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ABSTRACT
We study the problem of learning to predict a spatiotemporal output
sequence given an input sequence. In contrast to conventional se-
quence prediction problems such as part-of-speech tagging (where
output sequences are selected using a relatively small set of dis-
crete labels), our goal is to predict sequences that lie within a high-
dimensional continuous output space. We present a decision tree
framework for learning an accurate non-parametric spatiotemporal
sequence predictor. Our approach enjoys several attractive prop-
erties, including ease of training, fast performance at test time,
and the ability to robustly tolerate corrupted training data using a
novel latent variable approach. We evaluate on several datasets, and
demonstrate substantial improvements over existing decision tree
based sequence learning frameworks such as SEARN and DAgger.

Categories and Subject Descriptors: I.2.6 Artificial Intelligence:
Learning - Induction

General Terms: Algorithms; Experimentation.

Keywords: Decision Trees; Sequence Prediction.

1. INTRODUCTION
Contextual sequence prediction is an important problem in many

domains, ranging from natural language processing tasks such as
part-of-speech tagging and named-entity recognition [1, 6, 17], to
computational biology tasks such as sequence alignment [10, 28,
38]. The basic setting can be defined as generating a sequential
output given a sequential input. For example, in part-of-speech
tagging, the input can be a sequence of words (i.e., a sentence), and
the output is the corresponding sequence of part-of-speech tags.

In this paper, we study the problem of spatiotemporal sequence
prediction. In contrast to conventional sequence prediction where
output sequences are typically selected using a relatively small set
of discrete labels (e.g., a set of part-of-speech tags), our goal is
to predict sequences that lie within a high-dimensional continuous
output space. One example is visual speech generation, where the
goal is to predict a sequence of face configurations given a sequence
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of audio or phonetic inputs [33, 40]. Other example applications
include speech synthesis [34] and human motion prediction [15].

Predicting spatiotemporal sequences presents several technical
challenges. First, outputs can vary continuously, which leads to
a high-dimensional sequential regression problem. Most notably,
specific spatial patterns can develop over multiple frames. For ex-
ample, accurate visual speech animation requires capturing a wide
range of “temporal curvature” in lip motions, from smoothly to
sharply varying. A second challenge stems from the fact that, for
many applications, it can be difficult to specify a semantically mean-
ingful feature representation. As such, conventional sequence pre-
diction approaches (cf. [1, 6, 17]) are unlikely to produce accurate
models, since they typically are designed to predict over discrete
output labels, make strong Markovian assumptions, and are linear
models with respect to the feature representation.

In this paper, we propose a simple yet effective decision tree
framework for learning an accurate non-parametric spatiotemporal
sequence predictor. Decision trees are an attractive model class due
their ability to capture near-arbitrary non-linear predictors based on
the input features [21, 24]. One challenge with decision trees is that
they cannot be naturally applied to sequence prediction problems.
We present an approach to decompose spatiotemporal sequence
prediction into a series of overlapping fixed-length multivariate re-
gression problems, which can be naturally trained using decision
trees. For example, in our experiments on visual speech animation,
our base decision tree model is a 150-dimensional regressor. Our
approach also enjoys attractive computational properties, including
ease of training and fast performance at test time.

Our approach is complementary to existing decomposition ap-
proaches such as SEARN [7] and DAgger [25]. The main dif-
ference is that our decomposition focuses on capturing the local
temporal curvature of spatiotemporal sequences, whereas SEARN
and DAgger focus on controlling for cascading error effects due to
longer range dependencies. We show empirically that our approach
consistently outperforms or is competitive with SEARN and DAg-
ger, while being significantly faster to train.

A third challenge of working with spatiotemporal sequence data
is that such data is often partially corrupted, e.g., with missing val-
ues or misalignments [20, 36]. We further propose a latent variable
extension to our decision tree framework that can robustly toler-
ate such corrupted data. Both our main framework as well as the
latent variable extension are compatible with using ensemble meth-
ods such as random forests [3] as well as single decision trees.

Our contributions can be summarized as follows:
• We propose a discriminative learning framework based on

decision trees for spatiotemporal sequence prediction. Our
approach decomposes the prediction task into a series of over-



lapping fixed-length multivariate regression problems, which
can be naturally trained using decision trees. Our approach
enjoys attractive computational properties, including ease of
training and fast performance at test time.

• We propose a novel latent variable extension that can ro-
bustly tolerate corrupted training data such as missing values
and misalignments. This extension is compatible with using
random forests as well as decision trees.

• We evaluate our approach using several benchmark datasets
and demonstrate competitive or substantially better perfor-
mance over existing decomposition approaches such as SEA-
RN [7] and DAgger [25], as well as state-of-the-art baselines
based on HMMs [40] and semi-Markov models [33].

