
A General Large Neighborhood Search Framework
for Solving Integer Linear Programs

Jialin Song† Ravi Lanka‡ ∗ Yisong Yue† Bistra Dilkina§
† California Institute of Technology

‡Rakuten, India
§ University of Southern California

Abstract

This paper studies a strategy for data-driven algorithm design for large-scale com-
binatorial optimization problems that can leverage existing state-of-the-art solvers
in general purpose ways. The goal is to arrive at new approaches that can reliably
outperform existing solvers in wall-clock time. We focus on solving integer lin-
ear programs, and ground our approach in the large neighborhood search (LNS)
paradigm, which iteratively chooses a subset of variables to optimize while leav-
ing the remainder fixed. The appeal of LNS is that it can easily use any existing
solver as a subroutine, and thus can inherit the benefits of carefully engineered
heuristic or complete approaches and their software implementations. We show
that one can learn a good neighborhood selector using imitation and reinforcement
learning techniques. Through an extensive empirical validation in bounded-time
optimization, we demonstrate that our LNS framework can significantly outper-
form compared to state-of-the-art commercial solvers such as Gurobi.

1 Introduction

The design of algorithms for solving hard combinatorial optimization problems remains a valuable
and challenging task. Practically relevant problems are typically NP-complete or NP-hard. Exam-
ples include any kind of search problem through a combinatorial space, such as network designs
[19], mechanism design [15], planning [39], inference in graphical models [50], program synthesis
[36], verification [7], and engineering design [12, 37], amongst many others.

The widespread importance of solving hard combinatorial optimization problems has spurred in-
tense research in designing approximation algorithms and heuristics for large problem classes, such
as integer programming [8, 21, 34] and satisfiability [51, 13, 16]. Historically, the design of such
algorithms was done largely manually, requiring careful understandings of the underlying structure
within specific classes of optimization problems. Such approaches are often unappealing due to the
need to obtain substantial domain knowledge, and one often desires a more automated approach.

In recent years, there has been an increasing interest to automatically learn good (parameters of)
algorithms for combinatorial problems from training data. The most popular paradigm, also referred
to as “learning to search”, aims to augment existing algorithmic templates by replacing hard-coded
heuristic components with parameterized learnable versions. For example, this has been done in the
context of greedy search for NP-hard graph problems [31]. However, greedy as well as most general
purpose heuristic or local search algorithms are limited to combinatorial optimization problems,
where the constraints are easy to satisfy, and hence are difficult to apply to domains with intricate
side constraints. On the other hand, Integer Linear Programs (ILPs) are a widely applicable problem
class that can encode a broad set of domains as well as large number and variety of constrains.

∗Work done while at Jet Propulsion Laboratory, California Institute of Technology

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Branch-and-bound, which is a complete search procedure, is the state-of-the-art approach to ILPs
and has also been recently extensively researched through the lens of “learning to search” [23, 30,
31, 46, 47, 22]. While this line of research has shown promise, it falls short of delivering practical
impact, especially in improving wall-clock time. Practically improving the performance of branch-
and-bound algorithms through learning is stymied by the need to either modify commercial solvers
with limited access to optimized integration, or to modify open-source solvers such as SCIP [1],
which is considerably slower than leading commercial solvers such as Gurobi and CPlex (usually
by a factor of 10 or more) [38, 40].

Motivated by the aforementioned drawbacks, we study how to design abstractions of large-scale
combinatorial optimization problems that can leverage existing state-of-the-art solvers as a generic
black-box subroutine. Our goal is to arrive at new approaches that can reliably outperform leading
commercial solvers in wall-clock time, can be applicable to broad class of combinatorial optimiza-
tion problems, and is amenable to data-driven design. We focus on solving integer linear programs
(ILPs), which are a common way to represent many combinatorial optimization problems. We
leverage the large neighborhood search (LNS) paradigm [2], an incomplete algorithm that itera-
tively chooses a subset of variables to optimize while leaving the remainder fixed. A major appeal
of LNS is that it can easily use any existing solver as a subroutine, including ones that can handle
general ILPs.

Our contributions can be summarized as:
• We propose a general LNS framework for solving large-scale ILPs. Our framework enables

easy integration of existing solvers as subroutines, and does not depend on incorporating
domain knowledge in order to achieve strong performance. In our experiments, we combine
our framework with Gurobi, a leading commercial ILP solver.

• We show that, perhaps surprisingly, even using a random decision procedure within our
LNS framework significantly outperforms Gurobi on many problem instances.

• We develop a learning-based approach that predicts a partitioning of the integer variables,
which then serves as a learned decision procedure within our LNS framework. This pro-
cedure is effectively learning how to decompose the original optimization problem into a
series of sub-problems that can be solved much more efficiently using existing solvers.

• We perform an extensive empirical validation across several ILP benchmarks, and demon-
strate superior wall-clock performance compared to Gurobi across all benchmarks. These
results suggest that our LNS framework can effectively leverage leading state-of-the-art
solvers to reliably achieve substantial speed-ups in wall-clock time.

2 Related Work on Learning to Optimize

An increasingly popular paradigm for the automated design and tuning of solvers is to use learning-
based approaches. Broadly speaking, one can categorize most existing “learning to optimize” ap-
proaches into three categories: (1) learning search heuristics such as for branch-and-bound; (2)
tuning the hyperparameters of existing algorithms; and (3) learning to identify key substructures
that an existing solver can exploit. In this section, we survey these paradigms.

