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Abstract

Missing value imputation is a fundamental problem in spatiotemporal modeling,
from motion tracking to the dynamics of physical systems. Deep autoregressive
models suffer from error propagation which becomes catastrophic for imputing
long-range sequences. In this paper, we take a non-autoregressive approach and
propose a novel deep generative model: Non-AutOregressive Multiresolution
Imputation (NAOMI) to impute long-range sequences given arbitrary missing pat-
terns. NAOMI exploits the multiresolution structure of spatiotemporal data and
decodes recursively from coarse to fine-grained resolutions using a divide-and-
conquer strategy. We further enhance our model with adversarial training. When
evaluated extensively on benchmark datasets from systems of both deterministic
and stochastic dynamics. In our experiments, NAOMI demonstrates significant
improvement in imputation accuracy (reducing average error by 60% compared to
autoregressive counterparts) and generalization for long-range sequences.

1 Introduction

The problem of missing values often arises in real-life sequential data. For example, in motion
tracking, trajectories often contain missing data due to object occlusion, trajectories crossing,
and the instability of camera motion [1]. Missing values can introduce observational bias into
training data, making the learning unstable. Hence, imputing missing values is of critical im-
portance to the downstream sequence learning tasks. Sequence imputation has been studied for

Figure 1: Imputation process of NAOMI in a basket-
ball play given two players (purple and blue) and
5 known observations (black dots). Missing values
are imputed recursively from coarse resolution to
fine-grained resolution (left to right).

decades in statistics literature [2, 3, 4, 5]. Most
statistical techniques are reliant on strong as-
sumptions on missing patterns such as missing
at random, and do not generalize well to unseen
data. Moreover, existing methods do not work
well when the proportion of missing data is high
and the sequence is long.

Recent studies [6, 7, 8, 9] have proposed to
use deep generative models for learning flexible
missing patterns from sequence data. However,
all existing deep generative imputation methods
are autoregressive: they model the value at cur-
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rent timestamp using the values from previous time-steps and impute missing data in a sequential
manner. Hence, autoregressive models are highly susceptible to compounding error, which can
become catastrophic for long-range sequence modeling. We observe in our experiments that existing
autoregressive approaches struggle on sequence imputation tasks with long-range dynamics.

In this paper, we introduce a novel non-autoregressive approach for long-range sequence imputation.
Instead of conditioning only on the previous values, we model the conditional distribution on both the
history and the (predicted) future. We exploit the multiresolution nature of spatiotemporal sequence,
and decompose the complex dependency into simpler ones at multiple resolutions. Our model,
Non-autoregressive Multiresolution Imputation (NAOMI), employs a divide and conquer strategy to
fill in the missing values recursively. Our method is general and can work with various learning
objectives. We release an implementation of our model as an open source project.2

In summary, our contributions are as follows:

• We propose a novel non-autoregressive decoding procedure for deep generative models that
can impute missing values for spatiotemporal sequences with long-range dependencies.

• We introduce adversarial training using the generative adversarial imitation learning objec-
tive with a fully differentiable generator to reduce variance.

• We conduct exhaustive experiments on benchmark sequence datasets including traffic time
series, billiards and basketball trajectories. Our method demonstrates 60% improvement in
accuracy and generates realistic sequences given arbitrary missing patterns.

2 Related Work

Missing Value Imputation Existing missing value imputation approaches roughly fall into two
categories: statistical methods and deep generative models. Statistical methods often impose strong
assumptions on the missing patterns. For example, mean/median averaging [4], linear regression [2],
MICE [10], and k-nearest neighbours [11] can only handle data missing at random. Latent variables
models with EM algorithm [12] can impute data missing not at random but are restricted to certain
parametric models. Deep generative model offers a flexible framework of missing data imputation.
For instance, [13, 6, 14] develop variants of recurrent neural networks to impute time series. [8, 9, 7]
leverage generative adversarial training (GAN) [15] to learn complex missing patterns. However, all
the existing imputation models are autoregressive.