• We showcase the practicality of our approach for an applica-
tion in data-driven visual speech animation. In a user study,
we found that our approach generates significantly more real-
istic animations when compared to several strong baselines.

• We evaluate the robustness of our latent variable extension in
dealing with partially corrupted training data such as miss-
ing values and misalignments. Our experiments demonstrate
that our latent variable extension is resilient to a substantial
amount of corrupted training data.

2. RELATED WORK
The study of sequence prediction enjoys a long history within the

machine learning and related communities. Early work in sequence
labeling centered around the use of generative models such as hid-
den Markov models (HMMs) and stochastic grammars [10, 22].
However, many sequence prediction tasks require conditioning on
an input sequence or some other context. For example, in part-of-
speech tagging, one must predict a sequence of part-of-speech tags
conditioned on an input sequence of words (i.e., a sentence). In-
deed, contextual or conditional sequence prediction problems are
pervasive across the sciences, ranging from natural language pro-
cessing [1, 6, 17] to computation biology [28, 38], and can be dif-
ficult to accurately model using generative models such as HMMs.

The need to better tackle contextual sequence prediction has led
to the development of discriminative learning methods such as struc-
tured perceptrons [6], Conditional Random Fields [17, 26], Max-
Margin Markov Networks [32], and structural Support Vector Ma-
chines [1, 35], as well methods for modeling more complex out-
put spaces [9, 37] (e.g., higher order sequential models). These
approaches typically learn linear models over sequence-based fea-
tures to directly maximize the accuracy of resulting contextual se-
quence predictor. From the perspective of our work, two important
limitations of this line of research are the inability to naturally deal
with the continuous nature of spatiotemporal outputs, and the re-
liance on having a semantically rich feature representation.

Spatiotemporal sequence modeling is an area of increasing inter-
est due to the growing availability of spatiotemporal sequence data.
Example domains include motion & pose tracking [15, 27, 33, 40],
speech synthesis [34], player tracking in sports [4, 39], and other
behavioral tracking areas [11, 42]. We are especially interested
in settings where the goal is to predict a spatiotemporal output
sequence given (i.e., conditioned on) an input sequence or some
other context. For example, in visual speech animation, the goal
is to predict an animation sequence of a face given an audio or
phonetic input sequence [27, 33, 40]. Because existing discrim-
inative approaches for sequence prediction are largely limited to
predicting discrete sequences, existing state-of-the-art approaches
to visual speech animation typically resort to continuous variants of

generative approaches such as HMMs [40] and semi-Markov mod-
els [33].

Existing discriminative approaches for spatiotemporal modeling
typically focus on predicting a discrete label over an entire spa-
tiotemporal input sequence, such as predicting whether a given se-
quence belongs to a certain class (cf. [11, 14, 19]). In contrast, we
are interested in the “reverse” problem of predicting a spatiotem-
poral sequence, rather than classifying one.

Our approach is a decomposition or reduction approach that de-
composes the spatiotemporal sequence prediction problem into a
series of overlapping “sliding window” prediction problems. De-
composition approaches are attractive since they allow for utiliz-
ing powerful non-parametric base models such as decision trees
[21, 24]; such base models are difficult to apply directly to se-
quence prediction problems. Existing decomposition approaches
for sequence prediction, such as SEARN [7] and DAgger [25], are
typically designed to control for cascading error effects from long
range dependencies, and are complementary to our approach. Our
approach instead focuses on accurately capturing the local tempo-
ral curvature of spatiotemporal sequences. Because of their self-
recurrent definition, SEARN and DAgger require iterative training
of the base model, which can be quite slow. As we shall see in our
experiments, our approach can dramatically outperform SEARN
and DAgger, while being substantially faster to train.

Our work bears affinity to structured decision tree methods for
tasks such as edge detection [8] and image labeling [16], which also
employ a sliding window approach. The main difference is that our
output space is a continuous spatiotemporal sequence, with predic-
tion goals such as generating realistic facial animations to match
an accompanying audio track; this leads to a different choice of de-
cision tree base models. We also consider settings with corrupted
training data, as described below.

One important challenge when dealing with spatiotemporal se-
quence data is the fact that the training data can often be partially
corrupted. The two most common types of corruption are miss-
ing values [12, 15] and misalignments [5, 18, 20, 30, 41]. Missing
values commonly occur when the spatiotemporal data is generated
from tracking data that has occlusions, such as in human motion
capture and articulatory measurement datasets [15, 36]. The typi-
cal approach to resolving missing values is data imputation, possi-
bly using a low-rank assumption [36]. Misalignments can arise due
to imperfections in the tracking technology for generating the spa-
tiotemporal training data [30], or from natural temporal variability
in the phonomenon being studied [18, 20, 41], or both. Common
techniques for resolving misalignment include variants of dynamic
time warping [20] as well as curve alignment and clustering [13].

