the argmax H problem as

argmax H ′ = argmax
o1,...,o|Cx̄|

|Cx̄|X
k=1

δk(ok, |Cx|+ 1) (8)

s.t.

o1 ≤ . . . ≤ o|Cx̄|. (9)

Algorithm 2 describes the algorithm used to solve equa-
tion (8). Conceptually, Algorithm 2 starts with a perfect
ranking. Then for each successive non-relevant document,
the algorithm modifies the solution by sliding that docu-
ment up the ranking to locally maximize H ′ while keeping
the positions of the other non-relevant documents constant.

3.2.1 Proof of Correctness
Algorithm 2 is greedy in the sense that it finds the best

position of each non-relevant document independently from
the other non-relevant documents. In other words, the al-
gorithm maximizes H ′ for each non-relevant document, dx̄

j ,



Algorithm 2 Finding the Most Violated Constraint
(argmax H) for Algorithm 1 with ∆map

1: Input: w, Cx, Cx̄

2: sort Cx and Cx̄ in descending order of wT φ(x, d)
3: sx

i ← wT φ(x, dx
i ), i = 1, . . . , |Cx|

4: sx̄
i ← wT φ(x, dx̄

i ), i = 1, . . . , |Cx̄|
5: for j = 1, . . . , |Cx̄| do
6: optj ← argmaxk δj(k, |Cx|+ 1)
7: end for
8: encode ŷ according to (7)
9: return ŷ

without considering the positions of the other non-relevant
documents, and thus ignores the constraints of (9).

In order for the solution to be feasible, then jth non-
relevant document must be ranked after the first j − 1 non-
relevant documents, thus satisfying

opt1 ≤ opt2 ≤ . . . ≤ opt|Cx̄|. (10)

If the solution is feasible, the it clearly solves (8). Therefore,
it suffices to prove that Algorithm 2 satisfies (10). We first
prove that δj(·, ·) is monotonically decreasing in j.

Lemma 1. For any 1 ≤ i1 < i2 ≤ |Cx| + 1 and 1 ≤ j <
|Cx̄|, it must be the case that

δj+1(i1, i2) ≤ δj(i1, i2).

Proof. Recall from (6) that both δj(i1, i2) and δj+1(i1, i2)
are summations of i2 − i1 terms. We will show that each
term in the summation of δj+1(i1, i2) is no greater than the
corresponding term in δj(i1, i2), or

δj+1(k, k + 1) ≤ δj(k, k + 1)

for k = i1, . . . , i2 − 1.
Each term in δj(k, k+1) and δj+1(k, k+1) can be further

decomposed into two parts (see (5)). We will show that each
part of δj+1(k, k + 1) is no greater than the corresponding
part in δj(k, k + 1). In other words, we will show that both

j + 1

j + k + 1
− j

j + k
≤ j

j + k
− j − 1

j + k − 1
(11)

and

−
2 · (sx

k − sx̄
j+1)

|Cx| · |Cx̄| ≤ −
2 · (sx

k − sx̄
j )

|Cx| · |Cx̄| (12)

are true for the aforementioned values of j and k.
It is easy to see that (11) is true by observing that for any

two positive integers 1 ≤ a < b,

a + 1

b + 1
− a

b
≤ a

b
− a− 1

b− 1
,

and choosing a = j and b = j + k.
The second inequality (12) holds because Algorithm 2 first

sorts dx̄ in descending order of sx̄, implying sx̄
j+1 ≤ sx̄

j .
Thus we see that each term in δj+1 is no greater than the

corresponding term in δj , which completes the proof.

The result of Lemma 1 leads directly to our main correct-
ness result:

Theorem 2. In Algorithm 2, the computed values of optj

satisfy (10), implying that the solution returned by Algorithm
2 is feasible and thus optimal.

Proof. We will prove that

optj ≤ optj+1

holds for any 1 ≤ j < |Cx̄|, thus implying (10).
Since Algorithm 2 computes optj as

optj = argmax
k

δj(k, |Cx|+ 1), (13)

then by definition of δj (6), for any 1 ≤ i < optj ,

δj(i, optj) = δj(i, |Cx|+ 1)− δj(optj , |Cx|+ 1) < 0.

Using Lemma 1, we know that

δj+1(i, optj) ≤ δj(i, optj) < 0,

which implies that for any 1 ≤ i < optj ,

δj+1(i, |Cx|+ 1)− δj+1(optj , |Cx|+ 1) < 0.