Non-Autoregressive Modeling Non-autoregressive models have gained competitive advantages
over autoregressive models in natural language processing [16, 17, 18] and speech [19]. For instance,
[19] uses a normalizing flow model [20] to train a parallel feed-forward network for speech synthesis.
For neural machine translation, [16] introduce a latent fertility model with a sequence of discrete latent
variables. Similarly, [17, 18] propose a fully deterministic model to reduce the amount of supervision.
All these works highlight the strength of non-autoregressive models in decoding sequence data in a
scalable fashion. Our work is the first non-autoregressive model for sequence imputation tasks with a
novel recursive decoding algorithm.

Generative Adversarial Training Generative adversarial networks (GAN) [15] introduce a dis-
criminator to replace maximum likelihood objective, which has sparked a new paradigm of generative
modeling. For sequence data, using a discriminator for the entire sequence ignores the sequential
dependency and can suffer from mode collapse. [21, 22] develop imitation and reinforcement learning
to train GAN in the sequential setting. [21] propose generative adversarial imitation learning to
combine GAN and inverse reinforcement learning. [22] develop GAN for discrete sequences using
reinforcement learning. We use an imitation learning formula with a differentiable policy.

Multiresolution Generation Our method bears affinity with multiresolution generative models for
images such as Progressive GAN [23] and multiscale autoregressive density estimation [24]. The
key difference is that [23, 24] only capture spatial multiresolution structures and assume additive
models for different resolutions. We deal with multiresolution spatiotemporal structures and generate
predictions recursively. Our method is fundamentally different from hierarchical sequence models
[25, 26, 27], as it only keeps track of the most relevant hidden states and update them on-the-fly,
which is memory efficient and much faster to train.

2https://github.com/felixykliu/NAOMI
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3 Non-Autoregressive Multiresolution Sequence Imputation

Let X = (x1, x2, ..., xT ) be a sequence of T observations, where each time step xt ∈ RD. X have
missing data, indicated by a masking sequence M = (m1,m2, ...,mT ). The masking mt is zero
whenever xt is missing. Our goal is to replace the missing data with reasonable values for a collection
of sequences. A common practice for missing value imputation is to directly model the distribution
of the incomplete sequences. One can factorize the probability p(x1, · · · , xT ) =

∏
t p(xt|x<t) using

chain rule and train a (deep) autoregressive model for imputation [6, 7, 8, 9].

However, a key weakness of autoregressive models is their sequential decoding process. Since the
current value is dependent on the previous time steps, autoregressive models often have to resort
to sub-optimal beam search and are susceptible to error compounding for long-range sequences
[16, 17, 18]. This weakness is worsened in sequence imputation as the model cannot ground the
known future, which leads to mismatch between the imputed values and ground truth at the observed
points. To alleviate these issues, we instead take a non-autoregressive approach and propose a deep,
non-autoregressive, multiresolution generative model NAOMI.

3.1 NAOMI Architecture and Imputation Strategy

As shown in Figure 2, NAOMI has two components: 1) a forward-backward encoder that maps
the incomplete sequences to hidden representations, and 2) a multiresolution decoder that imputes
missing values given the hidden representations.

Figure 2: NAOMI architecture for imputing a sequence of length five. A forward-backward encoder
encodes the incomplete sequence (x1, · · · , x5) into hidden states. The decoder decodes recursively in
a non-autoregressive manner: predict x3 using hidden states h1, h5. After the prediction, the hidden
states are updated. Then x2 is imputed based on x1 and the predicted x3, and similarly for x4. This
process repeats until all missing values are filled.

Forward-backward encoder. We concatenate the observation and masking sequence as input
I = [X,M ]. Our encoder models the conditional distribution of two sets of hidden states given the
input: forward hidden states Hf = (hf1 , . . . , h

f
T ) and backward hidden states Hb = (hb1, . . . , h

b
T ):

q(Hf |I) =
T∏
t=1

q(hft |h
f
<t, I≤t) q(Hb|I) =

T∏
t=1

q(hbt |hb>t, I≥t), (1)

where hft and hbt are the hidden states of the history and the future respectively. We parameterize the
above distributions with a forward RNN ff and a backward RNN fb:

q(hft |h
f
<t, I≤t) = ff (h

f
t−1, It) q(hbt |hb>t, I≥t) = fb(h

b
t+1, It). (2)