For our setting, we consider the case where the output sequence
(i.e., the spatiotemporal sequence to be predicted) is corrupted in
the training data, either due to missing values or misalignments.
We propose a latent-variable extension to our basic decomposition
framework to jointly estimate a “cleaner” version of training data
while learning a contextual spatiotemporal sequence predictor. Our
extended framework can naturally incorporate many existing tech-
niques for missing value imputation and misalignment correction.

Other notable sequence modeling problems studied recently in-
clude machine translation [31], and semantically aware sentiment
analysis [29]. Such problems typically require modeling very long-
range dependencies within the input sequence (e.g. words far apart
in the input sentence), and so are not well suited for our approach.

3. THE LEARNING PROBLEM
Let x = 〈x1, . . . , x|x|〉 denote an input sequence, and let y =
〈y1, . . . , y|y|〉 denote a spatiotemporal output sequence. We use



bold face x and y to denote input and output sequences, respec-
tively, and use unbolded x and y to refer to individual entries in the
sequences, which we also refer to as tokens or frames. Each output
frame y ∈ <D is represented as a point in some D-dimensional
space, and we use superscripts y(d) to refer to individual dimen-
sions in the output frame. We often think of the sequences as time-
varying, i.e., that frame yt temporally preceeds frame yt+1. For
example, in visual speech animation, x could correspond to an au-
dio sequence, and y could correspond to an animation sequence of
a face model with D degrees of freedom. Figure 1 depicts an illus-
tration of x and y, which corresponds to a phonetic input sequence
and a one-dimensional spatiotemporal output sequence correspond-
ing to one of the parameters of a face model animating to the word
“prediction”.

Following the standard machine learning setup, our goal is to
a learn a function h(x) := y that maps input sequences to spa-
tiotemporal output sequences. We restrict ourselves to the super-
vised learning scenario, where input/output pairs (x, y) are avail-
able for training and are assumed to come from some fixed distri-
bution P (x, y). The goal is to find a predictor h such that the risk
(i.e., expected loss),

LP (h) =

∫
`(y, h(x))dP (x, y), (1)

is minimized. In this paper, we take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus use the squared L2 error,

`(a, b) = ‖a− b‖2Fro,

to measure imperfections in the predicton h(x) when the true out-
put sequence is y.1

Of course, P (x, y) is unknown. But given a training set of in-
put/output pairs drawn from P (x, y),

S = {(xi, yi)}
N
i=1, (2)

we can instead approximately minimize (1) by minimizing the em-
pirical risk,

LS(h) =
∑

(x,y)∈S

`(y, h(x)), (3)

which is equivalent to finding an h that minimizes the training loss.

3.1 Corrupted Training Data
We also consider the case where the output sequence (i.e., the

training label) may be corrupted in the training data. In particular,
we can now rewrite our training set as

S = {(xi, ỹi)}
N
i=1, (4)

where each ỹi is a potentially corrupted version of yi. Despite
training on corrupted ỹ, our goal is to still learn a predictor that
minimizes the risk on the original test distribution (1). The two
most common types of corruption are missing values [12, 36] and
misalignments [18, 20, 30, 41].

3.1.1 Missing Values
Missing values commonly occur when the spatiotemporal train-

ing data is generated from tracking data that has occlusions, such
as in human motion and articulatory datasets [15, 36]. For exam-
ple, if y corresponds to an animation sequence of a hand perform-
ing fingerspelling, then each dimension in an output frame y can
1In general, one could employ any convex error function without
significant modification to our approach.
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Figure 1: Depicting an example (a) input x and (b) output y for
the application of visual speech animation. Each dimension of
y corresponds to a parameter of a face model. Only the first
dimension of y is depicted.

correspond to a specific tracked marker (e.g., the tip of a finger).
Such markers naturally become occluded during the course of fin-
gerspelling, which leads to missing values in the resulting y.

For any specific output frame y, the corresponding (partially)
corrupted ỹ can be defined element-wise as:

ỹ(d) =

{
? if y(d) is missing
y(d) otherwise

,

where ? denotes a missing value that could take on any real value.
More generally, one could also consider cases where the mea-

surements for the output frames have been corrupted by noise (e.g.,
due to technology limitations), which leads to ỹ being defined as:

ỹ(d) = y(d) + ε,

for independently distributed random noise variables ε.

