
On Using Simultaneous Perturbation Stochastic

Approximation for Learning to Rank, and the

Empirical Optimality of LambdaRank

Yisong Yue Christopher J. C. Burges
Dept. of Computer Science Microsoft Research

Cornell University Microsoft Corporation
Ithaca, NY 14850 Redmond, WA 98052

yyue@cs.cornell.edu cburges@microsoft.com

Microsoft Research Technical Report MST-TR-2007-115

Abstract

One shortfall of existing machine learning (ML) methods when ap-
plied to information retrieval (IR) is the inability to directly optimize
for typical IR performance measures. This is in part due to the discrete
nature, and thus non-differentiability, of these measures. When cast as
an optimization problem, many methods require computing the gradi-
ent. In this paper, we explore conditions where the gradient might be
numerically estimated. We use Simultaneous Perturbation Stochastic
Approximation as our gradient approximation method. We also ex-
amine the empirical optimality of LambdaRank, which has performed
very well in practice.

1 Introduction

In recent years, the problem of learning to rank has gained importance in
the fields of machine learning (ML) and information retrieval (IR). Ranking
functions trained using ML techniques are currently in use by commercial
web search engines. Due to the growth of interest in this area, the amount
of training data available for learning has likewise grown. One shortfall
of existing ML methods is the inability to directly optimize for IR perfor-
mance measures, such as mean average precision and normalized discounted
cumulative gain (NDCG) [9].

1

Gradient descent is a common and effective method for directly optimiz-
ing an objective function within some search space. When casting learning
to rank as an optimization problem, one can consider the search space to
be the space of possible parameter values for some ranking function. Unfor-
tunately, one cannot easily use IR measures as the objective function since,
in general, they are not differentiable with respect to the ranking function
parameters. As a result, ML methods typically optimize for a surrogate
objective function (which is differentiable, and often convex) or use an ap-
proximate gradient.

Given the availability of large training sets, we investigate whether the
NDCG gradient might be numerically approximated. Numerical approxi-
mation requires measuring the change in the objective function over a small
interval in the search space. This can become extremely expensive when
dealing with high dimensional search spaces. We therefore use Simultaneous
Perturbation Stochastic Approximation (SPSA) as our gradient approxima-
tion method, since is it very efficient and requires only two objective function
evaluations for gradient approximation. We find that NDCG does become
significantly smoother with additional training data, but still not enough
to effectively perform gradient descent. However, we do anticipate that
datasets of sufficient size might become available in the foreseeable future.

We also examine the potential optimality of LambdaRank. LambdaRank
is a gradient descent method which uses an approximation to the NDCG
“gradient”, and has performed very well in practice. Our experiments show
that the gradient approximation used by LambdaRank does in fact find a
local optimum with respect to NDCG, even though the gradient used is a
heuristic approximation.

This paper is organized as follows. We first discuss difficulties in directly
optimizing NDCG and other common IR measures. We continue with an
overview of related work as well as a description of LambdaRank. We then
describe stochastic approximation techniques, most notably SPSA. Finally,
we present experimental results and offer our conclusions and directions for
future work.

2 Common Performance Measures for Informa-
tion Retrieval

Performance measures used for information retrieval tasks are typically de-
fined over rankings of documents for some given query. Relevance labels
can be either binary (0 for non-relevant, 1 for relevant) or multilevel (0, 1,

2

2, . . .). Binary measures include Mean Average Precision, Mean Reciprocal
Rank and Winner Takes All. See [17] for more details.

Normalized Discounted Cumulative Gain (NDCG) [9, 17] is a cumulative,
multilevel measure that is usually truncated at a particular rank level. For
a given query qi, NDCG is computed as

NDCGi ≡ Ni

T∑
j=1

2li(j) − 1
log(1 + j)

, (1)

where li(j) is the label of the jth document in the ranking for qi. The
normalization constant Ni is chosen so that the perfect ranking would result
in NDCGi = 1, and T is the ranking truncation level at which NDCG is
computed. NDCG is well suited for applications to Web search since it is
multilevel and the truncation level can be set to model user behavior. Thus
we will focus on NDCG in this paper.

2.1 Direct Optimization

Tuning model parameters to maximize performance is often viewed as an
optimization problem in parameter space. In this setting, given a collection
of training examples, we are concerned with optimizing NDCG with respect
to the parameters of some ranking function.