Multiresolution decoder. Given the joint hidden states H := [Hf , Hb], the decoder learns the
distribution of complete sequences p(X|H). We adopt a divide and conquer strategy and decode
recursively from coarse to fine-grained resolutions. As shown in Figure 2, at each iteration, the
decoder first identifies two known time steps as pivots (x1 and x5 in this example), and imputes close
to their midpoint (x3). One pivot is then replaced by the newly imputed step and the process repeats
at a finer resolution for x2 and x4.
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Algorithm 1 Non-AutOregressive Multiresolution Imputation

1: Initialize generator Gθ and discriminator Dω

2: repeat
3: Sample complete sequences from training data X∗ ∼ C and mask M
4: Compute incomplete sequences X = X∗ �M
5: Initialize hft , hbt using Eqn 2 for 0 ≤ t ≤ T
6: while X contains missing values do
7: Find the smallest i and the smallest j > i s.t. mi = mj = 1 and ∃t, i < t < j s.t. mt = 0
8: Find the smallest r s.t. nr = 2R−r ≤ (j − i)/2, thus the imputation point t? = i+ nr
9: Decode xt? using p(xt? |H) = g(r)(hfi , h

b
j), update X , M

10: Update the hidden states using hft = ff (h
f
t−1, It), hbt = fb(h

b
t+1, It)

11: end while
12: Update generator Gθ by backpropagation
13: Train discriminator Dω with complete sequences X∗ and imputed sequences X̂
14: until Converge

Formally speaking, a decoder with R resolutions consists of a series of decoding functions
g(1), . . . , g(R), each of which predicts every nr = 2R−r steps. The decoder first finds two known
steps i and j as pivots, and then selects the missing step t that is close to the midpoint: [(i+ j)/2].
Let r be the smallest resolution that satisfies nr ≤ (j − i)/2. The decoder updates the hidden states
at time t? using the forward states hfi and the backward states hbj . A decoding function g(r) then
maps the hidden states to the distribution over the outputs: p(x?t |H) = g(r)(hfi , h

b
j).

If the dynamics are deterministic, g(r) directly outputs the imputed value. For stochastic dynamics,
g(r) outputs the mean and the standard deviation of an isotropic Gaussian distribution, and the
predictions are sampled from the Gaussian distribution using the reparameterize trick [28]. The mask
mt is updated to 1 after imputation and the process proceeds to the next resolution. The details of this
decoding process are described in Algorithm 1. We encourage the reader to watch our demo video
for a detailed visualization and imputed examples. 3

Efficient hidden states update. NAOMI efficiently updates the hidden states by reusing the previous
computation, which has the same time complexity as autoregressive models. Figure 3 shows an
example for a sequence of length nine. Grey blocks are the known time steps. Orange blocks are
the target time step to be imputed. Hollow arrows denote forward hidden states updates, and black
arrows represent backward hidden states updates. Grey arrows are the outdated hidden states updates.
The dashed arrows represent the decoding steps. Earlier hidden states are stored in the imputed time
steps and are reused. Therefore, forward hidden states hf only need to be updated once and backward
hidden states hb are updated at most twice.

Figure 3: NAOMI hidden states updating rule for a sequence of length nine. Note that backward hidden
states hb9→7 are updated twice when predicting x̂6.

Complexity. The total run-time of NAOMI is O(T ). The memory usage is similar to that of bi-
directional RNN (O(T )), except that we only need to save the latest hidden states for the forward
encoder. The decoder hyperparameter R is picked such that 2R is close to the most common missing
interval size, and the run time scales logarithmically with the length of the sequence.

3https://youtu.be/eoiK42w02w0
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3.2 Learning Objective

Let C = {X∗} be the collection of complete sequences, Gθ(X,M) denote our generative model
NAOMI parametrized by θ, and p(M) denote the prior over the masking. The imputation model can
be trained by optimizing the following objective:

min
θ

EX∗∼C,M∼p(M),X̂∼Gθ(X,M)

[
T∑
t=1

L(x̂t, xt)

]
. (3)

where L is some loss function. For deterministic dynamics, we use the mean squared error as our
loss L(x̂t, xt) = ‖x̂t − xt‖2. For stochastic dynamics, we can replace L with a discriminator, which
leads to the adversarial training objective. We use a similar formulation as generative adversarial
imitation learning (GAIL) [21], which quantifies the distributional difference between generated and
training data at the sequence level.