3.1.2 Misalignments
Misalignments can arise due to imperfections in the tracking

technology for generating the spatiotemporal training data [30], or
from natural temporal variability in the phenomenon being studied
[18, 20, 41], or both. For simplicity, we restrict ourselves to non-
warping misalignments of the output spatiotemporal sequences. For
example, if x corresponds to an audio sequence and y corresponds
to the associated animation sequence, then x and y may not be per-
fectly aligned frame-by-frame.

For any y, the corresponding ỹ would be

ỹ = shiftk(y),

where shiftk(y) is a shift operator that simply shifts the frames
of y such that ỹi = yi−k. We deal with boundary cases by padding
the start and end of the spatiotemporal sequence y.2

More generally, one could also consider cases where the out-
put sequences have been warped due to natural human variation
or imperfections in performing certain actions [5, 20]. For exam-
ple, different people may form somewhat different lip shapes while
speaking the same sentence. In that sense, one can consider all
such observed trackings ỹ as some warping of an unobservable gold
standard animation sequence y.

4. DECISION TREE FRAMEWORK
Sequence prediction problems are distinguished from unstruc-

tured prediction problems (e.g., univariate regression or classifi-
cation) due to the assumption that there are salient dependencies
2Such practices are common in, e.g., animation (where a still pose
is maintained at the start and end of the tracked sequence) and audio
synthesis (where silence is maintained at the start and end of the
output sequence).



between (often nearby) frames in the input and output sequences.
For example, in part-of-speech tagging, a good sequence predictor
should directly model the fact that two verbs rarely occur in adja-
cent frames in the output sequence. Similarly for visual speech an-
imation, a good spatiotemporal sequence predictor should directly
model the fact that certain vowels or consonant-vowel transitions
correspond to particular animation trajectories of a face model.

Our goal is to utilize powerful non-parametric predictors such
as decision trees [21, 24] for spatiotemporal sequence prediction.
However, decision trees are difficult to apply directly to sequence
prediction because they cannot naturally model variable-length pre-
diction problems. As such, we utilize a decompositon or reduction
approach that decomposes the spatiotemporal sequence prediction
problem to a series of simpler prediction problems, each of which
can be naturally modeled using a base decision tree predictor.

For the remainder of this section, we will first describe in Section
4.1 the specifics of the decomposition, and in Section 4.2 the base
decision tree model class we used. We present in Section 4.3 an
extension of our framework to deal with corrupted training data
using latent variables, and discuss in Section 4.4 how to extend our
approach to use random forests instead of single decision trees.

4.1 Sliding Window Decomposition
We decompose the spatiotemporal sequence prediction problem

into a series of overlapping fixed-length prediction problems. We
first make the following observations:

OBSERVATION 1. Spatiotemporal sequences can exhibit a wide
range of context-dependent curvature along the temporal domain
(i.e., a wide range of context-dependent “temporal curvature”).
For instance, in Figure 1(b), the output sequence can vary smoothly
or sharply depending on the input phonetic sequence.

OBSERVATION 2. For many domains, one only need to model a
sufficiently large local neighborhood in order to produce accurate
spatiotemporal output sequences. For instance, in Figure 1(b), the
temporal curvature of y in frames 1-5 do not depend on frames 16-
20 in neither x nor y.

Observation 1 suggests that our base predictor should directly
model multiple output frames jointly. Observation 2 suggests that
one need not model long-range dependencies in order to produce
accurate predictions. We thus define our base model as a decision
tree h that maps length-Kx inputs x̂j to length-Ky outputs ŷj , i.e.,
ŷj ≡ h(x̂j). I.e., if each frame yj ∈ <D is a D-dimensional
output, then h is a (D ×Ky)−variate regression model.

For input x, our prediction procedure can be described as:

1. Decompose x into a series of overlapping fixed-length inputs
〈x̂1, x̂2, . . . , x̂T 〉 by running Algorithm 1 using x and win-
dow size Kx.

2. For each x̂j , predict a fixed-length ŷj using a decision tree
base model h, resulting in a series of overlapping length-Ky

outputs 〈ŷ1, ŷ2, . . . , ŷT 〉 where each ŷj ≡ h(x̂j).

3. Construct the final output y by blending together ŷ1, ŷ2, . . . , ŷT

using the frame-wise mean.

Figure 2 depicts the prediction procedure for the setting of visual
speech animation for Kx = 5 and Ky = 5. The key remaining
step is to decide how to specify (i.e., train) the decision tree model
h that maps length-Kx inputs x̂j to length-Ky outputs ŷj , which
we discuss in Section 4.2.