Learning to Search. In learning to search, one typically operates within the framework of a search
heuristic, and trains a local decision policy from training data. Perhaps the most popular search
framework for integer programs is branch-and-bound [34], which is a complete algorithm for solving
integer programs (ILPs) to optimality. Branch-and-bound is a general framework that includes many
decision points that guide the search process, which historically have been designed using carefully
attained domain knowledge. To arrive at more automated approaches, a collection of recent works
explore learning data-driven models to outperform manually designed heuristics, including learning
for branching variable selection [30, 22], or node selection [23, 46, 47]. Moreover, one can also
train a model to decide when to run primal heuristics endowed in many ILP solvers [31]. Many of
these approaches are trained as policies using reinforcement or imitation learning.

Writing highly optimized software implementations is challenging, and so all previous work on
learning to branch-and-bound were implemented within existing software frameworks that admit
interfaces for custom functions. The most common choice is the open-source solver SCIP [1], while
some previous work relied on callback methods with CPlex [9, 30]. However, in general, one cannot
depend on highly optimized solvers being amenable to incorporating learned decision procedures as

2



subroutines. For instance, Gurobi, the leading commercial ILP solver according to [38, 40], has very
limited interface capabilities, and to date, none of the learned branch-and-bound implementations
can reliably outperform Gurobi in wall-clock time.

Beyond branch-and-bound, other search frameworks that are amenable to data-driven design include
A* search [46], direct forward search [29], and sampling-based planning [11]. These settings are
less directly relevant, since our work is grounded in solving ILPs. However, the LNS framework
can, in principle, be interpreted more generally to include these other settings as well, which is an
interesting direction for future work.

Algorithm Configuration. Another area of using learning to speed up optimization solvers is al-
gorithm configuration [26, 28, 4, 5, 33]. Existing solvers tend to have many customizable hyper-
parameters whose values strongly influence the solver behaviors. Algorithm configuration aims to
optimize those parameters on a problem-by-problem basis to speed up the solver.

Similar to our approach, algorithm configuration approaches leverage existing solvers. One key
difference is that algorithm configuration does not yield fundamentally new approaches, but rather is
a process for tuning the hyperparameters of an existing approach. As a consequence, one limitation
of algorithm configuration approaches is that they rely on the underlying solver being able to solve
problem instances in a reasonable amount of time, which may not be possible for hard problem
instances. Our LNS framework can thus be viewed as a complementary paradigm for leveraging
existing solvers. In fact, in our experiments, we perform a simple version of algorithm configuration.
We defer incorporating more complex algorithm configuration procedures as future work.

Learning to Identify Substructures. The third category of approaches is learning to predict key
substructures of an optimization problem. A canonical example is learning to predict backdoor vari-
ables [17], which are a set of variables that, once instantiated, the remaining problem simplifies to a
tractable form [16]. Our approach bears some high-level affinity to this paradigm, as we effectively
aim to learn decompositions of the original problem into a series of smaller subproblems. How-
ever, our approach makes a much weaker structural assumption, and thus can more readily leverage
a broader suite of existing solvers. Other examples of this general paradigm include learning to
pre-condition solvers, such as generating an initial solution to be refined with a downstream solver,
which is typically more popular in continuous optimization settings [32].

3 A General Large Neighborhood Search Framework for ILPs

We now present our large neighborhood search (LNS) framework for solving integer linear programs
(ILPs). LNS is a meta-approach that generalizes neighborhood search for optimization, and itera-
tively improves an existing solution by local search. As a concept, LNS has been studied for over two
decades [45, 2, 41]. However, previous work studied specialized settings with domain-specific deci-
sion procedures. For example, in [45], the definition of neighborhoods is highly specific to vehicle
routing, and so the decision making of how to navigate the neighborhood is also domain-specific.
We instead aim to develop a general framework that avoids requiring domain-specific structures,
and whose decision procedures can be designed in a generic and automated way, e.g., via learning
as described in Section 4. In particular, our approach can be viewed as a decomposition-based LNS
framework that operates on generic ILP representations, as described in Section 3.2.

3.1 Background

Formally, let X be the set of all variables in an optimization problem and S be all possible value
assignments of X . For a current solution s ∈ S, a neighborhood function N(s) ⊂ S is a collection
of candidate solutions to replace s, afterwards a solver subroutine is evoked to find the optimal
solution within N(s). Traditional neighborhood search approaches define N(s) explicitly, e.g.,
the 2-opt operation in the traveling salesman problem [18]. LNS defines N(s) implicitly through
a destroy and a repair method. A destroy method destructs part of the current solution while a
repair method rebuilds the destroyed solution. The number of candidate repairments is potentially
exponential in the size of the neighborhood, which explains the “large“ in LNS.

In the context of solving ILPs, the LNS is also used as a local search heuristics for finding high
quality incumbent solutions [44, 24, 25]. The ways large neighborhoods are constructed are random
[44], manually defined [24] and via bandit algorithm selection from a pre-defined set [25]. Further-

3



Algorithm 1 Decomposition-based LNS

1: Input: an optimization problem P , an initial solutions SX , a decomposition X = X1 ∪X2 ∪ · · · ∪Xk, a
solver F

2: for i = 1, · · · , k do
3: SX = FIX_AND_OPTIMIZE(P, SX , Xi, F )
4: end for
5: return SX

more, these LNS approaches often require interface access to the underlying solver, which is often
undesirable when designing frameworks that offer ease of deployment.

Recently, there has been some work on using learning within LNS [27, 49]. These approaches are
designed for specific optimization problems, such as capacitated vehicle routing, and so are not
directly comparable with our generic approach for solving ILPs. Furthermore, they often focus on
learning the underlying solver (rather than rely on existing state-of-the-art solvers), which makes
them unappealing from a deployment perspective.

