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Abstract

We study the problem of learning interpretable spatial latent factor models. In
contrast to other types of latent factor models, the goal of learning interpretable
spatial models is to learn a set of latent factors that is not only predictive but also
captures coherent spatial semantics. We present a multi-stage meta-algorithm for
reliably training such models that scales to very fine-grained spatial models with
higher-order interactions (i.e., tensor latent factor models). We further propose a
family of instantiations of this meta-algorithm for fast and efficient training.

1 Introduction

In this paper, we study the problem of learning spatial latent factor models that can capture se-
mantically cohesive spatial patterns. One convenient property of spatial models is that they are
straightforward to visualize and interpret. For instance, Figure 1 shows two spatial models describ-
ing shooting patterns in basketball, one of which is interpretable while the other is not. We utilize a
simple yet general class of spatial models defined over fine-grained discretizations of the raw data,
which requires making minimal assumptions regarding the functional form of the spatial patterns.

Figure 1: Showing interpretable
(left) and uninterpretable (right) la-
tent factors. The left was trained
using a good initialization, whereas
the right was trained using random
initialization.

Due to the non-convex nature of the training objective, it can be
challenging to train an accurate yet interpretable model. Figure
1 shows two example latent factors learned via gradient descent:
the left using a good initialization and the right using random. As
such, selecting a proper initialization is key.

To address this issue, we initialize using the factorization of a
trained “full-rank” or un-factorized model, which has been shown
to be effective for capturing cohesive behavioral spatial semantics
such as for basketball game play [1, 2], and was the initialization
method used in Figure 1 (left). Of course, training a full-rank
model can be extremely expensive, despite the learning objective
being convex. For instance, an un-factorized 3-tensor model has
complexity that scales cubically with the spatial granularity.

Our approach is motivated by the insight that a coarse-grained spatial model has relatively low accu-
racy, but trains fast and provides a good initialization for a more fine-grained model. We formalize
this intuition in a multi-stage training procedure that uses iteratively more fine-grained models, and
thus allows for training a relatively coarse un-factorized model to initialize the latent factor model.

Our approach bears affinity to other multi-stage meta-algorithms (e.g., [3]). Key design decisions in-
clude: (a) deciding when to terminate the current stage; and (b) choosing the parameterization of the
model in the next stage. For the latter, we choose a straightforward coarse-to-fine parameterization.
For the former, we set the termination condition via a notion of spatial entropy. We demonstrate that
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our method trains faster than fixed-resolution approaches and reliably finds interpretable solutions
for a practically relevant problem. In summary, our main preliminary results are:

• Our method converges faster than training at a fixed spatial resolution from the beginning.
• Our method reliably and efficiently yields an interpretable spatial latent factor model. Our

method easily scales to higher-order tensor latent factor models.

2 The Learning Problem

We consider a multi-task binary classifier that predicts a label per task a 2 A given an input instance
x. For example, the model can predict whether basketball player a in spatial position x would
shoot the ball. More generally, our approach can be applied to any model with at least one spatial
component. For each task a and spatial input x, we aim to learn an expressive yet compact scoring
function f

a

(x), after which classification is simply h

a

(x) = sign(f

a

(x)). One common approach
is to use tensor models that can capture higher-order interactions:

f
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where  (x),�(x) are discretization feature vectors over (dimensions of) x, F is a 3-tensor of pa-
rameters, and b

a

is a bias unit for task a. We further assume that F is low-rank and decomposes into
a PARAFAC product [4], where A, B, C are matrix latent factors and k indexes the latent dimension.
Since  and � define discretizations over x, the granularity of  and � define the granularity of F .

We train our spatial tensor model (1) on a multitask dataset D = {x

i

, y

i,a

: j 2 I, a 2 A(i)}, where
every x

i

is associated with a binary task label y

i,a

2 {0, 1}. We minimize the standard trade-off
between prediction loss and regularization:

min

⌦
L(⌦) + R(⌦), ⌦ = {A, B, C, b} , (2)

where ⌦ denotes all the parameters, R(⌦) is a regularization and L(⌦) is the standard log loss:
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) + log
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1 + e

yi,afa(xi)
⌘⌘

, (3)

where A(i) denotes the set of tasks active in example i (e.g., only certain basketball players appear
in a given frame). In order for A, B, C to be smooth, we use L2 regularization on all factors.

3 Multi-Stage Optimization Approach

We now describe our meta-algorithm for training interpretable spatial latent factor models. We will
assume as axiomatic that local optimization from a “good” initialization of the latent factor model
will lead to an interpretable local optimum, and that approximately training the full-rank version of
F and then factorizing will provide such a good initialization.1

The principal issue that we address is the fact that training spatial models can be very expensive,
especially the un-factorized F used for initialization. Our multi-stage approach builds upon the
insight that one can very quickly train a coarse-grained spatial model, which can be used to initialize
a more fine-grained model. A high-level intuition of our approach is depicted in Figure 2.

We choose n levels of strictly increasing spatial resolutions, R1 < . . . < R

n

, and denote the multi-
resolution features by  =

�
 

i

 
1...n

, e.g., histogram features  i using a spatial grid with R

i

cells.
The MMT-SE procedure (Algorithm 1) starts with a full-rank model at spatial resolution R1 and
trains using SGD-SE (Algorithm 2) until some termination condition is met.2 The resolution is then
increased R1 ! R2, typically by a multiplicative scale factor. We iteratively repeat this process
in the MMT-SE procedure until some resolution R

p

, after which we factorize the full-rank F as
initialization for the latent factor model (denoted TensorFactors in Algorithm 1).3 We can use any
tensor factorization approach to compute the factorization (e.g., [5, 6]). Afterwards, we continue
training the factorized low-rank model up to the final resolution R

n

.
1This assumption has been empirically validated (cf. [1, 2]), and one interesting direction for future work

would be to formally characterize this property.
2In principle, one could use any other optimization subroutine.
3One natural choice of Rp is when the memory requirement of Rp+1 exceeds the system’s capacity.
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Coarse-Grained 
Full-Rank Model

Fine-Grained 
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Fig. 4: Depicting stages of the training procedure (see Section III-A). We start by training a coarse-grained full-rank dense
model L in the smooth phase. Upon convergence, L is factorized into a fine-grained low-rank latent factor model, after which we
continue to train. We then introduce and train a coarse-grained full-rank sparse model S in the peaked phase. Upon convergence,
S is factorized into a fine-grained low-rank latent factor model, and continue training the entire model in the fine-tuning phase.