Suppose for contradiction that optj+1 < optj . Then

δj+1(optj+1, |Cx|+ 1) < δj+1(optj , |Cx|+ 1),

which contradicts (13). Therefore, it must be the case that
optj ≤ optj+1, which completes the proof.

3.2.2 Running Time
The running time of Algorithm 2 can be split into two

parts. The first part is the sort by wT φ(x, d), which re-
quires O(n log n) time, where n = |Cx| + |Cx̄|. The second
part computes each optj , which requires O(|Cx| · |Cx̄|) time.
Though in the worst case this is O(n2), the number of rel-
evant documents, |Cx|, is often very small (e.g., constant
with respect to n), in which case the running time for the
second part is simply O(n). For most real-world datasets,
Algorithm 2 is dominated by the sort and has complexity
O(n log n).

Algorithm 1 is guaranteed to halt in a polynomial num-
ber of iterations [19], and each iteration runs Algorithm 2.
Virtually all well-performing models were trained in a rea-
sonable amount of time (usually less than one hour). Once
training is complete, making predictions on query x us-
ing the resulting hypothesis h(x|w) requires only sorting
by wT φ(x, d).

We developed our software using a Python interface3 to
SVMstruct, since the Python language greatly simplified the
coding process. To improve performance, it is advisable to
use the standard C implementation4 of SVMstruct.

4. EXPERIMENT SETUP
The main goal of our experiments is to evaluate whether

directly optimizing MAP leads to improved MAP perfor-
mance compared to conventional SVM methods that opti-
mize a substitute loss such as accuracy or ROCArea. We
empirically evaluate our method using two sets of TREC
Web Track queries, one each from TREC 9 and TREC 10
(topics 451-500 and 501-550), both of which used the WT10g
corpus. For each query, TREC provides the relevance judg-
ments of the documents. We generated our features using
the scores of existing retrieval functions on these queries.
While our method is agnostic to the meaning of the fea-
tures, we chose to use existing retrieval functions as a simple
yet effective way of acquiring useful features. As such, our

3http://www.cs.cornell.edu/~tomf/svmpython/
4http://svmlight.joachims.org/svm_struct.html



Dataset Base Funcs Features
TREC 9 Indri 15 750
TREC 10 Indri 15 750
TREC 9 Submissions 53 2650
TREC 10 Submissions 18 900

Table 5: Dataset Statistics

experiments essentially test our method’s ability to re-rank
the highly ranked documents (e.g., re-combine the scores of
the retrieval functions) to improve MAP.

We compare our method against the best retrieval func-
tions trained on (henceforth base functions), as well as against
previously proposed SVM methods. Comparing with the
best base functions tests our method’s ability to learn a use-
ful combination. Comparing with previous SVM methods
allows us to test whether optimizing directly for MAP (as
opposed to accuracy or ROCArea) achieves a higher MAP
score in practice. The rest of this section describes the base
functions and the feature generation method in detail.

4.1 Choosing Retrieval Functions
We chose two sets of base functions for our experiments.

For the first set, we generated three indices over the WT10g
corpus using Indri5. The first index was generated using
default settings, the second used Porter-stemming, and the
last used Porter-stemming and Indri’s default stopwords.

For both TREC 9 and TREC 10, we used the descrip-
tion portion of each query and scored the documents using
five of Indri’s built-in retrieval methods, which are Cosine
Similarity, TFIDF, Okapi, Language Model with Dirichlet
Prior, and Language Model with Jelinek-Mercer Prior. All
parameters were kept as their defaults.

We computed the scores of these five retrieval methods
over the three indices, giving 15 base functions in total. For
each query, we considered the scores of documents found in
the union of the top 1000 documents of each base function.