Existing ranking functions usually score each document’s relevance inde-
pendently of other documents. The ranking is then computed by sorting the
scores, as suggested by the Probability Ranking Principle [16]. Variations
to these ranking functions’ parameters will change the scores, but not nec-
essarily the ranking. The measures discussed above are all computed over
the rank positions of the documents. Therefore, the above measures have
gradients that are zero wherever they are defined: that is, viewed as func-
tions of the model score, typical IR measures are either flat or discontinuous
everywhere.

However, what is optimized is usually the IR measure, averaged over
all queries in the training set. Given enough data, we might hope that the
corresponding function becomes smooth enough for empirical gradients to
be defined after all. This paper explores conditions under which an NDCG
gradient might exist and whether SPSA can be used to efficiently perform
stochastic gradient descent. We focus on neural nets as our function class,
which were also considered in [1, 2, 5].

3

3 Related Work

Previous approaches to directly optimizing IR measures either used grid
search, coordinate ascent, or steepest ascent using finite difference approx-
imation methods [14, 15] (see Section 4 for discussion on stochastic ap-
proximation methods). Metzler & Croft [15] used a Markov Random Field
ranking method and showed that MAP is empirically concave when using
a parameter space with two degrees of freedom. In this study, we consider
parameter spaces with much larger degrees of freedom.

Direct optimization becomes difficult with large datasets and parame-
ter spaces with many degrees of freedom. Most other approaches choose
instead to optimize an alternative smooth objective function. Perhaps the
most straightforward approach is learning to predict the relevance level of in-
dividual documents using either regression or multiclass classification [13].
Another popular approach learns using the pairwise preferences between
documents of different relevance levels [10, 7, 6, 2, 8, 4, 3]. While these
methods perform reasonably well in practice and are computationally con-
venient, they do not optimize for IR measures directly and offer no perfor-
mance guarantees. Some more recent studies focus on minimizing relaxed
upper bounds of IR performance loss [22, 12, 21]. These methods do offer
partial performance guarantees.

Another important class of approaches uses approximations to conceptu-
alize a gradient for IR performance measures (despite these measures being
non-differentiable in general). Of these, we examine LambdaRank by Burges
et al. [1], as it performs very well in practice and, like this study, uses neural
nets for its function class. We discover that LambdaRank appears to find a
local optimum for NDCG.

3.1 LambdaRank

LambdaRank is a general gradient descent optimization framework that only
requires the gradient to be defined, rather than the objective function. In
the case of learning to rank, we focus on document pairs (i, j) of different
relevance classes (i more relevant than j). The derivative of such pair with
respect to the neural net’s output scores is defined as

λij = N

(
1

1 + esi−sj

) ∣∣∣∣∣(2`i − 2`j

)(1
log(1 + ri)

− 1
log(1 + rj)

)∣∣∣∣∣ ,
where si is the output score, `i is the relevance label, and ri is the (sorted)
rank position of document i. The normalization factor N is identical to the

4

one in (1). Let D+
i and D−

i denote the set of documents with higher and
lower relevance classes than i, respectively. The total partial derivative with
respect to document i’s output score is

λi ≡
∑

j∈D−i

λij −
∑

j∈D+
i

λji. (2)

For each document, the LambdaRank gradient computes the NDCG gain
from swapping rank positions with every other document (of a different
relevance class) discounted by a function of the score difference between the
two documents. This discount function is actually the RankNet gradient [2]
(see (9) in Section 5.2.1 below). The objective function of LambdaRank can
in principle be left undefined, since only the gradient is required to perform
gradient descent, although for a given sorted order of the documents, the
objective function is simply a weighted version of the RankNet objective
function [2].

4 Stochastic Approximation

Assuming an objective function L : Rd → R, an optimum w∗ of L satisfies
the property that the gradient vanishes at that point,

g(w∗) ≡ ∂L(w∗)
∂w∗

= 0.

In cases when the gradient is not directly computable and evaluations of L
are noisy, stochastic approximation techniques are often used to approximate
the gradient.

Given an approximation ĝ(w) to the true gradient, L can be iteratively
optimized by stepwise gradient descent,

wk+1 = wk + akĝk(wk), (3)

where ak ∈ R is the optimization step size at iteration k.
The most common stochastic approximation technique, Finite Difference

Stochastic Approximation (FDSA) [11], approximates each partial derivative
separately as

ĝk(wk)i =
L(wk + ckei)− L(wk − ckei)

2ck
,

where ck ∈ R is the approximation step size and ei ∈ Rd is the unit vector
along the ith axis. This method requires 2d function evaluations at each

5

iteration, which can be prohibitively expensive if L is non-trivial to compute
(e.g., the foward propagation required to score documents and sort required
to compute NDCG).