3.2 Decomposition-based Large Neighborhood Search for Integer Programs

We now describe the details of our LNS framework. At a high level, our LNS framework operates
on an ILP via defining decompositions of its integer variables into disjoint subsets. Afterwards, we
can select a subset and use an existing solver to optimize the variables in that subset while holding
all other variables fixed. The benefit of this framework is that it is completely generic to any ILP
instantiation of any combinatorial optimization problem.

Without loss of generality, we consider the cost minimization objective. We first describe a version
of LNS for integer programs based on decompositions of integer variables which is a modified
version of the evolutionary approach proposed in [44], outlined in Alg 1. For an integer program
P with a set of integer variables X , we define a decomposition of the set X as a disjoint union
X1 ∪X2 ∪ · · · ∪Xk. Assume we have an existing feasible solution SX to P , we view each subset
Xi of integer variables as a local neighborhood for search. We fix integers inX\Xi with their values
in the current solution SX and optimize for variable in Xi (referred as the FIX_AND_OPTIMIZE
function in Line 3 of Alg 1). As the resulting optimization is a smaller ILP, we can use any off-the-
shelf ILP solver to carry out the local search. In our experiments, we use Gurobi to optimize the
sub-ILP. A new solution is obtained and we repeat the process with the remaining subsets.

Decomposition Decision Procedures. Notice that a different decomposition defines a different se-
ries of LNS problems and the effectiveness of our approach proceeds with a different decomposition
for each iteration. The simplest implementation is to use a random decomposition approach, which
we show empirically already delivers very strong performance. We can also consider learning-based
approaches that learn a decomposition from training data, discussed further in Section 4.

4 Learning a Decomposition

In this study, we apply data-driven methods, such as imitation learning and reinforcement learning,
to learn policies to generate decompositions for the LNS framework described in Section 3.2. We
specialize a Markov decision process for our setting. For a combinatorial optimization problem
instance P with a set of integer variables X , a state s ∈ S is a vector representing an assignment
for variables in X , i.e., it is an incumbent solution. An action a ∈ A is a decomposition of X as
described in Section 3.2. After running LNS through neighborhoods defined in a, we obtain a (new)
solution s′. The reward r(s, a) = J(s)− J(s′) where J(s) is the objective value of P when s is the
solution. We restrict to finite-horizon task of length T so we set the discount factor γ to be 1.

4.1 Imitation Learning

In imitation learning, demonstrations (from an expert) serves as the learning signals. However, we
do not have the access to an expert to generate good decompositions. Instead, we sample random
decompositions and take the ones resulting in best objectives as demonstrations. This procedure is
shown in Alg 2. The core of the algorithm is shown on Lines 7-12 where we repeatedly sample ran-

4



Algorithm 2 COLLECT_DEMOS
1: Input: a collection of optimization problems {Pi}ni=1 with initial solutions {Si}ni=1, T the number of LNS

iterations, m the number of random decompositions to sample, k the number of subsets in a decompositon,
F a solver.

2: for i = 1, · · · , n do
3: best obj ←∞
4: best decomp← None
5: for j = 1, · · · ,m do
6: decomps← []
7: for t = 1, · · · , T do
8: X ← RANDOM_DECOMPOSITION(Pi, k)
9: Si ←

10: Decomposition-based LNS(Pi, Si, X, F )
11: decomps.append(X)
12: end for
13: if J(Si) < best obj then
14: best obj ← J(Si)
15: best decomp← decomps
16: end if
17: end for
18: Record best decomp for Pi

19: end for
20: return best decompos

Algorithm 3 Forward Training for LNS

1: Input: a collection of optimization problems {Pi}ni=1 with initial solutions {Si}ni=1, T the time horizon,
m the number of random decompositions to sample, k the number of subsets in a decompositon, F a
solver..

2: for t = 1, · · · , T do
3: {Di}ni=1 =
4: COLLECT_DEMOS({Pi}ni=1, {Si}ni=1, 1,m, k, F )
5: πt = SUPERVISE_TRAIN({Di}ni=1)
6: for i = 1, · · · , n do
7: X ← πt(Pi, Si)
8: Si ← Decomposition-based LNS(Pi, Si, X, F )
9: end for

10: end for
11: return π1, π2, · · · , πT

dom decompositions and call the Decomposition-based LNS algorithm (Alg 1) to evaluate
them. In the end, we record the decompositions with the best objective values (Lines 13-16).

Once we have generated a collection of good decompositions {Di}ni=1, we apply two imita-
tion learning algorithms. The first one is behavior cloning [42]. By turning each demon-
stration trajectory Di = (s0, a0, s1, a1, · · · , sT−1, aT−1) into a collection of state-action pairs
{(s0, a0), (s1, a1), · · · , (sT−1, aT−1)}, we treat policy learning as a supervised learning problem.
In our case, the action a is a decomposition which we represent as a vector. Each element of the
vector indicates which subset Xi this particular variable belongs to. Thus, we reduce the learning
problem to a supervised classification task.

Behavior cloning suffers from cascading errors [43]. We use the forward training algorithm [43]
to correct mistakes made at each step. We adapt the forward training algorithm for our use case
and present it as Alg 3. The main difference with behavior cloning is the adaptive demonstration
collection step on Line 4. In this case, we do not collect all demonstrations beforehand, instead, they
are collected dependent on the predicted decompositions of previous policies.

4.2 Reinforcement Learning

For reinforcement learning, for simplicity, we choose to use REINFORCE [48] which is a classical
Monte-Carlo policy gradient method for optimizing policies. The goal is to find a policy π that max-

5



imizes η(π) = Eπ[
∑∞
t=0 γ

tr(st, at)], the expected discounted accumulative reward. The policy π
is normally parameterized with some θ. Policy gradient methods seek to optimize η(πθ) by updat-
ing θ in the direction of: ∇θη(πθ) = Eπθ

[
∑T
t=0∇θ log πθ(at|st)

∑T
t′=t r(st′ , at′)]. By sampling

trajectories (s0, a0, · · · , sT−1, aT−1, sT ), one can estimate the gradient∇θη(πθ).