Fig. 5: Depicting fine-graining of a spatial model R1 !
R2 ! R3 when the scaling factor is 1

2 . After training at
resolution R1 converges, we scale the model up: every spatial
cell i is subdivided into smaller cells j, k, l, m, and weights
w

j

, w

k

, w

l

, w

m

are initialized with the final weight w

i

.

resolution is then increased R1 ! R2 �

1
= �

1
(R1, R2),

that depends on the spatial geometry. We iteratively repeat
training and fine-graining our model until at some resolution
R

p

, the memory requirement Cp+1 of our model will exceed
our system memory capacity C. We then factorize our model
using a tensor factorization algorithm, and continue training
the factorized low-rank model up to the final resolution R

n

.

When fine-graining in MMT from resolution R

i

to R

i+1

with dimensional scaling factor �

i, we initialize every spatial
weight w

i+1
k

for cell k with the weight w

i

l

of its parent cell
l at resolution R

i

, as illustrated in Figure 5. For histogram
features of a 2-dimensional spatial grid, this means that if a
histogram cell at spatial resolution R

i

covered a raw spatial
domain of 1⇥ 1, at resolution R

i+1 a single cell covers a raw
spatial domain of �

1 ⇥ �

1.

A wide range of factorization algorithms can be used in the
MMT procedure (e.g., [12], [9]). For non-negative models, one
can use a non-negative tensor factorization algorithm, such as
minimizing the KL-divergence, e.g. KL(L||A ⌦ B ⌦ C) with
multiplicative weight updates [9].

It is straightforward to generalize MMT to even higher-
order latent factor models (e.g., 4th order), provided one has a
suitable training set. Algorithm 1 can be applied efficiently to
higher-order models by iteratively training and fine-graining

Algorithm 2 SGD: gradient descent training
1: Input: weights ⌦, data-set D, features  
2: while validation log-loss has not converged do
3: Stochastic gradient descent on L(⌦): see III-C
4: Stochastic gradient descent on R(⌦): see III-C
5: if Regularize smooth factor ⌦i then
6: L2-regularization with �2-upscaling: see III-C
7: end if
8: if Regularize sparse factor ⌦i then
9: L1-regularization with truncated soft-threshold: see III-D

10: end if
11: end while
12: return trained weights ⌦

the model until the system memory capacity is reached and
then performing a partial tensor factorization to enable fine-
graining the model to the next spatial resolution.

C. Stochastic Gradient Descent

Our core training subroutine is stochastic gradient descent
with momentum [13] and mini-batches (see Algorithm 2). For
non-convex problems, we also used alternating updates for
each of the latent factors, as well as momentum with restarts.
Moreover, we used learning-rate decay � ! r� with decay
factor r after each epoch and reduced the learning-rate � by
a factor of r̃ each time we reach convergence (as measured
via a validation set). For non-negative models, one must also
project the model parameters onto the positive orthant.

When training the dense/smooth components, in practice,
we found it effective to start training with a small L2-
regularization parameter �2. In the final phase, we then in-
creased �2 �! ��2 and continued training. This step ensures
that the smooth components have sufficient magnitude relative
to the sparse components in the final training phase.

D. Stable Sparse Latent Factor Training

Training the sparse latent factor components S = U ⌦
V ⌦ W using L1-regularization is highly prone to instability.
When the L1-regularization zeros out an element in any of the
latent factors, it effectively zeros out entire slices of S. This
problem is exacerbated for higher order tensor factorizations:

Figure 7: Left: Depicting our optimization approach for training interpretable spatial latent factor models by
first training a (coarse-grained) full rank model, and then factorizing it to initialize the latent factor model.
Right: Depicting our generic coarse-to-fine optimization approach.

Fig. 8: Smooth facing-angle vs wing angles profiles in B
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(same k for both profiles) that relate the facing angle with wing
angles. Both profiles are normalized with red being positive and blue negative. Example spatial configurations of a pair of flies
are shown for the extremal regions of the profile. The reference fly (tagged green) always points to the right, with the second fly
positioned at various facing angles from the former to the latter fly. This profile describes a fly that extends exactly one wing:
the maximal wing length is large, while the minimal wing length is small.

Fig. 9: Sparse spatial configuration profiles V
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for different k left and right. Both profiles are normalized with red being
positive and blue negative. Left: this profile activates highly when the legs of the two flies are close and the reference fly keeps
both wings close to his body. This is a common neutral fly pose. Right: this profile describes a fly that closely and slowly circles
a second fly. Example green lines illustrate angular velocity in a log-scale.

extension share similar visual appearances even though they
constitute different types of behavior. In this way, our model
captures biological intuition: aggression and courtship are
often expressed in similar ways.

It is interesting to contrast copulation attempt versus
copulation. In Figure 10, we see that the two actions have
similar smooth/dense profiles. However, they differ in their
sparse/peaked profiles: for an unsuccessful copulation attempt,
the sparse component is confident that the fly backs off (it
activates on larger distances), whereas it has learned that the fly
stays close during a successful copulation attempt (it activates
mainly on small distances). Moreover, composing the smooth
and sparse profiles, we see that the model additionally gives a
large weight to the smooth profile for copulation. These effects
together show the model’s confidence that the flies stay close
together during a successful copulation attempt. In this way,
we see that the model can distinguish between semantically

closely related behavioral patterns by using smooth and sparse
profiles. This type of differentiation is most effectively cap-
tured in a joint smooth and sparse model, rather than just a
smooth-only or sparse-only model.

Figure 11 provides a more holistic view across all actions
in the Fly-vs-Fly dataset. For example, we see that lunge
and wing threat have similar activations. This can be readily
understood: the former is active physical aggression, whereas
the latter can be interpreted as a fly showing a preview of
actual physical aggression to intimidate the other fly. We again
observe that both smooth/dense and peaked/sparse profiles are
useful for modeling a wide range of actions/tasks.