Adversarial training. Given the generator Gθ in NAOMI and a discriminator Dω parameterized by
ω, the adversarial training objective function is:

min
θ

max
ω

EX∗∼C

[
T∑
t=1

logDω(x̂t, xt)

]
+EX∗∼C,M∼p(M),X̂∼Gθ

[
T∑
t=1

log(1−Dω(x̂t, xt))

]
, (4)

GAIL samples the sequences directly from the generator and optimizes the parameters using policy
gradient. This approach can suffer from high variance and require a large number of samples [29].
Instead of sampling, we take a model-based approach and make our generator fully differentiable.
We apply the reparameterization trick [28] at every time step by mapping the hidden states to mean
and variance of a Gaussian distribution.

4 Experiments

We evaluate NAOMI in environments with diverse dynamics: real-world traffic time series, billiard
ball trajectories from a physics engine, and team movements from professional basketball gameplay.
We compare with the following baselines:

• Linear: linear interpolation, missing values are imputed using interpolated predictions
from two closest known observations.

• KNN[11]: k nearest neighbours, missing values are imputed as the average of the k nearest
neighboring sequences.

• GRUI [9]: autoregressive model with GAN for time series imputation, modified to handle
complete training sequence. The discriminator is applied once to the entire time series.

• MaskGAN[7]: autoregressive model with actor-critic GAN, trained using adversarial imitation
learning with discriminator applied to every time step, uses a forward encoder only, and
decodes at a single resolution.

• SingleRes: autoregressive counterpart of our model, trained using adversarial imitation
learning, uses a forward-backward encoder, but decodes at a single resolution. Without
adversarial training, it reduces to BRITS [14].

We randomly choose the number of steps to be masked, and then randomly sample the specific
steps to mask in the sequence. Hence the model learns various missing patterns during training. We
used the same masking scheme for all methods, including MaskGAN and GRUI. See Appendix for
implementation and training details.

4.1 Imputing Traffic Time Series

The PEMS-SF traffic time series [30] data contains 267 training and 173 testing sequences of length
144 (sampled every 10 mins throughout the day). It is multivariate with 963 dimensions, representing
the freeway occupancy rate collected from 963 different sensors. We generate a masking sequence
for each data with 122 to 140 missing values.

Imputation accuracy L2 loss between imputed missing values and their ground-truth most accu-
rately measures the quality of the generated sequence. As clearly shown in table 1, NAOMI outperforms
others by a large margin, reducing L2 loss by 23% compared to the autoregressive baselines. KNN
performs reasonably well, mostly because of the repeated daily traffic patterns in the training data.
Simply finding a similar sequence in the training data is sufficient for imputation.

5



Table 1: Traffic data L2 loss comparison. NAOMI outperforms others, reducing L2 loss by 23% from
the autoregressive counterpart.

Models NAOMI SingleRes MaskGAN KNN GRUI Linear

L2 Loss (10−4) 3.54 4.51 6.02 4.58 15.24 15.59

Figure 4: Traffic time series imputation visualization. NAOMI successfully captures the multiresolution
patterns of the data from observed steps, while SingleRes only learns a smoothed version of the
original sequence and frequently deviates from ground truth.

Generated Sequences. Figure 4 visualizes the predictions from two best performing models:
NAOMI (blue) and SingleRes (red). Black dots are observed time steps and black curves are
the ground truth. NAOMI successfully captures the pattern of the ground truth time series, while
SingleRes fails. NAOMI learns the multiscale fluctuation rooted in the ground truth, whereas
SingleRes only learns some averaged behavior. This demonstrates the clear advantage of using
multiresolution modeling.

4.2 Imputing Billiards Trajectories

We generate 4000 training and 1000 test sequences of Billiards ball trajectories in a rectangular world
using the simulator from [31]. Each ball is initialized with a random position and random velocity
and rolled-out for 200 timesteps. All balls have a fixed size and uniform density, and there is no
friction. We generate a masking sequence for each trajectory with 180 to 195 missing values.

Imputation accuracy. Three defining characteristics of the physics in this setting are: (1) moving
in straight lines; (2) maintaining unchanging speed; and (3) reflecting upon hitting a wall. Hence,
we adopt four metrics to quantify the learned physics: (1) L2 loss between imputed values and
ground-truth; (2) Sinuosity to measure the straightness of the generated trajectories; (3) Average step
size change to measure the speed change of the ball; and (4) Distance between reflection point and
the wall to check whether the model has learned the physics underlying collision and reflection.