The sliding window decomposition offers three key benefits. First,
using fixed-length prediction results in dramatically more tractable

Algorithm 1 Creating Overlapping Fixed-Length Subsequences
1: input: a, K // a sequence and a window size
2: R← (K − 1)/2 // K is assumed to be odd
3: T ← |a|
4: Ŝ ← ∅
5: for t = R+ 1, . . . , T −R do
6: Create fixed-length output â← 〈at−R, . . . , at+R〉
7: Ŝ ← Ŝ ∪ {â}
8: end for
9: return: Ŝ
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Figure 2: Depicting decision tree prediction pipeline. (a) We
start with a frame-by-frame input sequence x (e.g., a phonetic
sequence). (b) We convert x into a sequence of overlapping
fixed-length inputs (x̂1, x̂2, . . .). (c) We apply our learned de-
cision tree to predict on each x̂i, which (d) results in a sequence
of overlapping fixed-length outputs (ŷ1, ŷ2, . . .). (e) We finally
blend (ŷ1, ŷ2, . . .) by averaging frame-wise to arrive at our fi-
nal output sequence y. Only the first dimension of y is shown
for clarity.

machine learning problems compared to directly modeling variable-
length predictions, and allows us to employ highly complex mod-
els such as decision trees (see Section 4.2). Second, so long as the
fixed-length subsequences are sufficiently large, one can still make
very accurate predictions. The main requirements are that the input
length Kx be large enough to capture the salient context, and that
the output length Ky be large enough to capture the salient local
curvature of y. However, the larger that Kx and Ky are, the more
training data is required to learn an accurate model, since the in-
trinsic complexity of the decision tree model class (and thus risk of
overfitting to a finite training set) increases with Kx and Ky . Fi-
nally, prediction is very efficient, since computationally intensive
decoding procedures such as dynamic programming are avoided.

4.2 Decision Tree Base Model
Decision trees are amongst the most widely used methods for

discriminative classification and regression tasks [21, 24]. Decision
trees are typically specified as binary tree-structured models, and
predictions are made via traversing from the root node to a leaf



node. Each internal node is associated with a binary query on the
input features (e.g., is the fifth input feature non-negative?), with
a positive query response leading to traversing one subtree, and a
negative response leading to the other subtree. Each leaf node is
associated with a static prediction. One can thus think of decision
trees as a piece-wise static (w.r.t. the input features) function class
that can approximate almost any prediction function.

For our setting, our base decision tree model h is a sliding win-
dow predictor that predicts (D × Ky) outputs in each leaf node
(D outputs for each of Ky frames). In essence, h is a (D ×
Ky)−variate regression model. For example, in our application
in visual speech animation, D = 30 and Ky = 5, leading to a
150-variate regression problem.

We train h by creating a new training set Ŝ of fixed-length in-
put/output pairs. For a specified input length Kx and output length
Ky , we run Algorithm 1 over every x and y in S (2) to yield:

Ŝ = {(x̂j , ŷj)}
N̂
j=1. (5)

Note that if the average length of (x, y) ∈ S is T, then N̂ ≈ TN .
We can now rephrase our original learning goal (3) as finding an h
to minimize the error on the new training set Ŝ (5):

argminh∈H LŜ(h) ≡ argminh∈H

∑
(x̂,ŷ)∈Ŝ

`(h(x̂), ŷ), (6)

whereH is the class of (D×Ky)−dimensional multivariate regres-
sion trees, subject to some regularization constraint. Since decision
trees define a partitioning over the training data Ŝ, in practice, we
regularize by enforcing a minimal leaf-node size Nmin. Decision
trees are typically trained via top-down induction (cf. [21, 24]) to
greedily minimize the training loss.

Let Ŷ denote a set of training labels ŷ that was partitioned to the
same leaf node in h, and X̂ the corresponding inputs. Thus, we have
that h(x̂) is the same for every x̂ ∈ X̂, and the prediction of that
leaf node is exactly the mean of Ŷ (in order to minimize squared
loss). As such, one can rewrite the squared loss over any given leaf
node of h with training labels Ŷ as the unnormalized variance:

L2(Ŷ) = |Ŷ|variance(Ŷ)

= |Ŷ|
Ky∑
t=1

D∑
d=1

variance
({

ŷ
(d)
i,t

∣∣∣ ŷi ∈ Ŷ
})

, (7)

where ŷ(d)
i,t is the d-th dimension of t-th frame of ŷi, and |Ŷ| corre-

sponds to the number of training labels in Ŷ. Our learning goal (6)
then can be rewritten as:

argminh∈H L
2
Ŝ(h) ≡ argminh∈H

∑
Ŷ∈partitioning(Ŝ,h)

L2(Ŷ), (8)

where partitioning(Ŝ, h) corresponds to a partitioning of the
training labels according to the leaf nodes of h. The variance for-
mulation defined in (7) and (8) will be more convenient when de-
veloping our latent variable extension in Section 4.3.