For our second set of base functions, we used scores from
the TREC 9 [8] and TREC 10 [9] Web Track submissions.
We used only the non-manual, non-short submissions from
both years. For TREC 9 and TREC 10, there were 53 and
18 such submissions, respectively. A typical submission con-
tained scores of its top 1000 documents.

b ca

w
T
φ
(x

,d
)

f(d|x)

Figure 2: Example Feature Binning

4.2 Generating Features
In order to generate input examples for our method, a

concrete instantiation of φ must be provided. For each doc-

5http://www.lemurproject.org

TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.242 – 0.236 –

Best Func. 0.204 39/11 ** 0.181 37/13 **

2nd Best 0.199 38/12 ** 0.174 43/7 **

3rd Best 0.188 34/16 ** 0.174 38/12 **

Table 6: Comparison with Indri Functions

ument d scored by a set of retrieval functions F on query x,
we generate the features as a vector

φ(x, d) = 〈1[f(d|x)>k] : ∀f ∈ F ,∀k ∈ Kf 〉,

where f(d|x) denotes the score that retrieval function f as-
signs to document d for query x, and each Kf is a set of
real values. From a high level, we are expressing the score
of each retrieval function using |Kf |+ 1 bins.

Since we are using linear kernels, one can think of the
learning problem as finding a good piecewise-constant com-
bination of the scores of the retrieval functions. Figure 2
shows an example of our feature mapping method. In this
example we have a single feature F = {f}. Here, Kf =
{a, b, c}, and the weight vector is w = 〈wa, wb, wc〉. For any
document d and query x, we have

wT φ(x, d) =

8>><
>>:

0 if f(d|x) < a
wa if a ≤ f(d|x) < b
wa + wb if b ≤ f(d|x) < c
wa + wb + wc if c ≤ f(d|x)

.

This is expressed qualitatively in Figure 2, where wa and wb

are positive, and wc is negative.
We ran our main experiments using four choices of F : the

set of aforementioned Indri retrieval functions for TREC 9
and TREC 10, and the Web Track submissions for TREC
9 and TREC 10. For each F and each function f ∈ F ,
we chose 50 values for Kf which are reasonably spaced and
capture the sensitive region of f .

Using the four choices of F , we generated four datasets
for our main experiments. Table 5 contains statistics of
the generated datasets. There are many ways to generate
features, and we are not advocating our method over others.
This was simply an efficient means to normalize the outputs
of different functions and allow for a more expressive model.

5. EXPERIMENTS
For each dataset in Table 5, we performed 50 trials. For

each trial, we train on 10 randomly selected queries, and se-
lect another 5 queries at random for a validation set. Mod-
els were trained using a wide range of C values. The model
which performed best on the validation set was selected and
tested on the remaining 35 queries.

All queries were selected to be in the training, validation
and test sets the same number of times. Using this setup,
we performed the same experiments while using our method
(SVM∆

map), an SVM optimizing for ROCArea (SVM∆
roc) [13],

and a conventional classification SVM (SVMacc) [20]. All
SVM methods used a linear kernel. We reported the average
performance of all models over the 50 trials.

5.1 Comparison with Base Functions
In analyzing our results, the first question to answer is,

can SVM∆
map learn a model which outperforms the best base



TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.290 – 0.287 –

Best Func. 0.280 28/22 0.283 29/21

2nd Best 0.269 30/20 0.251 36/14 **

3rd Best 0.266 30/20 0.233 36/14 **

Table 7: Comparison with TREC Submissions

TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.284 – 0.288 –

Best Func. 0.280 27/23 0.283 31/19

2nd Best 0.269 30/20 0.251 36/14 **

3rd Best 0.266 30/20 0.233 35/15 **

Table 8: Comparison with TREC Subm. (w/o best)

functions? Table 6 presents the comparison of SVM∆
map with

the best Indri base functions. Each column group contains
the macro-averaged MAP performance of SVM∆

map or a base
function. The W/L columns show the number of queries
where SVM∆

map achieved a higher MAP score. Significance
tests were performed using the two-tailed Wilcoxon signed
rank test. Two stars indicate a significance level of 0.95.
All tables displaying our experimental results are structured
identically. Here, we find that SVM∆

map significantly outper-
forms the best base functions.

Table 7 shows the comparison when trained on TREC sub-
missions. While achieving a higher MAP score than the best
base functions, the performance difference between SVM∆

map

the base functions is not significant. Given that many of
these submissions use scoring functions which are carefully
crafted to achieve high MAP, it is possible that the best
performing submissions use techniques which subsume the
techniques of the other submissions. As a result, SVM∆

map

would not be able to learn a hypothesis which can signifi-
cantly out-perform the best submission.

Hence, we ran the same experiments using a modified
dataset where the features computed using the best submis-
sion were removed. Table 8 shows the results (note that we
are still comparing against the best submission though we
are not using it for training). Notice that while the perfor-
mance of SVM∆

map degraded slightly, the performance was
still comparable with that of the best submission.