Comparison of all models w.r.t. these metrics are shown in Table 2. Expert represents the ground
truth trajectories from the simulator. Statistics closer to the expert are better. We observe that NAOMI
has the best overall performance across almost all the metrics, followed by SingleRes baseline. It is
expected that linear to perform the best w.r.t step change. By design, linear interpolation maintains
a constant step size change that is the closest to the ground-truth.

Generated trajectories. We visualize the imputed trajectories in Figure 5. There are 8 known
timesteps (black dots), including the starting position. NAOMI can successfully recover the original
trajectory whereas SingleRes deviates significantly. Notably, SingleRes mistakenly predicts the

Table 2: Metrics for billiards imputation accuracy. Statistics closer to the expert indicate better model
performance. NAOMI has the best overall performance, reducing deviation from ground truth by 30%
to 70% across all metrics compared to autoregressive baselines.

Models Linear KNN GRUI MaskGAN SingleRes NAOMI Expert

Sinuosity 1.121 1.469 1.859 1.095 1.019 1.006 1.000
step change (10−3) 0.961 24.59 28.19 15.35 9.290 7.239 1.588
reflection to wall 0.247 0.189 0.225 0.100 0.038 0.023 0.018
L2 loss (10−2) 19.00 5.381 20.57 1.830 0.233 0.067 0.000
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Figure 5: Comparison of imputed billiards trajectories. Blue and red trajectories/curves represent
NAOMI and the single-resolution baseline model respectively. White trajectories represent the ground-
truth. There are 8 known observations (black dots). NAOMI almost perfectly recovers the ground-truth
and achieves lower stepwise L2 loss of missing values than the baseline model (third row). The
trajectory from the baseline first incorrectly bounces off the upper wall, which results in curved paths
that deviate from the ground-truth.

Figure 6: Billiards model performance with increasing percentage of missing values. The median
and 25, 75 percentile values are displayed at each number of missing steps. Statistics closer to the
expert indicate better performance. NAOMI performs better than SingleRes for all metrics.

ball to bounce off the upper wall instead of the left wall. As such, SingleRes has to correct
its behavior to match future observations, leading to curved and unrealistic trajectories. Another
deviation can be seen near the bottom-left corner, where NAOMI produces trajectory paths that are
truly parallel after bouncing off the wall twice, but SingleRes does not.

Robustness to missing proportion. Figure 6 compares the performance of NAOMI and SingleRes
as we increase the proportion of missing values. The median value and 25, 75 percentile values are
displayed for each metric. As the dynamics are deterministic, higher missing portion usually means
bigger gaps, making it harder to find the correct solutions. We can see both models’ performance
degrade drastically as we increase the percentage of missing values, but NAOMI still outperforms
SingleRes in all metrics.

4.3 Imputing Basketball Players Movement

The basketball tracking dataset contains the trajectories of professional basketball players on offense
with 107,146 training and 13,845 test sequences. Each sequence contains the (x, y)-coordinates of
5 players for 50 timesteps at 6.25Hz and takes place in the left half-court. We generate a masking
sequence for each trajectory with 40 to 49 missing values.

Table 3: Metrics for basketball imputation accuracy. Statistics closer to the expert indicate better
model performance. NAOMI has the best overall performance, reducing deviation from ground truth
by more than 70% compared to autoregressive baselines.

Models Linear KNN GRUI MaskGAN SingleRes NAOMI Expert

Path Length 0.482 0.921 1.141 0.793 0.702 0.573 0.556
OOB Rate (10−3) 2.997 0.128 4.703 4.592 3.874 1.733 0.861

Step Change (10−3) 0.522 13.24 14.95 9.622 4.811 2.565 1.982
Path Difference 0.519 0.746 0.690 0.680 0.571 0.581 0.580
Player Distance 0.422 0.403 0.398 0.427 0.417 0.423 0.425
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Figure 7: Comparison of imputed basketball trajectories. Black dots represent known observations
(10 in first row, 5 in second). Overall, NAOMI produces trajectories that are the most consistent and
have the most realistic player velocities and speeds.