B. Basketball shot prediction

1) Ball handler shooting profiles: The top row of figure
12 depicts four smooth/dense and four peaked/sparse shooting

Figure 6: Example of ongoing work on
learning spatial configurations fly in-
teractions. The reference fly (tagged
green) always points to the right, with
the second fly positioned at various
facing angles. This profile describes
a fly that extends exactly one wing.

time-invariant models (e.g., hierarchical hidden Markov mod-

els), after which we will develop time-varying models account-

ing for the evolution of behavior over time.

3.3.1 Optimization Challenges

The conventional approach to training (spatial) latent variable

models is gradient descent with random initialization. How-

ever, this approach will not reliably produce an interpretable

model. Figure 8 depicts an example of uninterpretable trained

latent factors for the setting of basketball shot prediction. As

is common when estimating latent variable models, there are

many solutions that yield good predictive accuracy, but only a

small fraction of those are interpretable, which can be di�cult

to obtain via naive gradient descent for the highly non-convex

models we study. As such, good initialization is key.

Fig. 2: Depicting uninterpretable spatial configuration profiles
B and V for fly behavior prediction trained using naive
stochastic gradient descent, obtained from a learned model
with competitive predictive performance. Despite having good
predictive performance, these spatial configuration profiles are
noisy and not spatially cohesive, and are therefore not as
interpretable as the profiles in Figure 1.

Fig. 3: Showing interpretable (left two) and uninterpretable
(right two) latent factors for both smooth/dense B and
peaked/sparse V . The interpretable profiles are trained using
our approach, and the uninterpretable profiles are trained using
naive stochastic gradient descent. Despite good performance,
the uninterpretable profiles are noisy and not spatially cohe-
sive, whereas the interpretable profiles show shooting hot-spots
that are relevant for shot prediction.

interpretability [9], [10], [3], [4], [5]. In order for A, B, C to be
dense/smooth and X, Y, Z to be peaked/sparse, we regularize
the former via L2 regularization and the latter via L1:

R(⌦) = �

A

||A||22 + �

B

||B||22 + �

C

||C||22
+ �

U

||U ||1 + �

V

||V ||1 + �

W

||W ||1. (9)

The conventional approach to training (7) is via some vari-
ant of stochastic gradient descent with random initialization.
However, this conventional approach will not reliably product
interpretable latent factors despite having good predictive
performance. Figure 2 depicts an example of uninterpretable
trained latent factors for fly behavior prediction trained in this
fashion (one can compare to Figure 1). Figure 3 depicts another
example for the setting of basketball shot prediction.

In some sense, there can be many solutions to (7) that yield
good predictive accuracy, but only a small fraction of those are
interpretable, which can be difficult to obtain via naive gradient
descent for highly non-convex factorized tensor models such
as (6). As such, good initialization is key.

One way to reliably obtain interpretable latent factors is
to initialize using a (partially trained) full-rank model ⌦ =

(L, S, b), which has been successfully applied to matrix latent
factor models [4], [5]. In this case, (7) becomes convex and is

Algorithm 1 MMT: Memory-efficient multi-resolution training

1: Input: Tensor0, fixed weights ⌦, data-set D, features  .
2: for each resolution Ri 2 {R1, . . . , Rp} do
3: SGD

�
Tensori;⌦

�
- see Algorithm 2

4: FINEGRAIN(↵i) - see Figure 5
5: end for
6: TensorFactorsp = TENSOR-FACTORIZE(F p)
7: for each resolution Ri 2 {Rp+1, . . . , Rn} do
8: SGD

�
TensorFactorsi;⌦

�

9: FINEGRAIN
�
↵i

�

10: end for
11: return TensorFactorsn

thus straightforward to optimize. However, such an approach
has poor scaling properties, especially for higher-order tensor
models (which was an original motivation for using latent
factors). In the following, we propose a generic training recipe
that can efficiently scale to higher-order tensor models that use
fine-grained discretizations of the raw spatial data. Compared
to previous work [4], [5], our approach can be viewed as a
more general and rigorous treatment of how to reliably train
higher-order spatial latent factor models to be interpretable.

A. Approach Overview

Our general recipe can be described as:
1) Smooth phase: An, Bn, Cn = MMT(F 0). We first use the

MMT procedure (Algorithm 1) to train the smooth/dense
latent factors.

2) Peaked phase: Un, V n, W n = MMT(S0; An, Bn, Cn).
After estimating the smooth/dense components, we then use
MMT to train the peaked/sparse latent factors while holding
the smooth/dense components fixed.

3) Fine-tuning phase: SGD(An, Bn, Cn, Un, V n, W n). We
finally run stochastic gradient descent (Algorithm 2) to fine-
tune the entire model.

Figure 4 depicts an illustration of our overall training pro-
cedure. At a high level, the MMT procedure exploits the
spatial aspect of our model & data by first training a coarse-
grained full-rank model L (or S). Because the complexity of
the full-rank model scales quadratically with the discretization
granularity, one can tractably learn a coarse-grained full-rank
model using standard training algorithms. The MMT procedure
iteratively refines the discretization during training, and then
factorizes L (or S) in order to arrive at a good initialization
of the latent factors. See Section III-B for more details.

Some care is also required when training the peaked/sparse
components, because overly-aggressive training will cause
many latent factors to be all 0’s. We employ a variant of
truncated soft-thresholding [11] to mitigate this effect. See
Section III-D for more details.

B. Cascaded Multi-Resolution Training

Let x

l denote the l

th-level version of a quantity x at
spatial resolution R

l

. We choose n levels of strictly increasing
spatial resolutions, R1 < . . . < R

n

, and denote the multi-
resolution features by  =

�
 

i

 
1...n

, e.g., histogram features
 

i using a spatial grid with R

i

cells. The MMT procedure
(Algorithm 1) starts with a full-rank model at spatial resolution
R1 and trains it until some convergence criterion is met. The

Fig. 2: Depicting uninterpretable spatial configuration profiles
B and V for fly behavior prediction trained using naive
stochastic gradient descent, obtained from a learned model
with competitive predictive performance. Despite having good
predictive performance, these spatial configuration profiles are
noisy and not spatially cohesive, and are therefore not as
interpretable as the profiles in Figure 1.