4.1 SPSA

We now describe Simultaneous Perturbation Stochastic Approximation (SPSA),
which was first proposed by Spall [19, 20]. SPSA is an efficient method for
stochastic gradient approximation. In contrast to FDSA, which performs 2d
function evaluations per iteration, the simplest form of SPSA requires only
2.

As the name suggests, a simultaneous perturbation vector ∆k ∈ Rd is
used in each iteration. Given ∆k, the gradient approximation is computed
as

ĝk(wk) =

1

∆k1

1
∆k2

...
1

∆kd

 ·
L(wk + ck∆k)− L(wk − ck∆k)

2ck
.

Following the conditions stated in [19], ∆k is a vector of d mutually indepen-
dent mean-zero random variables (∆k1,∆k2, . . . ,∆kd) satisfying |∆kl| ≤ α0

almost surely and E|∆−1
kl | ≤ α1 for some finite α0 and α1. As suggested in

[18], we choose each ∆kl to be symmetrically Bernoulli distributed (+1 or
−1 with equal probability).

When the objective function is extremely noisy or non-linear, multiple
SPSA gradients can be computed and averaged together at each iteration.

4.2 Correctness Results

This section highlights two correctness results for SPSA. Details are avail-
able in [19]. The two key results are that (A) SPSA produces an unbiased
estimate of the true gradient and that (B) the accumulated sampling error
vanishes.

Let the bias of ĝk(·) be defined as

bk(wk) = E[ĝk(wk)|wk]− g(wk), (4)

where g(·) is the true (unknown) gradient of L. Here the expectation is
over both the Bernoulli variables, and also over zero mean additive noise
in the measurements of L. We require that L be thrice differentiable and
satisfying |L(3)

i1i2i3
| ≤ α2 for some finite α2. In order for SPSA to produce

6

unbiased estimates of g(·), it must be the case that bk(·) → 0 as k grows.
This leads us to Proposition A:

Proposition A: Assume the conditions on ∆k and L stated above, and
consider all k ≥ K for some K < ∞. Then the bias term defined in (4)
behaves like O(c2

k) (where ck is the approximation step size).
Proposition A is proved as Lemma 1 in [19]. As long as the ck are

chosen to be decreasing in k, then the bias of the SPSA estimate will vanish
asymptotically.

Let the sampling error of ĝk(wk) be defined as

εk(wk) = ĝk(wk)− E[ĝk(wk)|wk]. (5)

Then we can rewrite (3) as

wk+1 = wk + ak[g(wk) + bk(wk) + εk(wk)]. (6)

Proposition B : Let εk(·) be defined as in (5). As k →∞, let

ak → 0, ck → 0,
∞∑

k=0

ak = ∞,
∞∑

k=0

(
ak

ck

)2

< ∞. (7)

Then

∀η > 0, lim
k→∞

Pr

[
sup
m≥k

∥∥∥∥∥
m∑

i=k

aiεi(wi)

∥∥∥∥∥ ≥ η

]
= 0. (8)

Proposition B is proved as part of Proposition 1 in [19]. By defining
our step sizes ak, ck appropriately to satisfy (7), the bias term bk(wk) and
the accumulated sum of sampling errors

∑
k akεk(wk) in (6) both vanish

asymptotically. The result in (8) is stronger than it may at first appear –
note from (7) that we require the sum of ak to be unbounded despite having
ak → 0 as k increases. Thus it is non-trivial to prove (8). We refer the reader
to Proposition 1 in [19] for a formal analysis of the strong convergence of
SPSA.

4.3 Rate of Convergence

If evaluations of L is the computation bottleneck for gradient approximation,
then each iteration of SPSA will be d times faster than FDSA. One important
consideration is whether SPSA’s per-iteration convergence rate is less than
d times slower. Spall [19] empirically showed that one can reasonably expect
SPSA’s convergence rate (by iteration count) to be much less than d times
that of FDSA. When measured in terms of evaluations of L, SPSA is then
much faster. In this paper we will empirically evaluate the convergence rate
of SPSA vs. FDSA on a large Web search dataset.