Imputation accuracy. Since the environment is stochastic (basketball players on offense aim to be
unpredictable), measuring L2 loss between our model output and the ground-truth is not necessarily a
good indicator of realistic trajectories [32, 33]. Hence, we follow previous work and compute domain-
specific metrics to compare trajectory quality: (1) Average trajectory length to measure the typical
player movement in 8 seconds; (2) Average out-of-bound rate to measure the odds of trajectories
going out of court boundaries; (3) Average step size change to quantify the player movement variance;
(4) Max-Min path diff ; and (5) Average player distance to characterize the team coordination. Table
3 compares model performances using these metrics. Expert represents real human play, and the
closer to the expert data, the better. NAOMI outperforms baselines in almost all the metrics.

Generated trajectories. We visualize imputed trajectories from all models in Figure 7. NAOMI
produces trajectories that are the most consistent with known observations and have the most realistic
player velocities and speeds. In contrast, other baseline models often fail in these regards. KNN
generates trajectories with unnatural jumps as finding nearest neighbors becomes difficult with dense
known observations. Linear fails to generate curvy trajectories when few observations are known.
GRUI generates trajectories that are inconsistent with known observations. This is largely due to
mode collapse caused by applying a discriminator to the entire sequence. MaskGAN, which relies on
seq2seq and a single encoder, fails to condition on the future observations and predicts straight lines.

Robustness to missing proportion. Figure 8 compares the performance of NAOMI and SingleRes
as we increase the proportion of missing values. The median value and 25, 75 percentile values are
displayed for each metric. Note that we always observe the first step. Generally speaking, more
missing values make the imputation harder, and also brings more uncertainty to model predictions.
We can see that performance (average performance and imputation variance) of both models degrade
with more missing values. However, at a certain percentage of missing values, the performance of
imputation starts to improve for both models.

This shows an interesting trade-off between available information and number of constraints for
generative models in imputation. More observations provide more information regarding the data
distribution, but can also constrain the learned model output. As we reduce the number of observations,
the model can learn more flexible generative distributions, without conforming to the constraints
imposed by the observed time steps.

Learned conditional distribution. Our model is fully generative and learns the conditional distri-
bution of the complete sequences given observations. As shown in Figure 9. For a given set of known
observations, we use NAOMI to impute missing values with 50 different random seeds and overlay the
generated trajectories. We can see that as the number of known observations increases, the variance
of the learned conditional distribution decreases. However, we also observe some mode collapse in
our model: the trajectory of the purple player in the ground truth is not captured in the conditional
distribution in the first image.

4.4 Forward Prediction

Forward prediction is a special case of imputation when all observations, except for a leading
sequence, are missing. We show that NAOMI can also be trained to perform forward prediction without
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Figure 8: Basketball model performance with
increasing percentage of missing values. The
median and 25, 75 percentile values are dis-
played. Statistics closer to the expert indicate
better performance. NAOMI performs better than
SingleRes for all metrics.

Figure 9: The generated conditional distribution
of basketball trajectories given known observa-
tions (black dots) with sampled trajectories. As
the number of known observations increases, the
variance of the predictions, hence the model un-
certainty decreases.

modifying the model structure. We take a trained imputation model as initialization, and continue
training for forward prediction by using the masking sequence mi = 0,∀i ≥ 5 (first 5 steps are
known). We evaluate forward prediction performance using the same metrics.

Figure 10 compares forward prediction performance in Billiards. Without any known observations in
the future, autoregressive models like SingleRes are effective in learning consistent step changes,
but NAOMI generates straighter lines and learns the reflection dynamics better than other baselines.

Models RNN SingleRes NAOMI Expert
Sinuosity 1.054 1.038 1.020 1.00

Step Change (10−3) 11.6 9.69 10.8 1.59
Reflection to wall 0.074 0.068 0.036 0.018
L2 Loss (10−3) 4.698 4.753 1.682 0.0

Figure 10: Billiard Forward Prediction Comparison. Top: metrics for billiards prediction accuracy.
Statistics closer to the expert indicate better model performance. Bottom: predicted billiards
trajectories. Black dots represent known observations. NAOMI perfectly recovers the ground-truth.