4.3 Latent Variable Extension
We now describe a latent variable extension to accommodate cor-

rupted training data as described in Section 3.1. Each corrupted
piece of training data is associated with a latent variable z that cor-
responds to the missing or corrupted information. In the case of
missing values, each z corresponds to one specific missing value.
In the case of misalignment, each z corresponds to the correct
alignment of each complete input/output sequence pair (x, y).

Algorithm 2 Training Procedure for Latent Variable Framework
1: input: S // with missing values
2: input: Kx,Ky // input and output window size
3: input: Nmin // minimum leaf node size of base model
4: init: Ŝ using Algorithm 1
5: init: Z to default values
6: repeat
7: train h to minimize (9)
8: repeat
9: for z ∈ Z do

10: infer z to minimize (9)
11: end for
12: until convergence
13: until convergence
14: return: h, Z

The goal of the latent variable extension is to jointly infer the
z’s while training a good decision tree h. Let Ŝ denote the decom-
posed version of the original training set S into overlapping fixed-
length subsequences, and let Z denote the set of all latent variables.
Given Z, one can produce a “cleaned” version of the training set,
Φ(Ŝ, Z). We instantiate Φ for missing values in Section 4.3.1 and
for misalignments in Section 4.3.2. We can now extend our decom-
posed learning objective (8) to include latent variables Z:

argminZ,h∈H L
2
Φ(Ŝ,Z)(h), (9)

where the goal now is to jointly learn h and infer Z. Note that
when the training set S is not corrupted, then (9) reduces to (8)
since there are no latent variables (i.e., Z = ∅), and Φ(Ŝ, Z) = Ŝ
is just the identity function.

In practice, we solve (9) via alternating optimization, as described
in Algorithm 2. We first set Z to some default value (Line 4), and
use the resulting Φ(Ŝ, Z) to train a decision tree h as decribed in
Section 4.2 (Line 6).3 Given a trained h, we then infer a betterZ via
coordinate descent on each z ∈ Z by finding a “cleaner” Φ(Ŝ, Z)
that minimizes the loss of the leaf nodes of h (Lines 7-11).

The main novelty of our latent variable approach is that we can
exploit a specific property that arises from combining our sliding
window decomposition with a decision tree base model. In particu-
lar, our decomposition essentially createsKy copies of each output
frame y, which results in the same piece of corrupted training data
z being placed into many different leaf nodes of the decision tree
h. As a consequence, we can utilize the other training data in these
leaf nodes to estimate a better z that can improve the purity (i.e.,
decrease the variance) of the leaf nodes in h. We elaborate on this
point below for missing values and misalignments.

4.3.1 Missing Values
In the missing values setting, each z ∈ Z corresponds to a spe-

cific missing measurement of some output frame ỹ(d) in the origi-
nal training set S. At a high level, we infer z by averaging over all
the labels that belong to the same leaf nodes of h that z belongs to
(see (11) below). Figure 3 shows an illustration of this procedure.

For this section, we use the index i to refer to a specific partially
corrupted training example ỹi from the original training set S, in-
dex t to refer to a specific frame ỹi,t of ỹi, and index d to refer
to a specific dimension of the output frame ỹ(d)

i,t . We use the nota-

tion z(d)
i,t to refer to the z that corresponds to ỹ(d)

i,t . In other words,

3In the first iteration, we often train an overly regularized h (i.e.,
with larger Nmin) to use for inferring the first set of “cleaner” Z.
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Figure 3: Depicting latent variable inference in the case of miss-
ing values. Each latent variable z is associated with a specific
missing entry. Thus, each z is associated with multiple fixed-
length subsequences, which then become partitioned to differ-
ent leaf nodes. Estimating the latent variable z associated with
the missing value is simply the mean over all the training labels
in those leaf nodes. See Section 4.3.1 for more details.

following the definition in Section 3.1.1, we have a z(d)
i,t whenever

ỹ
(d)
i,t =? in the training set S.
The sliding window decomposition described in Section 4.1 cre-

atesKy copies of each ỹ(d)
i,t when generating the new training set Ŝ

(5) composed of overlapping fixed-length subsequences. In partic-
ular for some set of indices ji1, . . . , jiKy

on the decomposed training
set Ŝ, ỹi,t will correspond to the 1st frame of ŷji1

, the 2nd frame of

ŷji2
, and so forth. Thus, the Ky copies of ỹ(d)

i,t are located at:

ỹ
(d)
i,t ≡ ŷ

(d)

ji1,1
≡ ŷ(d)

ji2,2
≡ . . . ≡ ŷ(d)

ji
Ky

,Ky
. (10)

We define Φ(Ŝ, Z) → {(x̂j , ŷj)}
N̂
i=1 as imputing the missing

values in Ŝ using the corresponding latent variables, i.e.,

ŷ
(d)

jit ,t
=

{
z

(d)
i,t if ỹ(d)

i,t = ?