5.2 Comparison w/ Previous SVM Methods
The next question to answer is, does SVM∆

map produce
higher MAP scores than previous SVM methods? Tables 9
and 10 present the results of SVM∆

map, SVM∆
roc, and SVMacc

when trained on the Indri retrieval functions and TREC sub-
missions, respectively. Table 11 contains the corresponding
results when trained on the TREC submissions without the
best submission.

To start with, our results indicate that SVMacc was not
competitive with SVM∆

map and SVM∆
roc, and at times un-

derperformed dramatically. As such, we tried several ap-
proaches to improve the performance of SVMacc.

5.2.1 Alternate SVMacc Methods
One issue which may cause SVMacc to underperform is

the severe imbalance between relevant and non-relevant doc-

TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.242 – 0.236 –

SVM∆
roc 0.237 29/21 0.234 24/26

SVMacc 0.147 47/3 ** 0.155 47/3 **

SVMacc2 0.219 39/11 ** 0.207 43/7 **

SVMacc3 0.113 49/1 ** 0.153 45/5 **

SVMacc4 0.155 48/2 ** 0.155 48/2 **

Table 9: Trained on Indri Functions

TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.290 – 0.287 –

SVM∆
roc 0.282 29/21 0.278 35/15 **

SVMacc 0.213 49/1 ** 0.222 49/1 **

SVMacc2 0.270 34/16 ** 0.261 42/8 **

SVMacc3 0.133 50/0 ** 0.182 46/4 **

SVMacc4 0.233 47/3 ** 0.238 46/4 **

Table 10: Trained on TREC Submissions

uments. The vast majority of the documents are not rele-
vant. SVMacc2 addresses this problem by assigning more
penalty to false negative errors. For each dataset, the ratio
of the false negative to false positive penalties is equal to the
ratio of the number non-relevant and relevant documents in
that dataset. Tables 9, 10 and 11 indicate that SVMacc2 still
performs significantly worse than SVM∆

map.
Another possible issue is that SVMacc attempts to find

just one discriminating threshold b that is query-invariant.
It may be that different queries require different values of
b. Having the learning method trying to find a good b value
(when one does not exist) may be detrimental.

We took two approaches to address this issue. The first
method, SVMacc3, converts the retrieval function scores into
percentiles. For example, for document d, query q and re-
trieval function f , if the score f(d|q) is in the top 90% of
the scores f(·|q) for query q, then the converted score is
f ′(d|q) = 0.9. Each Kf contains 50 evenly spaced values
between 0 and 1. Tables 9, 10 and 11 show that the perfor-
mance of SVMacc3 was also not competitive with SVM∆

map.
The second method, SVMacc4, normalizes the scores given

by f for each query. For example, assume for query q that
f outputs scores in the range 0.2 to 0.7. Then for document
d, if f(d|q) = 0.6, the converted score would be f ′(d|q) =
(0.6 − 0.2)/(0.7 − 0.2) = 0.8. Each Kf contains 50 evenly
spaced values between 0 and 1. Again, Tables 9, 10 and 11
show that SVMacc4 was not competitive with SVM∆

map

5.2.2 MAP vs ROCArea
SVM∆

roc performed much better than SVMacc in our ex-
periments. When trained on Indri retrieval functions (see
Table 9), the performance of SVM∆

roc was slight, though
not significantly, worse than the performances of SVM∆

map.

However, Table 10 shows that SVM∆
map did significantly out-

perform SVM∆
roc when trained on the TREC submissions.

Table 11 shows the performance of the models when trained
on the TREC submissions with the best submission removed.
The performance of most models degraded by a small amount,
with SVM∆

map still having the best performance.



TREC 9 TREC 10
Model MAP W/L MAP W/L

SVM∆
map 0.284 – 0.288 –

SVM∆
roc 0.274 31/19 ** 0.272 38/12 **

SVMacc 0.215 49/1 ** 0.211 50/0 **

SVMacc2 0.267 35/15 ** 0.258 44/6 **

SVMacc3 0.133 50/0 ** 0.174 46/4 **

SVMacc4 0.228 46/4 ** 0.234 45/5 **

Table 11: Trained on TREC Subm. (w/o Best)

6. CONCLUSIONS AND FUTURE WORK
We have presented an SVM method that directly opti-

mizes MAP. It provides a principled approach and avoids
difficult to control heuristics. We formulated the optimiza-
tion problem and presented an algorithm which provably
finds the solution in polynomial time. We have shown em-
pirically that our method is generally superior to or com-
petitive with conventional SVMs methods.

