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Abstract

We study the problem of learning interpretable spatial latent factor models. In
contrast to other types of latent factor models, the goal of learning interpretable
spatial models is to learn a set of latent factors that is not only predictive but also
captures coherent spatial semantics. We present a multi-stage meta-algorithm for
reliably training such models that scales to very fine-grained spatial models with
higher-order interactions (i.e., tensor latent factor models). We further propose a
family of instantiations of this meta-algorithm for fast and efficient training.

1 Introduction

In this paper, we study the problem of learning spatial latent factor models that can capture se-
mantically cohesive spatial patterns. One convenient property of spatial models is that they are
straightforward to visualize and interpret. For instance, Figure 1 shows two spatial models describ-
ing shooting patterns in basketball, one of which is interpretable while the other is not. We utilize a
simple yet general class of spatial models defined over fine-grained discretizations of the raw data,
which requires making minimal assumptions regarding the functional form of the spatial patterns.

Due to the non-convex nature of the training objective, it can be [
challenging to train an accurate yet interpretable model. Figure
1 shows two example latent factors learned via gradient descent:
the left using a good initialization and the right using random. As
such, selecting a proper initialization is key.
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To address this issue, we initialize using the factorization of a 7
trained “full-rank’ or un-factorized model, which has been shown —— |
to be effective for capturing cohesive behavioral spatial semantics  Figure 1: Showing interpretable
such as for basketball game play [1, 2], and was the initialization (left) and uninterpretable (right) la-
method used in Figure 1 (left). Of course, training a full-rank tent factors. The left was trained
model can be extremely expensive, despite the learning objective  using a good initialization, whereas
being convex. For instance, an un-factorized 3-tensor model has ~the right was trained using random
complexity that scales cubically with the spatial granularity. initialization.

Our approach is motivated by the insight that a coarse-grained spatial model has relatively low accu-
racy, but trains fast and provides a good initialization for a more fine-grained model. We formalize
this intuition in a multi-stage training procedure that uses iteratively more fine-grained models, and
thus allows for training a relatively coarse un-factorized model to initialize the latent factor model.

Our approach bears affinity to other multi-stage meta-algorithms (e.g., [3]). Key design decisions in-
clude: (a) deciding when to terminate the current stage; and (b) choosing the parameterization of the
model in the next stage. For the latter, we choose a straightforward coarse-to-fine parameterization.
For the former, we set the termination condition via a notion of spatial entropy. We demonstrate that



our method trains faster than fixed-resolution approaches and reliably finds interpretable solutions
for a practically relevant problem. In summary, our main preliminary results are:

e Our method converges faster than training at a fixed spatial resolution from the beginning.

e Our method reliably and efficiently yields an interpretable spatial latent factor model. Our
method easily scales to higher-order tensor latent factor models.

2 The Learning Problem

We consider a multi-task binary classifier that predicts a label per task a € A given an input instance
x. For example, the model can predict whether basketball player a in spatial position z would
shoot the ball. More generally, our approach can be applied to any model with at least one spatial
component. For each task a and spatial input =, we aim to learn an expressive yet compact scoring
function f,(z), after which classification is simply h,(xz) = sign(f,(z)). One common approach
is to use tensor models that can capture higher-order interactions:
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where (), ¢(x) are d1scretlzat10n feature vectors over (dimensions of) x, F' is a 3-tensor of pa-
rameters, and b,, is a bias unit for task a. We further assume that F' is low-rank and decomposes into
a PARAFAC product [4], where A, B, C are matrix latent factors and k indexes the latent dimension.
Since v and ¢ define discretizations over x, the granularity of ¢ and ¢ define the granularity of F'.

We train our spatial tensor model (1) on a multitask dataset D = {z;,v;4 : j € Z,a € A(i)}, where
every x; is associated with a binary task label y; , € {0,1}. We minimize the standard trade-off
between prediction loss and regularization:

min £(2) + R(Q), 9 ={A,B,C,b}, @)

where §2 denotes all the parameters, R(€2) is a regularization and £(€2) is the standard log loss:
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where A(i) denotes the set of tasks active in example ¢ (e.g., only certain basketball players appear
in a given frame). In order for A, B, C to be smooth, we use Lo regularization on all factors.