Fig. 3: Showing interpretable (left two) and uninterpretable
(right two) latent factors for both smooth/dense B and
peaked/sparse V . The interpretable profiles are trained using
our approach, and the uninterpretable profiles are trained using
naive stochastic gradient descent. Despite good performance,
the uninterpretable profiles are noisy and not spatially cohe-
sive, whereas the interpretable profiles show shooting hot-spots
that are relevant for shot prediction.

interpretability [9], [10], [3], [4], [5]. In order for A, B, C to be
dense/smooth and X, Y, Z to be peaked/sparse, we regularize
the former via L2 regularization and the latter via L1:

R(⌦) = �

A

||A||22 + �

B

||B||22 + �

C

||C||22
+ �

U

||U ||1 + �

V

||V ||1 + �

W

||W ||1. (9)

The conventional approach to training (7) is via some vari-
ant of stochastic gradient descent with random initialization.
However, this conventional approach will not reliably product
interpretable latent factors despite having good predictive
performance. Figure 2 depicts an example of uninterpretable
trained latent factors for fly behavior prediction trained in this
fashion (one can compare to Figure 1). Figure 3 depicts another
example for the setting of basketball shot prediction.

In some sense, there can be many solutions to (7) that yield
good predictive accuracy, but only a small fraction of those are
interpretable, which can be difficult to obtain via naive gradient
descent for highly non-convex factorized tensor models such
as (6). As such, good initialization is key.

One way to reliably obtain interpretable latent factors is
to initialize using a (partially trained) full-rank model ⌦ =

(L, S, b), which has been successfully applied to matrix latent
factor models [4], [5]. In this case, (7) becomes convex and is

Algorithm 1 MMT: Memory-efficient multi-resolution training

1: Input: Tensor0, fixed weights ⌦, data-set D, features  .
2: for each resolution Ri 2 {R1, . . . , Rp} do
3: SGD

�
Tensori;⌦

�
- see Algorithm 2

4: FINEGRAIN(↵i) - see Figure 5
5: end for
6: TensorFactorsp = TENSOR-FACTORIZE(F p)
7: for each resolution Ri 2 {Rp+1, . . . , Rn} do
8: SGD

�
TensorFactorsi;⌦

�

9: FINEGRAIN
�
↵i

�

10: end for
11: return TensorFactorsn

thus straightforward to optimize. However, such an approach
has poor scaling properties, especially for higher-order tensor
models (which was an original motivation for using latent
factors). In the following, we propose a generic training recipe
that can efficiently scale to higher-order tensor models that use
fine-grained discretizations of the raw spatial data. Compared
to previous work [4], [5], our approach can be viewed as a
more general and rigorous treatment of how to reliably train
higher-order spatial latent factor models to be interpretable.

A. Approach Overview

Our general recipe can be described as:
1) Smooth phase: An, Bn, Cn = MMT(F 0). We first use the

MMT procedure (Algorithm 1) to train the smooth/dense
latent factors.

2) Peaked phase: Un, V n, W n = MMT(S0; An, Bn, Cn).
After estimating the smooth/dense components, we then use
MMT to train the peaked/sparse latent factors while holding
the smooth/dense components fixed.

3) Fine-tuning phase: SGD(An, Bn, Cn, Un, V n, W n). We
finally run stochastic gradient descent (Algorithm 2) to fine-
tune the entire model.

Figure 4 depicts an illustration of our overall training pro-
cedure. At a high level, the MMT procedure exploits the
spatial aspect of our model & data by first training a coarse-
grained full-rank model L (or S). Because the complexity of
the full-rank model scales quadratically with the discretization
granularity, one can tractably learn a coarse-grained full-rank
model using standard training algorithms. The MMT procedure
iteratively refines the discretization during training, and then
factorizes L (or S) in order to arrive at a good initialization
of the latent factors. See Section III-B for more details.

Some care is also required when training the peaked/sparse
components, because overly-aggressive training will cause
many latent factors to be all 0’s. We employ a variant of
truncated soft-thresholding [11] to mitigate this effect. See
Section III-D for more details.

B. Cascaded Multi-Resolution Training

Let x

l denote the l

th-level version of a quantity x at
spatial resolution R

l

. We choose n levels of strictly increasing
spatial resolutions, R1 < . . . < R

n

, and denote the multi-
resolution features by  =

�
 

i

 
1...n

, e.g., histogram features
 

i using a spatial grid with R

i

cells. The MMT procedure
(Algorithm 1) starts with a full-rank model at spatial resolution
R1 and trains it until some convergence criterion is met. The

Figure 8: Showing both
interpretable and unin-
terpretable latent factors.
The two are trained us-
ing intelligent and ran-
dom initialization, re-
spectively.

One way to reliably obtain interpretable models is to use a more intelli-

gent initialization. In preliminary work on spatial latent factor models, we

have shown that one e�ective approach is to first train a full-rank model

(which is statistically unreliable), which can then be factorized to provide a

good initialization – this procedure is depicted in Figure 7 Left. Of course,

the memory and computational requirements of a full-rank model are sig-

nificantly more severe, and this issue is exacerbated for higher order tensor

latent factor models. And so we are actively studying a coarse-to-fine ap-

proach to training spatial latent variable models, such that the full-rank

model can be trained at a coarse-grained level, which dramatically reduces

its memory and computational footprint.

We are further studying how to speed up training by applying a coarse-

to-fine training approach. Intuitively, one can train a model to be approx-

imately optimal by training a coarse-grained model. Because the coarse-grained model has fewer

parameters, it should converge faster than directly training a fine-grained model. One interesting

question is whether a coarse-to-fine optimization approach provably converges faster.