4.3 Featurization of an Optimization Problem

In this section, we describe the featurization of two classes of combinatorial optimization problems.

Combinatorial Optimization over Graphs. The first class of problems are defined explicitly over
graphs as those considered in [29]. Examples include the minimum vertex cover, the maximum cut
and the traveling salesman problems. The (weighted) adjacency matrix of the graph contains all the
information to define the optimization problem so we use it as the feature input to a learning model.

General Integer Linear Programs. There are other classes of combinatorial optimization problems
that do not originate from explicit graphs such as those in combinatorial auctions. Nevertheless,
they can be modeled as integer linear programs. We construct the following incidence matrix A
between the integer variables and the constraints. For each integer variable xi and a constraint cj ,
A[i, j] = coeff(xi, cj) where coeff(xi, cj) is the coefficient of the variable xi in the constraint cj if
it appears in it and 0 otherwise.

Incorporating Current Solution. As outlined in Section 3.2, we seek to adaptively generate de-
compositions based on the current solution. Thus we need to include the solution in the featurization.
Regardless of which featurization we use, the feature matrix has the same number of rows as the
number of integer variables we consider, so we can simply append the variable value in the solution
as an additional feature.

5 Emprical Validation

We present experimental results on four diverse applications covering both combinatorial optimiza-
tion over graphs and general ILPs. We discuss the design choices of crucial parameters in Section
5.1, and present the main results in Sections 5.2 & 5.3. Finally, we provide an empirical evaluation
of a state-of-the-art learning to branch model with Gurobi in Section 5.4 to highlight the necessity
of our proposed approach for practical impact.

5.1 Datasets & Setup

Datasets. We evaluate on 4 NP-hard benchmark problems expressed as ILPs. The first two, min-
imum vertex cover (MVC) and maximum cut (MAXCUT), are graph optimization problems. For
each problem, we consider two random graph distributions, the Erdős-Rényi (ER) [20] and the
Barabási-Albert (BA) [3] random graph models. For MVC, we use graphs of size 1000. For MAX-
CUT, we use graphs of size 500. All the graphs are weighted and each vertex/edge weight is sampled
uniformly from [0, 1] for MVC and MAXCUT, respectively. We also apply our method to combi-
natorial auctions [35] and risk-aware path planning [39], which are not based on graphs. We use the
Combinatorial Auction Test Suite (CATS) [35] to generate auction instances from two distributions:
regions and arbitrary. For each distribution, we consider two sizes: 2000 items with 4000 bids and
4000 items with 8000 bids. For the risk-aware path planning experiment, we use a custom generator
to generate obstacle maps with 30 obstacles and 40 obstacles.

Learning a Decomposition. When learning the decomposition, we use 100 instances for training,
10 for validation and 50 for testing. When using reinforcement learning, we sample 5 trajectories for
each problem to estimate the policy gradient. For imitation learning based algorithms, we sample
5 random decompositions and use the best one as demonstrations. All our experiment results are
averaged over 5 random seeds.

Initialization. To run large neighborhood search, we require an initial feasible solution (typically
quite far from optimal). For MVC, MAXCUT and CATS, we initialize a feasible solution by includ-
ing all vertices in the cover set, assigning all vertices in one set and accepting no bids, respectively.
For risk-aware path planning, we initialize a feasible solution by running Gurobi for 3 seconds. This
time is included when we compare wall-clock time with Gurobi.

6



MVC BA 1000 MVC ER 1000 MAXCUT BA 500 MAXCUT ER 500
Gurobi 440.08± 1.26 482.15± 0.82 −3232.53± 16.61 −4918.07± 12.43

Random-LNS 433.59± 0.51 471.21± 0.36 −3583.63± 3.81 −5488.49± 6.60
BC-LNS 433.09± 0.53 470.20± 0.34 −3584.90± 4.02 −5494.76± 6.51
FT-LNS 432.00± 0.52 470.04± 0.37 −3586.29± 3.33 −5496.29± 6.69
RL-LNS 434.16± 0.38 471.52± 0.15 −3584.70± 1.49 −5481.57± 2.97

Table 1: Comparison of different LNS methods and Gurobi for MVC and MAXCUT problems.
CATS Regions 2000 CATS Regions 4000 CATS Arbitrary 2000 CATS Arbitrary 4000

Gurobi −94559.9± 2640.2 −175772.9± 2247.89 −69644.8± 1796.9 −142168.1± 4610.0
Random-LNS −99570.1± 790.5 −201541.7± 1131.1 −85276.6± 680.9 −170228.3± 1711.7

BC-LNS −101957.5± 752.7 −207196.2± 1143.8 −86659.6± 720.2 −172268.1± 1594.8
FT-LNS −102247.9± 709.0 −208586.3± 1211.7 −87311.8± 676.0 −169846.7± 5293.2

Table 2: Comparison of different LNS methods and Gurobi for CATS problems.
30 Obstacles 40 Obstacles

Gurobi 0.7706± 0.23 0.7407± 0.13
Random-LNS 0.6487± 0.07 0.3680± 0.03

BC-LNS 0.5876± 0.07 0.3502± 0.07
FT-LNS 0.5883± 0.07 0.3567± 0.04

Table 3: Comparison of different LNS methods and Gurobi for risk-aware path planning problems.