7

5 Experiments

We performed experiments on two datasets: an artifical dataset and a real
Web search dataset. Our experiments used neural nets trained with SPSA,
FDSA and LambdaRank. Our experiments were designed to investigate
three questions: (A) whether SPSA converges faster than FDSA for Web
search data, (B) whether NDCG becomes empirically smooth given enough
data, and therefore become trainable using SPSA, and if so then (C) whether
SPSA can achieve results competitive with LambdaRank. We also report
some results using RankNet [2], although it has already been shown to be
outperformed by LambdaRank [1].

For LambdaRank, we varied the learning rate from 1e-7 to 1e-2. We
used a validation set to choose the best model for evaluation on the test
set. We fixed the size of the hidden layer to 10 nodes for all two layer nets.
For SPSA and FDSA, we tried a number of step size sequences. We found
FDSA to be less sensitive to the choice of step sizes. Following [19], our step
size sequences follow the form

ak =
a0

A + kα
, ck =

c0

kγ
,

where α and γ are chosen to satisfy the conditions stated in (7). For our
experiments, we only report the results using α = 0.602 and γ = 0.101, as
they achieved the best convergence rates on the training set and were also
suggested by [19, 20]. We also only report results using A = 50. The specific
value of A is not important as it is intended to help avoid instabilities in the
early iterations [20]. We chose a0 and c0 to achieve the best convergence
rate on the training set.

We denote an SPSA variant using F function evaluations per iteration
as SPSA:F. The basic SPSA algorithm is thus named SPSA:2.

5.1 Datasets

We used both an artifical dataset as well as a “real” dataset generated from a
commercial search engine. We name the datasets Artificial and Web. These
are identical to the similarly named datasets used in [1].

Artificial. We used artificial data to remove any variance stemming
from the quality of the features or of the labeling. We followed the prescrip-
tion given in [2] for generating random cubic polynomial data. However, here
we use five levels of relevance instead of six, a label distribution correspond-
ing to real datasets, and more data, all to more realistically approximate a

8

Web search application. We used 50 dimensional data, 50 documents per
query, and 10K/5K/10K queries for train/valid/test respectively.

Web. This data is from a commercial search engine and has 367 dimen-
sions, with on average 26.1 documents per query. The data was created by
shuffling a larger dataset and then dividing into train, validation and test
sets of size 10K/5K/10K queries, respectively.

Figure 1: Cross Entropy w.r.t. Number of Function Evaluations on Web
Training Data

5.2 SPSA vs. FDSA

We empirically evaluated the convergence speed of SPSA vs. FDSA on
the Web dataset for minimizing pairwise cross entropy as a “sanity check”.
Pairwise cross entropy is the objective used for RankNet training [2]. We
chose this metric since the objective function is differentiable, and so the
non-smoothness of the cost function is removed as a possible factor, enabling
us to cleanly compare FDSA and SPSA. For this experiment, we chose for
our function class single layer neural networks.

9

The Web data contains 367 features, causing FDSA to perform 734 ob-
jective function evaluations per iteration. We evaluated three SPSA vari-
ants. SPSA:2 performs one gradient approximation (2 function evaluations)
per iteration. SPSA:4 and SPSA:8 perform two and four gradient approx-
imations, respectively. We report the mean pairwise cross entropy values
number of function evaluations over ten runs of each method.

5.2.1 Pairwise Cross Entropy

For any pair of documents (i, j) with document i having higher relevance
than j, the cross entropy is computed as

Cij ≡ sj − si + log(1 + esi−sj),

where si is the neural network output score of document i. The partial
derivatives can then be expressed as

∂Cij

∂si
= −∂Cij

∂sj
=

−1
1 + esi−sj

. (9)

The total pairwise entropy C is the sum all Cij values. Let D+
i and D−

i

denote the set of documents with higher and lower relevance labels than i,
respectively. The total partial derivative for si can be written as

∂C

∂si
=

∑
j∈D−i

∂Cij

∂si
+
∑

j∈D+
i

∂Cji

∂si
.

We empirically verified that the resulting FDSA gradient is virtually
identical to the closed form solution. This allows us to use the gradient for-
mulation in place of the FDSA gradient, and is much faster computationally.

5.2.2 Convergence Speed Results

The performance difference of SPSA vs FDSA is quite striking. Figure
1 shows the pairwise cross entropy value of FDSA and three variants of
SPSA plotted against number of function evaluations. Here, we see that all
variants of SPSA converge significantly faster than FDSA. Recall that in this
setting, performing a single function evaluation requires forward propagating
all the training examples to compute the output scores and then performing
a pairwise difference to compute the cross entropy. It is interesting to note
that performing averages of the SPSA gradient estimates neither helped nor
hurt the convergence rate.