Another issue that arises is the degenerate solution issue when training sparse models. For

instance, with latent factor models, both factors are simultaneously “features” and “parameter

weights”. For standard sparse models such as LASSO, the features are always fixed, so one can

recover from zeroing out parameter weights. However, for latent factor models, zeroing out weights
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Fig. 4: Depicting stages of the training procedure (see Section III-A). We start by training a coarse-grained full-rank dense
model L in the smooth phase. Upon convergence, L is factorized into a fine-grained low-rank latent factor model, after which we
continue to train. We then introduce and train a coarse-grained full-rank sparse model S in the peaked phase. Upon convergence,
S is factorized into a fine-grained low-rank latent factor model, and continue training the entire model in the fine-tuning phase.

Fig. 5: Depicting fine-graining of a spatial model R1 !
R2 ! R3 when the scaling factor is 1

2 . After training at
resolution R1 converges, we scale the model up: every spatial
cell i is subdivided into smaller cells j, k, l, m, and weights
w

j

, w

k

, w

l

, w

m

are initialized with the final weight w

i

.

resolution is then increased R1 ! R2 �

1
= �

1
(R1, R2),

that depends on the spatial geometry. We iteratively repeat
training and fine-graining our model until at some resolution
R

p

, the memory requirement Cp+1 of our model will exceed
our system memory capacity C. We then factorize our model
using a tensor factorization algorithm, and continue training
the factorized low-rank model up to the final resolution R

n

.

When fine-graining in MMT from resolution R

i

to R

i+1

with dimensional scaling factor �

i, we initialize every spatial
weight w

i+1
k

for cell k with the weight w

i

l

of its parent cell
l at resolution R

i

, as illustrated in Figure 5. For histogram
features of a 2-dimensional spatial grid, this means that if a
histogram cell at spatial resolution R

i

covered a raw spatial
domain of 1⇥ 1, at resolution R

i+1 a single cell covers a raw
spatial domain of �

1 ⇥ �

1.

A wide range of factorization algorithms can be used in the
MMT procedure (e.g., [12], [9]). For non-negative models, one
can use a non-negative tensor factorization algorithm, such as
minimizing the KL-divergence, e.g. KL(L||A ⌦ B ⌦ C) with
multiplicative weight updates [9].

It is straightforward to generalize MMT to even higher-
order latent factor models (e.g., 4th order), provided one has a
suitable training set. Algorithm 1 can be applied efficiently to
higher-order models by iteratively training and fine-graining

Algorithm 2 SGD: gradient descent training
1: Input: weights ⌦, data-set D, features  
2: while validation log-loss has not converged do
3: Stochastic gradient descent on L(⌦): see III-C
4: Stochastic gradient descent on R(⌦): see III-C
5: if Regularize smooth factor ⌦i then
6: L2-regularization with �2-upscaling: see III-C
7: end if
8: if Regularize sparse factor ⌦i then
9: L1-regularization with truncated soft-threshold: see III-D

10: end if
11: end while
12: return trained weights ⌦

the model until the system memory capacity is reached and
then performing a partial tensor factorization to enable fine-
graining the model to the next spatial resolution.

C. Stochastic Gradient Descent

Our core training subroutine is stochastic gradient descent
with momentum [13] and mini-batches (see Algorithm 2). For
non-convex problems, we also used alternating updates for
each of the latent factors, as well as momentum with restarts.
Moreover, we used learning-rate decay � ! r� with decay
factor r after each epoch and reduced the learning-rate � by
a factor of r̃ each time we reach convergence (as measured
via a validation set). For non-negative models, one must also
project the model parameters onto the positive orthant.

When training the dense/smooth components, in practice,
we found it effective to start training with a small L2-
regularization parameter �2. In the final phase, we then in-
creased �2 �! ��2 and continued training. This step ensures
that the smooth components have sufficient magnitude relative
to the sparse components in the final training phase.

D. Stable Sparse Latent Factor Training

Training the sparse latent factor components S = U ⌦
V ⌦ W using L1-regularization is highly prone to instability.
When the L1-regularization zeros out an element in any of the
latent factors, it effectively zeros out entire slices of S. This
problem is exacerbated for higher order tensor factorizations:

Figure 7: Left: Depicting our optimization approach for training interpretable spatial latent factor models by
first training a (coarse-grained) full rank model, and then factorizing it to initialize the latent factor model.
Right: Depicting our generic coarse-to-fine optimization approach.

Fig. 8: Smooth facing-angle vs wing angles profiles in B
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(same k for both profiles) that relate the facing angle with wing
angles. Both profiles are normalized with red being positive and blue negative. Example spatial configurations of a pair of flies
are shown for the extremal regions of the profile. The reference fly (tagged green) always points to the right, with the second fly
positioned at various facing angles from the former to the latter fly. This profile describes a fly that extends exactly one wing:
the maximal wing length is large, while the minimal wing length is small.

Fig. 9: Sparse spatial configuration profiles V
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for different k left and right. Both profiles are normalized with red being
positive and blue negative. Left: this profile activates highly when the legs of the two flies are close and the reference fly keeps
both wings close to his body. This is a common neutral fly pose. Right: this profile describes a fly that closely and slowly circles
a second fly. Example green lines illustrate angular velocity in a log-scale.

extension share similar visual appearances even though they
constitute different types of behavior. In this way, our model
captures biological intuition: aggression and courtship are
often expressed in similar ways.

It is interesting to contrast copulation attempt versus
copulation. In Figure 10, we see that the two actions have
similar smooth/dense profiles. However, they differ in their
sparse/peaked profiles: for an unsuccessful copulation attempt,
the sparse component is confident that the fly backs off (it
activates on larger distances), whereas it has learned that the fly
stays close during a successful copulation attempt (it activates
mainly on small distances). Moreover, composing the smooth
and sparse profiles, we see that the model additionally gives a
large weight to the smooth profile for copulation. These effects
together show the model’s confidence that the flies stay close
together during a successful copulation attempt. In this way,
we see that the model can distinguish between semantically

closely related behavioral patterns by using smooth and sparse
profiles. This type of differentiation is most effectively cap-
tured in a joint smooth and sparse model, rather than just a
smooth-only or sparse-only model.

Figure 11 provides a more holistic view across all actions
in the Fly-vs-Fly dataset. For example, we see that lunge
and wing threat have similar activations. This can be readily
understood: the former is active physical aggression, whereas
the latter can be interpreted as a fly showing a preview of
actual physical aggression to intimidate the other fly. We again
observe that both smooth/dense and peaked/sparse profiles are
useful for modeling a wide range of actions/tasks.