MVC BA 1000 MVC ER 1000
Local-ratio 487.58± 1.16 498.20± 1.24
Best-LNS 432.00± 0.52 470.04± 0.37

MAXCUT BA 500 MAXCUT ER 500
Greedy −3504.79± 7.80 −5302.63± 17.59
Burer −3647.46± 7.63 −5568.18± 13.47

De Sousa −3216.86± 9.86 −4994.73± 10.60
Best-LNS −3586.29± 3.33 −5496.29± 6.69

Table 4: (Left) Comparison between LNS with the local-ratio heuristic for MVC. (Right) Compari-
son between LNS with heuristics for MAXCUT.

CATS Regions 2000 CATS Regions 4000 CATS Arbitrary 2000 CATS Arbitrary 4000
Greedy −89281.4± 1296.4 −181003.5± 1627.5 −81588.7± 1657.6 −114015.9± 12313.8

LP Rounding −87029.9± 876.66 −173004.1± 1688.9 −74545.1± 1365.5 −104223.1± 11124.5
Best-LNS −102247.9± 709.0 −208586.3± 1211.7 −87311.8± 676.0 −172268.1± 1594.8

Table 5: Comparison between LNS with greedy and LP rounding heuristics for CATS.
Set Cover Maximum Independence Set Capacitated Facility Location CATS

GCNN [22] 1489.91± 3.3% 2024.37± 30.6% 563.36± 10.7% 114.16± 10.3%
Gurobi 669.64± 0.55% 51.53± 5.25% 39.87± 3.91% 40.99± 7.19%

Table 6: Wall-clock comparison between learning to branch GCNN models [22] and Gurobi.

Hyperparameter Configuration. We must set two parameters for our LNS approach. The first is
k, the number of equally sized subsets to divide variables X into. The second is t, how long the
solver runs on each sub-problem. A sub-ILP is still fairly large so solving it to optimality can take a
long time, so we impose a time limit. We run a parameter sweep over the number of decompositions
from 2 to 5 and time limit for sub-ILP from 1 second to 3 seconds. For each configuration of (k, t),
the wall-clock time for one iteration of LNS will be different. For a fair comparison, we use the
ratio ∆/T as the selection criterion for the optimal configuration, where ∆ is the objective value
improvement and T is the time spent. The configuration results are in Appendix A.1.

5.2 Benchmark Comparisons with Gurobi

We now present our main benchmark evaluations. We instantiate our framework in four ways:

• Random-LNS: using random decompositions
• BC-LNS: using a decomposition policy trained using behavior cloning
• FT-LNS: using a decomposition policy trained using forward training
• RL-LNS: using a decomposition policy trained using REINFORCE

We use Gurobi 9.0 as the underlying solver. For learned LNS methods, we sequentially generate 10
decompositions and apply LNS with these decompositions. We use the same time limit setting for
running each sub-problem, as a result, the wall-clock among decomposition methods are very close.

We study the incomplete setting, where the goal is to find the best possible feasible solution within a
bounded running time. When comparing using just Gurobi, we limit Gurobi’s runtime to the longest
runtime across all instances from our LNS methods. In other words, Gurobi’s runtime is longer than
all the decompostion based methods, which gives it more time to find the best solution possible.

Main Results. Tables 1, 2 and 3 show the main results. We make two observations:

7



(a) CATS with 2000 items and
4000 bids from regions distribu-
tion.

(b) CATS with 2000 items and
4000 bids from arbitrary distri-
bution.

(c) Risk-aware path planning
for 30 obstacles.

Figure 1: Improvements of objective values as more iterations of LNS are applied. In all three cases,
imitation learning methods, BC-LNS and FT-LNS, outperform the Random-LNS.

(a) CATS with 4000
items and 8000 bids
from regions distribu-
tion.

(b) CATS with 2000
items and 4000 bids
from arbitrary distribu-
tion.

(c) MVC over a
Barabási-Albert ran-
dom graph with 1000
vertices.

(d) MAXCUT over
a Barabási-Albert
random graph with 500
vertices.

Figure 2: We compare LNS methods on how the objective values improve as more wall-clock time
is spent for some representative problem instances. We also include Gurobi in the comparison. All
LNS methods find better solutions than Gurobi early on and it takes Gurobi between 2 to 10 times
more time to match the solution quality. For MAXCUT (Fig 2d), after running for 2 hours, Gurobi
is unable to match the quality of solution found by Random-LNS in 5 seconds.

• All LNS variants significantly outperform Gurobi (up to 50% improvement in objectives),
given the same amount or less wall-clock time. Perhaps surprisingly, this phenomenon
holds true even for Random-LNS.

• The imitation learning based variants, FT-LNS and BC-LNS, outperform Random-LNS
and RL-LNS in most cases.

Overall, these results suggest that our LNS approach can reliably offer substantial improvements
over state-of-the-art solvers such as Gurobi. These results also suggest that one can use learning
to automatically design strong decomposition approaches, and we provide a preliminary qualitative
study of what the policy has learned in Section A.2. It is possible that a more sophisticated RL
method could further improve RL-LNS.

Per-Iteration Comparison. We use a total of 10 iterations of LNS, and it is natural to ask how the
solution quality changes after each iteration. Figure 1 shows objective value progressions of variants
of our LNS approach on three datasets. For the two combinatorial auction datasets, BC-LNS and
FT-LNS achieve substantial performance gains over Random-LNS after just 2 iterations of LNS,
while it takes about 4 for the risk-aware path planning setting. These results show that learning a
decomposition method for LNS can establish early advantages over using random decompositions.

Running Time Comparison. Our primary benchmark comparison limited all methods to roughly
the same time limit. We now investigate how the objective values improve over time by performing
100 iterations of LNS. Figure 2 shows four representative instances. We see that FT-LNS achieves
the best performance profile of solution quality vs. wall-clock.