10

Figure 2: NDCG w.r.t. Shifting Top 5 Weights of Single Layer Net on 100,
1000 and 10000 Queries of Artificial Data

5.3 Smoothness of NDCG

SPSA assumes the objective function (in this case NDCG) is thrice differ-
entiable. While the NDCG is either flat or discontinuous (and so non-
differentiable) everywhere for a single query, it may become empirically
smooth when averaged over a sufficient number of queries, just as any smooth
function may be approximated as a linear combination of step functions. We
can investigate this empirically by taking a trained LambdaRank net and
comparing the change mean NDCG of the training set as one weight of the
net is varied with all the other weights held fixed. We performed this com-
parison on both single and two layer nets for both the Artifical and Web

11

Figure 3: NDCG w.r.t. Shifting Hidden-Output Weights of Two Layer Net
on Artificial Data

datasets. In all our comparisons, we varied each individual weight by a
percentage of its trained weight.

We first compared the NDCG change when varying the weights of a single
layer net. We report this comparison of the top five weights by absolute
value. Figure 2 shows this result for a 100 query subsample, a 1,000 query
subsample, and the entire 10,000 query Artificial training set. We observe
that the NDCG function curve consistently becomes smoother as the query
sample increases.

We also compared the NDCG change when varying the weights of a
two layer net. We report this comparison for all ten weights connecting the
hidden units to the output unit. Figures 3 & 4 show the results for the entire
Artificial and Web training sets. Again, we observe that the NDCG function
curves are relatively smooth on a macro scale. The inherent discontinuity
of NDCG is observable only at a local scale.

However, the curves still contain numerous smaller local optima even
when averaged over 10,000 queries. Figure 5 shows a blown up section

12

Figure 4: NDCG w.r.t. Shifting Hidden-Output Weights of Two Layer Net
on Web Data

from Figure 4. Here we see that the discontinuities are very noticeable on a
smaller scale. In order for SPSA to work well, the scale of the discontinuities
must be smaller than the step size used to approximate the gradient.

Not surprisingly, our results for SPSA are significantly worse than both
LambdaRank and RankNet. Given the added complexity of sorting when
computing NDCG, we instead optimized SPSA for NDCG@10 instead of
the non-truncated version. Each objective function evaluation still incurred
a significant computational cost. As such, we only trained SPSA:4 on the
Web data for single layer nets. We performed a limited parameter search
for appropriate a0 and c0 values and chose the ones which gave the best
validation performance. The NDCG@10 comparison is shown in Table 1.

Nonetheless, these results are encouraging. They suggest the feasibil-
ity of collecting a sufficient number of queries whereby the NDCG “gradi-
ent” becomes smooth enough to be effectively approximated by SPSA. More
generally, they suggest that many objective functions previously considered
infeasible to optimize directly might yield computable gradient approxima-

13

Figure 5: Blown Up Version of Figure 4

tions when given sufficient training data.

Method Train Valid Test
LambdaRank 0.721 0.713 0.707

RankNet 0.715 0.709 0.699
SPSA:4 0.690 0.682 0.677

Table 1: NDCG@10 for Linear Nets on Web Data

5.4 Empirical Optimality of LambdaRank

The evaluation of the smoothness of NDCG also yields another interest-
ing observation. The local optimum found using the LambdaRank gradient
(2) also corresponds very closely to a local optimum of NDCG. Perhaps we
should not find this result too surprising, since the true NDCG “gradient”
should reflect the instantaneous change in NDCG as the scores of the docu-
ments vary, and the LambdaRank gradient can be interpreted as measuring

14

a smoothed or convolved version of the change in NDCG, where the smooth-
ing is a function of the distance between two documents’ respective scores.
However it should be noted that the LambdaRank gradient is not simply a
smoothed version of the FDSA gradient; it will contain contributions from
documents that have very different scores, if the current ranker puts them
in the wrong order. In fact, in prior work we performed experiments using
exactly the FDSA gradient (with respect to the model score) as the Lamb-
daRank gradient, and found that this did not work as well as the published
LambdaRank gradient [1]. However roughly speaking, LambdaRank incor-
porates smoothing into its approximation of the NDCG gradient whereas
SPSA requires empirical smoothing (averaging over enough data).