B. Basketball shot prediction

1) Ball handler shooting profiles: The top row of figure
12 depicts four smooth/dense and four peaked/sparse shooting

Figure 6: Example of ongoing work on
learning spatial configurations fly in-
teractions. The reference fly (tagged
green) always points to the right, with
the second fly positioned at various
facing angles. This profile describes
a fly that extends exactly one wing.

time-invariant models (e.g., hierarchical hidden Markov mod-

els), after which we will develop time-varying models account-

ing for the evolution of behavior over time.

3.3.1 Optimization Challenges

The conventional approach to training (spatial) latent variable

models is gradient descent with random initialization. How-

ever, this approach will not reliably produce an interpretable

model. Figure 8 depicts an example of uninterpretable trained

latent factors for the setting of basketball shot prediction. As

is common when estimating latent variable models, there are

many solutions that yield good predictive accuracy, but only a

small fraction of those are interpretable, which can be di�cult

to obtain via naive gradient descent for the highly non-convex

models we study. As such, good initialization is key.

Fig. 2: Depicting uninterpretable spatial configuration profiles
B and V for fly behavior prediction trained using naive
stochastic gradient descent, obtained from a learned model
with competitive predictive performance. Despite having good
predictive performance, these spatial configuration profiles are
noisy and not spatially cohesive, and are therefore not as
interpretable as the profiles in Figure 1.

Fig. 3: Showing interpretable (left two) and uninterpretable
(right two) latent factors for both smooth/dense B and
peaked/sparse V . The interpretable profiles are trained using
our approach, and the uninterpretable profiles are trained using
naive stochastic gradient descent. Despite good performance,
the uninterpretable profiles are noisy and not spatially cohe-
sive, whereas the interpretable profiles show shooting hot-spots
that are relevant for shot prediction.

interpretability [9], [10], [3], [4], [5]. In order for A, B, C to be
dense/smooth and X, Y, Z to be peaked/sparse, we regularize
the former via L2 regularization and the latter via L1:

R(⌦) = �

A

||A||22 + �

B

||B||22 + �

C

||C||22
+ �

U

||U ||1 + �

V

||V ||1 + �

W

||W ||1. (9)

The conventional approach to training (7) is via some vari-
ant of stochastic gradient descent with random initialization.
However, this conventional approach will not reliably product
interpretable latent factors despite having good predictive
performance. Figure 2 depicts an example of uninterpretable
trained latent factors for fly behavior prediction trained in this
fashion (one can compare to Figure 1). Figure 3 depicts another
example for the setting of basketball shot prediction.

In some sense, there can be many solutions to (7) that yield
good predictive accuracy, but only a small fraction of those are
interpretable, which can be difficult to obtain via naive gradient
descent for highly non-convex factorized tensor models such
as (6). As such, good initialization is key.

One way to reliably obtain interpretable latent factors is
to initialize using a (partially trained) full-rank model ⌦ =

(L, S, b), which has been successfully applied to matrix latent
factor models [4], [5]. In this case, (7) becomes convex and is

Algorithm 1 MMT: Memory-efficient multi-resolution training

1: Input: Tensor0, fixed weights ⌦, data-set D, features  .
2: for each resolution Ri 2 {R1, . . . , Rp} do
3: SGD

�
Tensori;⌦

�
- see Algorithm 2

4: FINEGRAIN(↵i) - see Figure 5
5: end for
6: TensorFactorsp = TENSOR-FACTORIZE(F p)
7: for each resolution Ri 2 {Rp+1, . . . , Rn} do
8: SGD

�
TensorFactorsi;⌦

�

9: FINEGRAIN
�
↵i

�

10: end for
11: return TensorFactorsn

thus straightforward to optimize. However, such an approach
has poor scaling properties, especially for higher-order tensor
models (which was an original motivation for using latent
factors). In the following, we propose a generic training recipe
that can efficiently scale to higher-order tensor models that use
fine-grained discretizations of the raw spatial data. Compared
to previous work [4], [5], our approach can be viewed as a
more general and rigorous treatment of how to reliably train
higher-order spatial latent factor models to be interpretable.

A. Approach Overview

Our general recipe can be described as:
1) Smooth phase: An, Bn, Cn = MMT(F 0). We first use the

MMT procedure (Algorithm 1) to train the smooth/dense
latent factors.

2) Peaked phase: Un, V n, W n = MMT(S0; An, Bn, Cn).
After estimating the smooth/dense components, we then use
MMT to train the peaked/sparse latent factors while holding
the smooth/dense components fixed.

3) Fine-tuning phase: SGD(An, Bn, Cn, Un, V n, W n). We
finally run stochastic gradient descent (Algorithm 2) to fine-
tune the entire model.

Figure 4 depicts an illustration of our overall training pro-
cedure. At a high level, the MMT procedure exploits the
spatial aspect of our model & data by first training a coarse-
grained full-rank model L (or S). Because the complexity of
the full-rank model scales quadratically with the discretization
granularity, one can tractably learn a coarse-grained full-rank
model using standard training algorithms. The MMT procedure
iteratively refines the discretization during training, and then
factorizes L (or S) in order to arrive at a good initialization
of the latent factors. See Section III-B for more details.

Some care is also required when training the peaked/sparse
components, because overly-aggressive training will cause
many latent factors to be all 0’s. We employ a variant of
truncated soft-thresholding [11] to mitigate this effect. See
Section III-D for more details.

B. Cascaded Multi-Resolution Training

Let x

l denote the l

th-level version of a quantity x at
spatial resolution R

l

. We choose n levels of strictly increasing
spatial resolutions, R1 < . . . < R

n

, and denote the multi-
resolution features by  =

�
 

i

 
1...n

, e.g., histogram features
 

i using a spatial grid with R

i

cells. The MMT procedure
(Algorithm 1) starts with a full-rank model at spatial resolution
R1 and trains it until some convergence criterion is met. The

Fig. 2: Depicting uninterpretable spatial configuration profiles
B and V for fly behavior prediction trained using naive
stochastic gradient descent, obtained from a learned model
with competitive predictive performance. Despite having good
predictive performance, these spatial configuration profiles are
noisy and not spatially cohesive, and are therefore not as
interpretable as the profiles in Figure 1.