ỹ
(d)
i,t otherwise

.

For the remainder of this section, we focus on optimizing (9) for
a single latent variable z(d)

i,t (i.e, Lines 9-11 in Algorithm 2). We

observe that inferring the z(d)
i,t that minimizes (9) only depends on

the leaf nodes affected by z(d)
i,t , which can easily be seen via the

definition of (9) as the sum of (7) over each leaf node.
Following the notation in Section 4.2, we use Ŷ to refer to the

training labels from Ŝ that is partitioned to a specific leaf node in
the current decision tree h. Let n1, . . . , nKy denote the indices of
the leaf nodes that data points ŷji1

, . . . , ŷji
Ky

were partitioned to in

h. In other words, ŷj1 was partitioned to leaf node n1, ŷj2 was par-
titioned to leaf node n2, and so forth. We will refer to the training
labels partitioned to each of these leaf nodes as Ŷn1 , . . . , ŶnKy

.

Choosing z(d)
i,t to minimize the unnormalized variance (7) of the

leaf nodes n1, . . . , nKy yields:

z
(d)
i,t = mean

(
∪Ky

k=1

{
ŷ

(d)
m,k

∣∣∣ ŷm ∈ Ŷnk \ ŷji
k

})
. (11)

…
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ŷj2

ŷj3

shift�1(ỹi) =

shift1(ỹi) =

shift0(ỹi) =

Choose shift that
minimizes loss in
leaf nodes…

…

…
Figure 4: Depicting latent variable inference in the case of mis-
alignments. Each latent variable z defines a global shift of an
original complete output sequence y. Latent variable inference
corresponds to choosing the best value of z such that the re-
sulting sliding window subsequences have lowest training loss
in the affected leaf nodes. See Section 4.3.2 for more details.

In other words, z(d)
i,t is the average over all other training labels in

the leaf nodes that contain a copy of y(d)
i,t (10) . Note for a fixed

decision tree h, imputing the missing value of y(d)
i,t does not change

which leaf node each ŷjit belongs to, since that is determined based
solely on the input x̂jit

which was not modified.
In practice, we down-weight the importance of training labels

imputed using latent variables when computing the loss function
(7), so that they have smaller influence relative to training labels
that are observed. In Line 4 of Algorithm 2, we initialize the
weights of the missing values to 0 so that they have no influence
when training the first decision tree (i.e., the first trained decision
tree ignores missing values). After one round of missing value im-
putation (Lines 7-11), we set the weights of the training labels im-
puted using latent variables Z to some value between 0 and 1.

4.3.2 Misalignments
In the misalignment setting, each z ∈ Z corresponds to a shift

(e.g., 2 frames to the left) of a potentially misaligned spatiotem-
poral output sequence ỹ in the original training set S. At a high
level, we infer each z by trying all possible shifts of ỹ in order to
minimize the unnormalized variance of the leaf nodes of h that z
belongs to. Figure 4 shows an illustration of this procedure.

Similar to Section 4.3.1, we use the index i to refer to a specific
training example yi in the original training set S. Following the
definition in Section 3.1.2, we use the notation zi to refer to the
z that corresponds to i-th training label sequence ỹi in S. Let Ti

denote the length (i.e., the number of frames) of ỹi. We use the
indices ji1, . . . , jiTi

on the decomposed training set Ŝ to refer to the
ŷ that correspond to some subsequence of yi.

We define Φ(Ŝ, Z) → {(x̂j , ŷj)} as shifting the output subse-
quences in Ŝ according to the corresponding latent variables. Pro-
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Figure 5: Showing a comparison of SSW+DT with SEARN and DAgger over a range of minimum leaf node sizes Nmin for the three
benchmark datasets. We see that SSW+DT consistently outperforms or is competitive with SEARN and DAgger.

cedurally, Φ(Ŝ, Z) is generated by running Algorithm 1 on the
shifted training set {(xi,shiftzi(ỹi))}

N
i=1.

For the remainder of this section, we focus on optimizing (9) for
a single zi (i.e., Line 9 in Algorithm 2). Similar to Section 4.3.1,
inferring zi only depends on the leaf nodes affected by zi. Thus,
we simply choose the value of zi that minimizes the unnormalized
variance of the affected leaf nodes. Each choice of zi generates a
new set of subsequences ŷji1

, . . . , ŷji
Ti

that is a shifted version of

the default. Note for a fixed decision tree h, shifting the output
subsequences ŷji1

, . . . , ŷji
Ti

does not change which leaf node each

ŷjit
belongs to, since that is determined based solely on the input

x̂jit
which was not modified.