Our new method makes it conceptually just as easy to
optimize SVMs for MAP as was previously possible only
for Accuracy and ROCArea. The computational cost for
training is very reasonable in practice. Since other methods
typically require tuning multiple heuristics, we also expect
to train fewer models before finding one which achieves good
performance.

The learning framework used by our method is fairly gen-
eral. A natural extension of this framework would be to
develop methods to optimize for other important IR mea-
sures, such as Normalized Discounted Cumulative Gain [2,
3, 4, 12] and Mean Reciprocal Rank.

7. ACKNOWLEDGMENTS
This work was funded under NSF Award IIS-0412894,

NSF CAREER Award 0237381, and a gift from Yahoo! Re-
search. The third author was also partly supported by a
Microsoft Research Fellowship.

8. REFERENCES
[1] B. T. Bartell, G. W. Cottrell, and R. K. Belew.

Automatic combination of multiple ranked retrieval
systems. In Proceedings of the ACM Conference on
Research and Development in Information Retrieval
(SIGIR), 1994.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning
to rank using gradient descent. In Proceedings of the
International Conference on Machine Learning
(ICML), 2005.

[3] C. J. C. Burges, R. Ragno, and Q. Le. Learning to
rank with non-smooth cost functions. In Proceedings
of the International Conference on Advances in Neural
Information Processing Systems (NIPS), 2006.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking SVM to document retrieval. In
Proceedings of the ACM Conference on Research and
Development in Information Retrieval (SIGIR), 2006.

[5] B. Carterette and D. Petkova. Learning a ranking
from pairwise preferences. In Proceedings of the ACM
Conference on Research and Development in
Information Retrieval (SIGIR), 2006.

[6] R. Caruana, A. Niculescu-Mizil, G. Crew, and
A. Ksikes. Ensemble selection from libraries of models.
In Proceedings of the International Conference on
Machine Learning (ICML), 2004.

[7] J. Davis and M. Goadrich. The relationship between
precision-recall and ROC curves. In Proceedings of the
International Conference on Machine Learning
(ICML), 2006.

[8] D. Hawking. Overview of the TREC-9 web track. In
Proceedings of TREC-2000, 2000.

[9] D. Hawking and N. Craswell. Overview of the
TREC-2001 web track. In Proceedings of TREC-2001,
Nov. 2001.

[10] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression.
Advances in large margin classifiers, 2000.

[11] A. Herschtal and B. Raskutti. Optimising area under
the ROC curve using gradient descent. In Proceedings
of the International Conference on Machine Learning
(ICML), 2004.

[12] K. Jarvelin and J. Kekalainen. Ir evaluation methods
for retrieving highly relevant documents. In
Proceedings of the ACM Conference on Research and
Development in Information Retrieval (SIGIR), 2000.

[13] T. Joachims. A support vector method for
multivariate performance measures. In Proceedings of
the International Conference on Machine Learning
(ICML), pages 377–384, New York, NY, USA, 2005.
ACM Press.

[14] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the ACM Conference on
Research and Development in Information Retrieval
(SIGIR), pages 111–119, 2001.

[15] Y. Lin, Y. Lee, and G. Wahba. Support vector
machines for classification in nonstandard situations.
Machine Learning, 46:191–202, 2002.

[16] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the
28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 472–479, 2005.

[17] K. Morik, P. Brockhausen, and T. Joachims.
Combining statistical learning with a knowledge-based
approach. In Proceedings of the International
Conference on Machine Learning, 1999.

[18] S. Robertson. The probability ranking principle in ir.
journal of documentation. Journal of Documentation,
33(4):294–304, 1977.

[19] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research (JMLR), 6(Sep):1453–1484, 2005.

[20] V. Vapnik. Statistical Learning Theory. Wiley and
Sons Inc., 1998.

[21] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz.
Optimizing classifier performance via approximation
to the Wilcoxon-Mann-Witney statistic. In
Proceedings of the International Conference on
Machine Learning (ICML), 2003.