Fig. 3: Showing interpretable (left two) and uninterpretable
(right two) latent factors for both smooth/dense B and
peaked/sparse V . The interpretable profiles are trained using
our approach, and the uninterpretable profiles are trained using
naive stochastic gradient descent. Despite good performance,
the uninterpretable profiles are noisy and not spatially cohe-
sive, whereas the interpretable profiles show shooting hot-spots
that are relevant for shot prediction.

interpretability [9], [10], [3], [4], [5]. In order for A, B, C to be
dense/smooth and X, Y, Z to be peaked/sparse, we regularize
the former via L2 regularization and the latter via L1:

R(⌦) = �

A

||A||22 + �

B

||B||22 + �

C

||C||22
+ �

U

||U ||1 + �

V

||V ||1 + �

W

||W ||1. (9)

The conventional approach to training (7) is via some vari-
ant of stochastic gradient descent with random initialization.
However, this conventional approach will not reliably product
interpretable latent factors despite having good predictive
performance. Figure 2 depicts an example of uninterpretable
trained latent factors for fly behavior prediction trained in this
fashion (one can compare to Figure 1). Figure 3 depicts another
example for the setting of basketball shot prediction.

In some sense, there can be many solutions to (7) that yield
good predictive accuracy, but only a small fraction of those are
interpretable, which can be difficult to obtain via naive gradient
descent for highly non-convex factorized tensor models such
as (6). As such, good initialization is key.

One way to reliably obtain interpretable latent factors is
to initialize using a (partially trained) full-rank model ⌦ =

(L, S, b), which has been successfully applied to matrix latent
factor models [4], [5]. In this case, (7) becomes convex and is

Algorithm 1 MMT: Memory-efficient multi-resolution training

1: Input: Tensor0, fixed weights ⌦, data-set D, features  .
2: for each resolution Ri 2 {R1, . . . , Rp} do
3: SGD

�
Tensori;⌦

�
- see Algorithm 2

4: FINEGRAIN(↵i) - see Figure 5
5: end for
6: TensorFactorsp = TENSOR-FACTORIZE(F p)
7: for each resolution Ri 2 {Rp+1, . . . , Rn} do
8: SGD

�
TensorFactorsi;⌦

�

9: FINEGRAIN
�
↵i

�

10: end for
11: return TensorFactorsn

thus straightforward to optimize. However, such an approach
has poor scaling properties, especially for higher-order tensor
models (which was an original motivation for using latent
factors). In the following, we propose a generic training recipe
that can efficiently scale to higher-order tensor models that use
fine-grained discretizations of the raw spatial data. Compared
to previous work [4], [5], our approach can be viewed as a
more general and rigorous treatment of how to reliably train
higher-order spatial latent factor models to be interpretable.

A. Approach Overview

Our general recipe can be described as:
1) Smooth phase: An, Bn, Cn = MMT(F 0). We first use the

MMT procedure (Algorithm 1) to train the smooth/dense
latent factors.

2) Peaked phase: Un, V n, W n = MMT(S0; An, Bn, Cn).
After estimating the smooth/dense components, we then use
MMT to train the peaked/sparse latent factors while holding
the smooth/dense components fixed.

3) Fine-tuning phase: SGD(An, Bn, Cn, Un, V n, W n). We
finally run stochastic gradient descent (Algorithm 2) to fine-
tune the entire model.

Figure 4 depicts an illustration of our overall training pro-
cedure. At a high level, the MMT procedure exploits the
spatial aspect of our model & data by first training a coarse-
grained full-rank model L (or S). Because the complexity of
the full-rank model scales quadratically with the discretization
granularity, one can tractably learn a coarse-grained full-rank
model using standard training algorithms. The MMT procedure
iteratively refines the discretization during training, and then
factorizes L (or S) in order to arrive at a good initialization
of the latent factors. See Section III-B for more details.

Some care is also required when training the peaked/sparse
components, because overly-aggressive training will cause
many latent factors to be all 0’s. We employ a variant of
truncated soft-thresholding [11] to mitigate this effect. See
Section III-D for more details.

B. Cascaded Multi-Resolution Training

Let x

l denote the l

th-level version of a quantity x at
spatial resolution R

l

. We choose n levels of strictly increasing
spatial resolutions, R1 < . . . < R

n

, and denote the multi-
resolution features by  =

�
 

i

 
1...n

, e.g., histogram features
 

i using a spatial grid with R

i

cells. The MMT procedure
(Algorithm 1) starts with a full-rank model at spatial resolution
R1 and trains it until some convergence criterion is met. The

Figure 8: Showing both
interpretable and unin-
terpretable latent factors.
The two are trained us-
ing intelligent and ran-
dom initialization, re-
spectively.

One way to reliably obtain interpretable models is to use a more intelli-

gent initialization. In preliminary work on spatial latent factor models, we

have shown that one e�ective approach is to first train a full-rank model

(which is statistically unreliable), which can then be factorized to provide a

good initialization – this procedure is depicted in Figure 7 Left. Of course,

the memory and computational requirements of a full-rank model are sig-

nificantly more severe, and this issue is exacerbated for higher order tensor

latent factor models. And so we are actively studying a coarse-to-fine ap-

proach to training spatial latent variable models, such that the full-rank

model can be trained at a coarse-grained level, which dramatically reduces

its memory and computational footprint.

We are further studying how to speed up training by applying a coarse-

to-fine training approach. Intuitively, one can train a model to be approx-

imately optimal by training a coarse-grained model. Because the coarse-grained model has fewer

parameters, it should converge faster than directly training a fine-grained model. One interesting

question is whether a coarse-to-fine optimization approach provably converges faster.