How Long Does Gurobi Need? Figure 2 also allows us to compare with the performance profile
of Gurobi. In all cases, LNS methods find better objective values than Gurobi early on and maintain
this advantage even as Gurobi spends significantly more time. Most notably, in Figure 2d, Gurobi

8



was given 2 hours of wall-clock time, and failed to match the solution found by Random-LNS in
just under 5 seconds (the time axis is in log scale).

5.3 Comparison with Domain-Specific Heuristics

We also compare with strong domain-specific heuristics for three classes of problems: MVC, MAX-
CUT and CATS. We do not compare in the risk-aware path planning domain, as there are no readily
available heuristics. Please refer to Appendix A.4 for descriptions on these heuristics.

Overall, we find that our LNS methods are competitive with specially designed heuristics, and can
sometimes substantially outperform them. These results provide evidence that our LNS approach is
a promising direction for the automated design of solvers that avoids the need to carefully integrate
domain knowledge while achieving competitive or state-of-the-art performance.

Table 4 (Left) summarizes results for MVC. The best LNS (FT-LNS) result outperforms by 11% on
BA graphs and 6% on ER graphs. Table 4 (Right) shows results for MAXCUT. The heuristic in Burer
et al.[10] performs best for both random graph distributions, which shows that a specially designed
heuristic can still outperform a general ILP solver. For CATS, our LNS approach outperforms both
heuristics by up to 50% in objective values (Table 5).

5.4 Comparison with Learning to Branch Methods

Recently, there has been a surge of interest in applying machine learning methods within a branch-
and-bound solver. Most prior work builds on the open-source solver SCIP [1], which is much slower
than Gurobi and other commercial solvers [38, 40]. Thus, it is unclear how the demonstrated gains
from these methods can translate to wall-clock time improvement. For instance, Table 6 shows a
benchmark comparison between Gurobi and a state-of-the-art learning approach built on SCIP [22]
(reporting the 1-shifted geometric mean of wall-clock time on hard instances in their paper). These
results highlight the large gap between Gurobi and a learning-augmented SCIP, which exposes the
issue of designing learning approaches without considering how to integrate with existing state-of-
the-art software systems (if the goal is to achieve good wall-clock time performance).

5.5 Use SCIP as the ILP Solver

CATS Regions 2000
SCIP −86578.38± 606.21

Random-LNS −98944.90± 645.23
BC-LNS −100513.84± 702.05
FT-LNS −100913.77± 681.00

Figure 3: LNS with SCIP as the
ILP solver.

Our LNS framework can incorporate any ILP solver to search
for improvement over incumbent solutions. Our main exper-
iments focused on Gurobi because it is a state-of-the-art ILP
solver. Here, we also present results on using SCIP as the ILP
solver. With the same setting as in Section 5.1 on the CATS
Regions distribution with 2000 items and 4000 bids, the results
are shown in Table 3. They are consistent with those when
Gurobi is used as the ILP solver. Random-LNS significantly outperforms standard SCIP while
learning-based methods (BC-LNS and FT-LNS) further improves upon Random-LNS.

6 Conclusion & Future Work

We have presented a general large neighborhood search framework for solving integer linear pro-
grams. Our extensive benchmarks show the proposed method consistently outperforms Gurobi in
wall-clock time across diverse applications. Our method is also competitive with strong heuristics
in specific problem domains. We believe our current research has many exciting future directions
that connect different aspects of the learning to optimize research. Our framework relies on a good
solver, and thus can be integrated with conventional learning-to-optimize methods. It would also be
interesting to study complete search problems, where the goal is to find the globally optimal solution
as quickly as possible. We briefly mentioned a version of the algorithm configuration problem we
face in Section 5.1, but the full version that adaptively chooses the number of subsets and a time
limit is surely more powerful. Finally, our approach is closely tied the problem of identifying useful
substructures for optimization. A deeper understanding there can inform the design our data-driven
methods and define new learning frameworks, e.g., learning to identify backdoor variables.

9



7 Broad Impact

This paper addresses the general problem of integer linear program optimization which has wide
applications in the society. Our contribution allows for faster optimization for these problems. By
improving solution qualities within a limited optimization time, one can benefit from, for instance,
more efficient resource allocations. In our experiments, we focus on comparing with Gurobi which is
a leading commercial integer program solver used by lots of companies. Any concrete improvement
is likely to result in positive impact on the day-to-day operations of those companies and the soceity
as well.

We see opportunities of research that incorporating existing highly optimized solvers into the ma-
chine learning loop beyond integer programs. We encourage research into understanding how to
incorporate previous algorithmic developments with novel machine learning components and the
benefit of such synergy.

8 Acknowledgement

We thank the anonymous reviewers for their suggestions for improvements. Dilkina was supported
partially by NSF #1763108, DARPA, DHS Center of Excellence “Critical Infrastructure Resilience
Institute”, and Microsoft. This research was also supported in part by funding from Raytheon,
Beyond Limits, and JPL.

References
[1] T. Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computation,

2009.

[2] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

[3] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74
(1):47, 2002.

[4] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney. Model-based genetic algorithms
for algorithm configuration. In AISTATS, 2015.

[5] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In ICML, 2018.

[6] R. Bar-Yehuda and S. Even. A local-ratio theorm for approximating the weighted vertex cover problem.
Technical report, Computer Science Department, Technion, 1983.

[7] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Schnoebelen. Systems and
software verification: model-checking techniques and tools. 2013.

[8] T. Berthold. Primal heuristics for mixed integer programs. 2006.

[9] C. Bliek1ú, P. Bonami, and A. Lodi. Solving mixed-integer quadratic programming problems with ibm-
cplex: a progress report. In RAMP, 2014.