3 Multi-Stage Optimization Approach

We now describe our meta-algorithm for training interpretable spatial latent factor models. We will
assume as axiomatic that local optimization from a “good” initialization of the latent factor model
will lead to an interpretable local optimum, and that approximately training the full-rank version of
F and then factorizing will provide such a good initialization.'

The principal issue that we address is the fact that training spatial models can be very expensive,
especially the un-factorized F' used for initialization. Our multi-stage approach builds upon the
insight that one can very quickly train a coarse-grained spatial model, which can be used to initialize
a more fine-grained model. A high-level intuition of our approach is depicted in Figure 2.

We choose n levels of strictly increasing spatial resolutions, R; < ... < R,,, and denote the multi-
resolution features by ¥ = {1/11} ,,» ©-8., histogram features Pt usmg a spatial grid with R; cells.
The MMT-SE procedure (A]gonthm 1) starts with a full-rank model at spatial resolution R; and
trains using SGD-SE (Algorithm 2) until some termination condition is met.?> The resolution is then
increased R; — Ro, typically by a multiplicative scale factor. We iteratively repeat this process
in the MMT-SE procedure until some resolution R, after which we factorize the full-rank F as
initialization for the latent factor model (denoted TensorFactors in Algorithm 1).> We can use any
tensor factorization approach to compute the factorization (e.g., [5, 6]). Afterwards, we continue
training the factorized low-rank model up to the final resolution R,,.

!This assumption has been empirically validated (cf. [1, 2]), and one interesting direction for future work
would be to formally characterize this property.

*In principle, one could use any other optimization subroutine.

3One natural choice of R, is when the memory requirement of R, exceeds the system’s capacity.
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Figure 2: Left: depicting the start and end stages, where training initially focuses on a coarse-grained full-rank

model, and concludes on a fine-grained latent factor model. Right: depicting the intermediate stages whereby
the model is made iteratively more fine-grained. See Algorithm 1 and Algorithm 2 for more details.

Algorithm 1 MMT-SE : Memory-efficient multi- Algorithm 2 SGD-SE : Stochastic gradient de-
resolution training with spatial entropy control scent with spatial entropy control

1: Input: Tensor?, fixed weights €2, data-set D, fea- 1: Input: Weights’, fixed weights €, data-set D,
tures . features W.

SGD-SE (TensorFactors’; 2)
: end for
: return TensorFactors™

2: for each resolution R; € {R1,..., Ry} do 2: while condition (5) not true do

3: sGD-SE (Tensor’; ) 3: Mini-batch gradient descent step on Weights
4: end for 4: end while _

5: TensorFactors” = TENSOR-FACTORIZE(F?) 5: FINEGRAIN(a")

6: for each resolution R; € {Rpt1,- .., R} do 6: return Weights**

7:

8
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3.1 Spatial Entropy Termination Criterion

Given the structure of Algorithm 1, the key technical question is how to set the termination condition
for each stage. Intuitively, one simple termination condition is when the optimization problem at the
present resolution converges (which mimics the termination condition for iterative training of sparse
models [3]). However, since the model at each resolution is used to initialize the training for the
subsequent resolution, it need not be that the converged model at the current resolution will be the
best initialization for the next resolution (i.e., training might be overfitting to the coarser resolution).

We therefore use a notion of spatial entropy of the gradient distributions. Intuitively, spatial resolu-
tion R is too coarse when the training data prefers much more fine-grained curvature, as evidenced
by substantial disagreement in the gradients for resolution R. More formally, for a function f de-
fined using resolution R and trained on X = {x;}, we define its spatial entropy S (f,Z(X)) as
the entropy of the empirical distribution P (f, Z(X)) of gradients {V f(z;) : i € T(X)}:

SE(LT(X) == Y PR(f,I(X))log P* (f,Z(X)). 4)
i€Z(X)

Here Z(X') means we consider the gradients from a set of gradient evaluations, e.g. a rolling window
of gradients during mini-batch training. A straightforward termination condition is then when the
spatial entropy of the model starts to increase more than a margin A, i.e. at iteration ¢

SE>SE LA, 6))

indicating that the gradients of the current discretization are increasingly disagreeing with each other.