Another issue that arises is the degenerate solution issue when training sparse models. For

instance, with latent factor models, both factors are simultaneously “features” and “parameter

weights”. For standard sparse models such as LASSO, the features are always fixed, so one can

recover from zeroing out parameter weights. However, for latent factor models, zeroing out weights

11

Figure 2: Left: depicting the start and end stages, where training initially focuses on a coarse-grained full-rank
model, and concludes on a fine-grained latent factor model. Right: depicting the intermediate stages whereby
the model is made iteratively more fine-grained. See Algorithm 1 and Algorithm 2 for more details.

Algorithm 1 MMT-SE : Memory-efficient multi-
resolution training with spatial entropy control

1: Input: Tensor0, fixed weights ⌦, data-set D, fea-
tures  .

2: for each resolution Ri 2 {R1, . . . , Rp} do
3: SGD-SE

�
Tensori;⌦

�

4: end for
5: TensorFactorsp = TENSOR-FACTORIZE(F p)
6: for each resolution Ri 2 {Rp+1, . . . , Rn} do
7: SGD-SE

�
TensorFactorsi;⌦

�

8: end for
9: return TensorFactorsn

Algorithm 2 SGD-SE : Stochastic gradient de-
scent with spatial entropy control

1: Input: Weightsi, fixed weights ⌦, data-set D,
features  .

2: while condition (5) not true do
3: Mini-batch gradient descent step on Weights
4: end while
5: FINEGRAIN(↵i)
6: return Weightsi+1

3.1 Spatial Entropy Termination Criterion

Given the structure of Algorithm 1, the key technical question is how to set the termination condition
for each stage. Intuitively, one simple termination condition is when the optimization problem at the
present resolution converges (which mimics the termination condition for iterative training of sparse
models [3]). However, since the model at each resolution is used to initialize the training for the
subsequent resolution, it need not be that the converged model at the current resolution will be the
best initialization for the next resolution (i.e., training might be overfitting to the coarser resolution).

We therefore use a notion of spatial entropy of the gradient distributions. Intuitively, spatial resolu-
tion R is too coarse when the training data prefers much more fine-grained curvature, as evidenced
by substantial disagreement in the gradients for resolution R. More formally, for a function f de-
fined using resolution R and trained on X = {x

i

}, we define its spatial entropy S

R

(f, I(X)) as
the entropy of the empirical distribution P

R

(f, I(X)) of gradients {rf(x

i

) : i 2 I(X)}:

S

R

(f, I(X)) = �
X

i2I(X)

P

R

(f, I(X)) log P

R

(f, I(X)) . (4)

Here I(X) means we consider the gradients from a set of gradient evaluations, e.g. a rolling window
of gradients during mini-batch training. A straightforward termination condition is then when the
spatial entropy of the model starts to increase more than a margin�, i.e. at iteration t

S

R

t

> S

R

t�1 +�, (5)
indicating that the gradients of the current discretization are increasingly disagreeing with each other.

4 Benchmark Experiments: Shot prediction on basketball tracking data

We validate our approach with basketball shot prediction, where the tasks a 2 A correspond to dif-
ferent basketball players and our multi-task model predicts whether player a will shoot under spatial
conditions x. For this prediction problem, we used a large player tracking dataset that includes hun-
dreds of players and covers millions of game frames captured during competitive basketball game
play. For every frame i, the binary labels y

i,a

2 {0, 1} indicate whether the player will shoot.

In this problem, we use occupation features  (x

i

),�(x

i

) for the ball handler and defenders respec-
tively. At full resolution, the left half court is discretized using a 50 ⇥ 40 grid of R = 2000 cells of
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size 1⇥1, while lower resolutions use 2⇥2, 5⇥5 and 10⇥10 cells. Furthermore, we only consider
defenders in a 12⇥12 grid (R

d

= 144) around the ball handler, with 1⇥1 and 2⇥2 cells. A similar
data representation was used in [2].

4.1 Results

Recall that our approach is based on first training a full-rank model to initialize the factorized model.
We compare our multi-stage approach with learning at a fixed resolution. Moreover, we compare
two termination criteria: fine-graining when the loss has converged versus spatial entropy control.
For the latter, we used condition (5) with � = 0.005 to determine when to fine-grain. Figure 3
shows our results. The left plot shows the results for the full-rank model, which is usually the more
computationally intensive part. We see that our multi-stage approach dramatically outperforms (by
multiple orders-of-magnitude) a naive approach which only uses the finest resolution.4 Moreover,
fine-graining controlled by spatial entropy outperforms, by an order-of-magnitude, using the loss as a
termination criterion. The right plot shows the performance of our method on the latent factor model
after initializing using a factorized version of the previous stage. We see that the learning objective
continues to decrease as the learning problem enters what is essentially a fine-tuning phase.5

Figure 3: Left: training a full-rank tensor model using iterative fine-graining. Fine-graining is controlled by
checking (5) per minibatch. Baseline 1: training a fixed-resolution fine-grained model is orders of magnitude
slower. Baseline 2 (indicated by *): fine-graining when the loss has converged, gives slower convergence.
Right: training a factored tensor model using iteratively fine-graining outperforms a fixed-resolution approach.

5 Discussion

We have presented a fast and memory-efficient multi-resolution approach to train interpretable spa-
tial latent factor models defined over fine-grained discretizations of the raw spatial data. Our method
easily accommodates higher-order interactions such as tensor latent factor models. Our preliminary
results demonstrate substantial speed-up in training over conventional gradient descent approaches.
Our results also suggest several interesting directions for further study:

• Can we formally characterize the type of interpretable models that are obtainable through
this type of initialization scheme? For instance, many types of non-convex learning prob-
lems can be well-solved by first obtaining a good initialization (cf. [7]).

• Can we formally characterize how spatial entropy captures the correct termination condi-
tion? That is, can we prove that as spatial entropy increases, training in the coarser resolu-
tion no longer guarantees progress in the finer resolution? Is there a more refined version
of spatial entropy that can lead to even more speedup?

• Can we formally characterize how much the multi-stage approach can speed up training
relative to baseline gradient descent approaches?

• Can we extend this approach to deal with adaptive or non-uniform multi-resolution settings
and enable even further speedup?

4Note also that for more complex models, the naive approach would not even fit in main memory.
5Note the absolute objective of the un-factorized model is lower than the latent-factor model because the

un-factorized model has more degrees of freedom and is overfitting to the training data.
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