[10] S. Burer, R. D. Monteiro, and Y. Zhang. Rank-two relaxation heuristics for max-cut and other binary
quadratic programs. SIAM Journal on Optimization, 12(2):503–521, 2002.

[11] B. Chen, B. Dai, and L. Song. Learning to plan via neural exploration-exploitation trees. In ICLR, 2020.

[12] J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus,
M. Wuttig, Z. Zhang, et al. Combinatorial search of thermoelastic shape-memory alloys with extremely
small hysteresis width. Nature materials, 2006.

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, 2008.

[14] S. de Sousa, Y. Haxhimusa, and W. G. Kropatsch. Estimation of distribution algorithm for the max-
cut problem. In International Workshop on Graph-Based Representations in Pattern Recognition, pages
244–253. Springer, 2013.

[15] S. De Vries and R. V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on computing, 2003.

10



[16] B. Dilkina, C. P. Gomes, Y. Malitsky, A. Sabharwal, and M. Sellmann. Backdoors to combinatorial
optimization: Feasibility and optimality. In CPAIOR, 2009.

[17] B. Dilkina, C. P. Gomes, and A. Sabharwal. Backdoors in the context of learning. In SAT, 2009.

[18] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computational intelligence
magazine, 1(4):28–39, 2006.

[19] D. Du and P. M. Pardalos. Handbook of combinatorial optimization, volume 4. Springer Science &
Business Media, 1998.

[20] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 1960.

[21] M. Fischetti and A. Lodi. Heuristics in mixed integer programming. Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[22] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with graph
convolutional neural networks. In NeurIPS, 2019.

[23] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms. In NeurIPS,
2014.

[24] S. Helber and F. Sahling. A fix-and-optimize approach for the multi-level capacitated lot sizing problem.
International Journal of Production Economics, 123(2):247–256, 2010.

[25] G. Hendel. Adaptive large neighborhood search for mixed integer programming. 2018.

[26] H. H. Hoos. Automated algorithm configuration and parameter tuning. In Autonomous search, pages
37–71. Springer, 2011.

[27] A. Hottung and K. Tierney. Neural large neighborhood search for the capacitated vehicle routing problem.
arXiv:1911.09539, 2019.

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In LION, 2011.

[29] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algorithms
over graphs. In NeurIPS, 2017.

[30] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed integer
programming. In AAAI, 2016.

[31] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao. Learning to run heuristics in tree
search. In IJCAI, 2017.

[32] Y. Kim, S. Wiseman, A. C. Miller, D. Sontag, and A. M. Rush. Semi-amortized variational autoencoders.
In ICML, 2018.

[33] R. Kleinberg, K. Leyton-Brown, B. Lucier, and D. Graham. Procrastinating with confidence: Near-
optimal, anytime, adaptive algorithm configuration. In NeurIPS, 2019.

[34] A. H. Land and A. G. Doig. An automatic method for solving discrete programming problems. In 50
Years of Integer Programming 1958-2008, pages 105–132. Springer, 2010.

[35] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial auction
algorithms. In EC, 2000.

[36] Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Communications of the ACM, 14
(3):151–165, 1971.

[37] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and
J. Dean. Device placement optimization with reinforcement learning. In ICML, 2017.

[38] H. D. Mittelmann. Latest benchmarks of optimization software. 2017.

[39] M. Ono and B. C. Williams. An efficient motion planning algorithm for stochastic dynamic systems with
constraints on probability of failure. In AAAI, 2008.

[40] G. Optimization. Gurobi 8 performance benchmarks, 2019.
https://www.gurobi.com/pdfs/benchmarks.pdf.

11



[41] D. Pisinger and S. Ropke. Large neighborhood search. Handbook of metaheuristics, 2010.

[42] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NeurIPS, 1989.

[43] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In AISTATS, 2010.

[44] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS
Journal on Computing, 19(4):534–541, 2007.

[45] P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems. In
CP, 1998.

[46] J. Song, R. Lanka, A. Zhao, Y. Yue, and M. Ono. Learning to search via retrospective imitation.
arXiv:1804.00846, 2018.

[47] J. Song, R. Lanka, Y. Yue, and M. Ono. Co-training for policy learning. In UAI, 2019.

[48] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In NeurIPS, 2000.

[49] A. A. Syed, K. Akhnoukh, B. Kaltenhaeuser, and K. Bogenberger. Neural network based large neighbor-
hood search algorithm for ride hailing services. In EPIA, 2019.

[50] M. Wainwright, T. Jaakkola, and A. Willsky. Map estimation via agreement on trees: message-passing
and linear programming. IEEE transactions on information theory, 2005.

[51] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In CAV, 2002.

12



A Appendix

A.1 Algorithm Configuration Results

In this section, we present the algorithm configuration results similar to the one in Section 5.1.

k
t 1 2 3

2 13.61± 0.82 14.19± 0.89 14.42± 0.88
3 6.06± 0.47 6.17± 0.42 6.65± 0.45
4 3.09± 0.30 3.14± 0.27 3.61± 0.31
5 1.84± 0.18 2.13± 0.20 2.08± 0.23

Table 7: Parameter sweep results for (k, t) of an MVC dataset for Erdős-Rényi random graphs with
1000 vertices. Numbers represent improvement ratios ∆/t for one decomposition, averaged over 5
random seeds.

k
t 1 2 3

2 69.05± 2.92 71.87± 2.98 74.14± 3.03
3 29.99± 2.07 28.59± 1.80 30.05± 1.81
4 14.28± 1.04 16.13± 1.13 15.33± 1.19
5 7.79± 0.77 7.57± 0.72 7.69± 0.69