5 Conclusion

We propose a deep generative model NAOMI for imputing missing data in long-range spatiotemporal
sequences. NAOMI recursively finds and predicts missing values from coarse to fine-grained resolutions
using a non-autoregressive approach. Leveraging multiresolution modeling and adversarial training,
NAOMI is able to learn the conditional distribution given very few known observations. Future work
will investigate how to infer the underlying distribution when complete training sequences are not
available. The trade-off between partial observations and external constraints is another direction for
deep generative imputation models.

Acknowledgments. This work was supported in part by NSF #1564330, NSF #1850349, and DARPA
PAI: HR00111890035.
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6 Appendix

A. Model details

The forward and backward encoders are both 2-layer RNNs with GRU cells. The multiresolution
decoder consists of multiple 2-layer fully-connected neural networks. For the adversarial training,
we use a 1-layer RNN with GRU cells as the discriminator. We train on squared loss for billiards
and traffic data, and adversarial loss for basketball. Our submitted code contains more details about
other hyper-parameters, like learning rate, learning rate decay, and adversarial training strategy. All
evaluation results (except for separately described) are computed from 500 runs with batch size 64.

Table 4 lists the hyper-parameters of our model. Table 5 lists the hyper-parameters of the baselines.

R RNN size # of params
Basketball 4 275 1,842,055
Billiards 5 200 1,130,810
Traffic 4 300 2,629,700

Table 4: NAOMI hyperparameters. Our multiresolution decoder has R levels. RNN size applies for
both encoder and decoder.

RNN size # of params
Basketball SingleRes 300 1,832,420

MaskGAN 300 1,742,420
Billiards SingleRes 230 1,067,662

MaskGAN 230 1,014,762
Traffic SingleRes 340 2,606,380

MaskGAN 340 2,014,762

Table 5: Hyperparameters of baseline models.

For deterministic dynamics (traffic and Billiards), we use the L2 loss (teacher forcing is applied
during pretraining). For stochastic dynamics (e.g. Basketball), we use GAN loss first pretrain the
generator using cross-entropy loss for supervised, and then optimize the generator and discriminator
alternatively using the training objective in Eqn 5.

B. Billiards stats with error bars

Figure 11: Metrics for billiards imputation accuracy. The average value and 5, 95 percentile values
are displayed for each metric. Y-axis is splitted to focus on the comparison between NAOMI and
SingleRes. The black thick horizontal lines are the ground truth stats. Statistics closer to the black
lines indicate better model performance. NAOMI has the best overall performance, reducing deviation
from ground truth by 30% to 70% across all metrics compared to autoregressive baselines.
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C. Model performance with change of model capacity

Figure 12 shows the comparison of billiard trajectory L2 loss between NAOMI and SingleRes with
respect to the total number of parameters from 500 random runs. We can see that NAOMI is much
more parameter-efficient than the single resolution baseline. Surprisingly, the smallest multiresolution
model is more accurate than the largest single resolution baseline.

Figure 12: Billiards L2 loss of different models with different sizes. Error bar here is the std of L2
loss, which represents the stability of the model. Our multiresolution model is much more stable and
parameter-efficient than the baseline model.

D. Theoretical Justification

The design of NAOMI draws inspiration from wavelet theory [34]. A sequence f(x1, x2, · · · , xT )
can be approximated by its multiresolution components at R levels, that is f(x) ≈ fR(x) =∑R
r=1 g

(r)(x). g(1), g(2), · · · , g(R) from a set of nested vector spaces V1 ⊂ V2 · · · ,⊂ Vr, · · · ⊂ VR
that satisfy: These functions satisfy the following conditions and the approximation error becomes
progressively smaller as resolution increases.

The following proposition states the approximation power of the multiresolution decoder:

Proposition 6.1 The approximation error of the multiresolution decoder decreases exponentially
with the number of resolutions:

g(r) = f(x1, xnr , x2nr , · · ·), g(r) ∈ Vr

with each decoder approximates the function g(r)(x)

13


	Introduction
	Related Work
	Non-Autoregressive Multiresolution Sequence Imputation
	NAOMI Architecture and Imputation Strategy
	Learning Objective

	Experiments
	Imputing Traffic Time Series
	Imputing Billiards Trajectories
	Imputing Basketball Players Movement
	Forward Prediction

	Conclusion
	Appendix
	Model details
	Billiards stats with error bars
	Model performance with change of model capacity
	Theoretical Justification