This result suggests that, since LamdbaRank already finds a local NDCG
optimum, then it will be non-trivial to improve on LambdaRank perfor-
mance using (two layer) neural networks as the function class.

6 Conclusions & Future Work

We’ve presented evidence demonstrating a trend towards smoothness of
NDCG as the dataset size grows. While we cannot exactly characterize of
the smoothness of NDCG, we find it reasonable to expect, in the foreseeable
future, having enough data to make methods such as SPSA effective. The
scale of the inherent discontinuities need only be smaller than the step sized
used for gradient approximation. Given the current training data available,
we find that SPSA does not compare well with LambdaRank.

We also showed empirically that LambdaRank finds a local optimum
for NDCG, despite using a (smooth) approximation of the NDCG gradient.
Given these results, it appears difficult to improve on LambdaRank NDCG
performance using (two layer) neural networks as the ranking function class.

These results also beg the question of whether LambdaRank has ad-
ditional theoretical properties. One such question to ask is: given some
distribution over the space of examples (queries and relevance labels), does
a local optimum with respect to the LambdaRank gradient imply anything
about the true gradient of the expected NDCG over that distribution?

We finally note that SPSA is a very general optimization framework. The
objective function to be optimized need only satisfy (or approximately sat-
isfy) the condition that its third derivatives exist, and be bounded, in order
for SPSA to work in practice. While optimizing for NDCG is a well-studied
problem, for many IR optimization problems SPSA may work reasonably
well.

15

Acknowledgements

The authors would like to thank John Platt for his helpful comments as well
as for first pointing us to SPSA.

References

[1] C. Burges, R. Ragno, and Q. Le. Learning to rank with non-smooth
cost functions. In Proceedings of NIPS’06, 2006.

[2] C. Burges, T. Sheked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender. Learning to rank using gradient descent. In
Proceedings of ICML’05, Bonn, Germany, August 2005.

[3] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon. Adapting ranking
svm to document retrieval. In Proceedings of SIGIR’06, 2006.

[4] B. Carterette and D. Petkova. Learning a ranking from pairwise pref-
erences. In Proceedings of SIGIR’06, 2006.

[5] R. Caruana, S. Baluja, and T. Mitchell. Using the future to “sort
out” the present: Rankprop and multitask learning for medical risk
evaluation. In Proceedings of NIPS’96, 1996.

[6] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boost-
ing algorithm for combining preferences. Journal of Machine Learning
Research, 4:933–969, 2004.

[7] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank bound-
aries for ordinal regression. Advances in Large Margin Classifiers, pages
115–132, 2000.

[8] A. Herschtal and B. Raskutti. Optimising area under the roc curve
using gradient descent. In Proceedings of ICML’04, 2004.

[9] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving
highly relevant documents. In Proceedings of SIGIR’00, 2000.

[10] T. Joachims. A support vector method for multivariate performance
measures. In Proceedings of ICML’05, 2005.

[11] J. Kiefer and J. Wolfowitz. Stochastic estimation of a regression func-
tion. Annals of Mathematical Statistics, 23:462–466, 1952.

16

[12] Q. Le and A. Smola. Direct optimization of ranking measures.
arXiv:0704.3359, 2007.

[13] P. Li, C. Burges, and Q. Wu. Learning to rank using classification and
gradient boosting. Technical report, Microsoft Research, 2007.

[14] D. Metzler. Direct maximization of rank-based metrics. Technical re-
port, CIIR, 2007.

[15] D. Metzler and B. Croft. A markov random field for term dependencies.
In Proceedings of SIGIR’05, 2005.

[16] S. Robertson. The Probability Ranking Principle in IR, pages 281–286.
Morgan Kaufmann Publishers Inc., 1997.

[17] S. Robertson and H. Zaragoza. On rank-based effectiveness measures
and optimisation. Technical report, Microsoft Research, 2006.

[18] P. Sadegh and J. Spall. Optimal random perturbations for stochastic
approximation using a simultaneous perturbation gradient approxima-
tion. In Proceedings of the American Control Conference, 1997.

[19] J. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic
Control, 37:332–341, 1992.

[20] J. Spall. Implementation of the simultaneous perturbation algorithm
for stochastic approximation. IEEE Transactions on Aerospace and
Electronic Systems, 34:817–823, 1998.

[21] J. Xu and H. Li. A boosting algorithm for information retrieval. In
Proceedings of SIGIR’07, 2007.

[22] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector
method for optimizing average precision. In Proceedings of SIGIR’07,
2007.

17