Table 8: Parameter sweep results for (k, t) of the MVC dataset for Barabási-Albert random graphs
with 1000 vertices.

k
t 1 2 3

2 2155.60± 22.79 1258.79± 13.65 925.05± 12.50
3 2700.33± 20.91 1767.37± 10.86 1310.96± 6.25
4 4454.65± 46.05 4489.60± 49.44 4466.36± 47.20
5 5414.01± 29,76 5325.95± 31.07 5404.87± 30.16

Table 9: Parameter sweep results for (k, t) of the MAXCUT dataset for Erdős-Rényi random graphs
with 500 vertices.

k
t 1 2 3

2 1961.42± 24.54 1043.89± 12.28 1030.60± 2.41
3 2698.46± 36.44 1887.29± 51.40 1581.43± 55.98
4 6565.54± 47.36 6454.62± 46.80 6669.28± 47.91
5 6400.38± 23.94 6478.23± 19.33 6465.03± 22.54

Table 10: Parameter sweep results for (k, t) of the MAXCUT dataset for Barabási-Albert random
graphs with 500 vertices.

k
t 1 2 3

2 65360.28± 799.26 37554.81± 263.48 27864.92± 179.93
3 61064.41± 519.66 36816.46± 236.11 26633.11± 178.71
4 56190.18± 530.23 34647.30± 233.18 25547.98± 176.94
5 54571.21± 344.89 33554.38± 224.77 24238.73± 165.66

Table 11: Parameter sweep results for (k, t) of the CATS dataset for the regions distribution with
2000 items and 4000 bids.

A.2 Visualization

A natural question is what property a good decomposition has. Here we provide one interpretation
for the risk-aware path planning. We use a slightly smaller instance with 20 obstacles for a clearer

13



k
t 1 2 3

2 54358.95± 1268.30 31397.88± 364.19 21878.70± 234.63
3 50046.53± 586.72 29375.81± 336.84 20711.09± 242.39
4 46449.07± 555.02 27920.03± 315.03 20431.02± 226.95
5 42190.19± 480.57 27004.79± 315.24 19882.16± 211.44

Table 12: Parameter sweep results for (k, t) of the CATS dataset for the arbitrary distribution with
2000 items and 4000 bids.

k
t 1 2 3

2 0.37± 0.18 0.39± 0.07 0.36± 0.05
3 0.41± 0.07 0.43± 0.07 0.43± 0.07
4 0.37± 0.06 0.40± 0.06 0.33± 0.05
5 0.33± 0.04 0.32± 0.05 0.31± 0.05

Table 13: Parameter sweep results for (k, t) of the risk-aware path planning for 30 obstacles.

(a) Iteration 2 (b) Iteration 3 (c) Iteration 4 (d) Iteration 5

Figure 4: Visualizing predicted decompositions in a risk-aware path planning problem, with 4 con-
secutive solutions after 3 iterations of LNS. Each blue square is an obstacle and each cross is a
waypoint. The obstacles in red and waypoints in dark blue are the most frequent ones in the subsets
that lead to high local improvement.

view. Binary variables in an ILP formulation of this problem model relationships between obstacles
and waypoints. Thus we can interpret the neighborhood formed by a subset of binary variables as
attention over specific relationships among some obstacles and waypoints.

Figure 4 captures 4 consecutive iterations of LNS with large solution improvements. Each sub-
figure contains information about the locations of obstacles (light blue squares) and the waypoint
locations after the current iteration of LNS. We highlight a subset of 5 obstalces (red circles) and 5
waypoints (dark blue squares) that appear most frequently in the first neighborhood of the current
decomposition. Qualitatively, the top 5 obstacles define some important junctions for waypoint
updates. For waypoint updates, the highlighted ones tend to have large changes between iterations.
Thus, a good decomposition focuses on important decision regions and allows for large updates in
these regions.

A.3 Model Architecture

We first apply PCA to reduce the adjacency matrix obtained in Section 4.3. Then a fully-connected
neural network is used to perform the classification task. Table 14 lists the specifications. For MVC
problems, for instance, we first apply PCA to reduce the adjacency matrix to 99 dimensions. Then
the current solution assignments for each vertex is appended as described in Section 4.3, resulting
in a 100-dimensional feature representation for each vertex. Next, it is passed through a hidden
layer of 300 units with ReLU activations followed by a 2-class Softmax activations (since the model
performs classifications). The number of classes is decided via the hyperparameter search for k as
described in Section 5.1 and A.1.

14



PCA dimensions Neural Network Architecture Activation Functions
MVC 99 (100, 300, 2) (ReLU, Softmax)

MAXCUT 299 (300, 100, 5) (ReLU, Softmax)
CATS 2000 99 (100, 300, 100, 2) (ReLU, ReLU, Softmax)
CATS 4000 399 (400, 300, 2) (ReLU, Softmax)

Path Planning 499 (500, 100, 3) (ReLU, Softmax)
Table 14: Model architectures for all the experiments.

A.4 Domain Heuristics

MVC. We compare with a 2-OPT heuristic based on local-ratio approximation [6].

MAXCUT We compare with 3 heuristics. The first is the greedy algorithm that iteratively moves
vertices from one cut set to the other based on whether such a movement can increase the total edge
weights. The second, proposed in [10], is based on a rank-two relaxation of an SDP. The third is
from [14].

CATS We consider 2 heuristics. The first is greedy: at each step, we accept the highest bid among
the remaining bids, remove its desired items and eliminate other bids that desire any of the removed
items. The second is based on LP rounding: we first solve the LP relaxation of the ILP formulation
of a combinatorial auction problem, and then we move from the bid having the largest fractional
value in the LP solution down and remove items/bids in the same manner.

15