4 Benchmark Experiments: Shot prediction on basketball tracking data

We validate our approach with basketball shot prediction, where the tasks a € A correspond to dif-
ferent basketball players and our multi-task model predicts whether player a will shoot under spatial
conditions . For this prediction problem, we used a large player tracking dataset that includes hun-
dreds of players and covers millions of game frames captured during competitive basketball game
play. For every frame 4, the binary labels y; , € {0, 1} indicate whether the player will shoot.

In this problem, we use occupation features ) (z;), ¢(x;) for the ball handler and defenders respec-
tively. At full resolution, the left half court is discretized using a 50 x 40 grid of R = 2000 cells of



size 1 x 1, while lower resolutions use 2 x 2,5 x 5 and 10 x 10 cells. Furthermore, we only consider
defenders ina 12 x 12 grid (R4 = 144) around the ball handler, with 1 x 1 and 2 x 2 cells. A similar
data representation was used in [2].

4.1 Results

Recall that our approach is based on first training a full-rank model to initialize the factorized model.
We compare our multi-stage approach with learning at a fixed resolution. Moreover, we compare
two termination criteria: fine-graining when the loss has converged versus spatial entropy control.
For the latter, we used condition (5) with A = 0.005 to determine when to fine-grain. Figure 3
shows our results. The left plot shows the results for the full-rank model, which is usually the more
computationally intensive part. We see that our multi-stage approach dramatically outperforms (by
multiple orders-of-magnitude) a naive approach which only uses the finest resolution.* Moreover,
fine-graining controlled by spatial entropy outperforms, by an order-of-magnitude, using the loss as a
termination criterion. The right plot shows the performance of our method on the latent factor model
after initializing using a factorized version of the previous stage. We see that the learning objective
continues to decrease as the learning problem enters what is essentially a fine-tuning phase.’

10x10 0.35 2x2
08 5x5 — 1x1
Fixed-resalution — 2x2 — 1x1
0.67 —1x1 0.325
= — 5x5* €
‘©® 0.54 — 2x2 g Fixed-resclution
£ 5 03
2 041 &
“ Fine-graining
0.275
0.28 Fine-graining
e
0.15 0.25
10 100 1,000 10,000 10 100 1,000 10,000
Time (seconds) Time (seconds)

Figure 3: Left: training a full-rank tensor model using iterative fine-graining. Fine-graining is controlled by
checking (5) per minibatch. Baseline 1: training a fixed-resolution fine-grained model is orders of magnitude
slower. Baseline 2 (indicated by *): fine-graining when the loss has converged, gives slower convergence.
Right: training a factored tensor model using iteratively fine-graining outperforms a fixed-resolution approach.

5 Discussion

We have presented a fast and memory-efficient multi-resolution approach to train interpretable spa-
tial latent factor models defined over fine-grained discretizations of the raw spatial data. Our method
easily accommodates higher-order interactions such as tensor latent factor models. Our preliminary
results demonstrate substantial speed-up in training over conventional gradient descent approaches.
Our results also suggest several interesting directions for further study:

e Can we formally characterize the type of interpretable models that are obtainable through
this type of initialization scheme? For instance, many types of non-convex learning prob-
lems can be well-solved by first obtaining a good initialization (cf. [7]).

e Can we formally characterize how spatial entropy captures the correct termination condi-
tion? That is, can we prove that as spatial entropy increases, training in the coarser resolu-
tion no longer guarantees progress in the finer resolution? Is there a more refined version
of spatial entropy that can lead to even more speedup?

e Can we formally characterize how much the multi-stage approach can speed up training
relative to baseline gradient descent approaches?

e Can we extend this approach to deal with adaptive or non-uniform multi-resolution settings
and enable even further speedup?

“Note also that for more complex models, the naive approach would not even fit in main memory.
5Note the absolute objective of the un-factorized model is lower than the latent-factor model because the
un-factorized model has more degrees of freedom and is overfitting to the training data.
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