In essence, the latent variables Z are trying to correct any frame-
wise misalignments between the input and output sequences. We
chose a default of zi = 0, which is used in Line 4 in Algorithm 2.

4.4 Using Random Forests
Ensembles of decision trees, such as Bagging [2] and Random

Forests [3], can often improve upon the accuracy of a single de-
cision tree. Furthermore, Random Forests are particularly useful
for inputs that contain real-valued attributes, since randomly sam-
pling the splitting criteria is an attractive alternative to exhaustively
iterating over all possible splitting criteria (which tends to grow
proprotional to the training set size for real-valued inputs).

Our framework extends in a straightforward manner to ensemble
decision tree base models. In the case without latent variables, one
simply replaces the decision tree base model with an ensemble.
In the case with latent variables, inferring the latent variables Z
simply requires considering more leaf nodes from multiple trees.

5. BENCHMARK EXPERIMENTS
We evaluate our approach, which we refer to as SSW+DT (“Spa-

tiotemporal Sliding Window with Decision Trees”), using a num-
ber of benchmark datasets. We take the view of spatiotemporal
sequence prediction as a high-dimensional regression problem, and
thus evaluate primarily using squared error.

5.1 Datasets
Visual Speech Animation. Our main benchmark dataset is the

KB-2k visual speech dataset from [33]. KB-2k is a large audio-
visual dataset containing an actor speaking approximately 2500
sentences in a neutral tone while having his face tracked. The in-
puts x are phoneme sequences (sampled at 30 Hz), and the outputs
y are parameter sequences of a 30-dimensional Active Appearance
Model [23] of the actor’s lower face (also sampled at 30 Hz). Fol-
lowing the setup in [33], we used 50 sentences for testing and the
rest for training. For SSW+DT, we use Kx = 11 and Ky = 5,

which results in a 150-variate base regression model. The total size
of the decomposed training set is |Ŝ| ≈ 200K.

Automated Camera Control. Our next dataset is the camera
control dataset from [4]. The input sequences x are noisy detections
of basketball players on a basketball court. The output sequences
y are the tracked pan-angle states of a broadcast camera operated
by a human expert to track the interesting action on the court. The
dataset comprises seventeen minutes worth of frames sampled at 25
Hz. Following the setup in [4], we use 16 minutes for training and
the remaining minute for testing. For SSW+DT, we use Kx = 11
and Ky = 5, which results in a 5-variate base regression model.
The total size of the decomposed training set is |Ŝ| ≈ 34k.

Team Sports Player Movement Prediction. Our final dataset
is a player position prediction dataset derived from [39]. The input
sequences x are the tracked positions of nine basketball players on
the basketball court. The output sequences y are the tracked po-
sition of the remaining basketball player (who is the ballhandler).
The data comprises 2600 half court possessions sampled at 5 Hz.
We use 2000 posssesions for training and 600 possesions for test-
ing. For SSW+DT, we use Kx = 11 and Ky = 5, which results
in a 10-variate base regression model. The total size of the decom-
posed training set is |Ŝ| ≈ 77K.

5.2 Evaluating Prediction Quality
We first evaluate the effectiveness of SSW+DT on uncorrupted

training data (see Section 5.3 for experiments on corrupted train-
ing data). We primarily compare against existing decision tree
based decomposition approaches for sequence prediction, such as
SEARN [7] and DAgger [25].

SEARN and DAgger are designed to control for cascading error
effects from long range dependencies, and are complementary to
our SSW+DT approach which instead focuses on accurately cap-
turing the local temporal curvature of spatiotemporal output se-
quences. SEARN and DAgger both define a self-recurrent base
model that predicts a single frame y using both the standard input
subsequence x̂ as well as the previously predicted frames for the
entire input sequence x. For both SEARN and DAgger, the base
decision tree model takes as input the exact same Kx input subse-
quence as SSW+DT, as well as the previous Ky predicted frames.
Note that, because of their self-recurrent definition, SEARN and
DAgger require iterative training of the base model, and thus take
an order of magnitude longer to train than SSW+DT. All three ap-
proaches have the same computational costs at test time.4

Figure 5 shows the test results. We see that SSW+DT con-
sistently outperforms or is competitive with DAgger and SEARN

4Although the prediction procedure of SSW+DT is more easily
parallelized than that of SEARN and DAgger.
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Figure 7: Evaluating the performance of combining SSW+DT
with DAgger or SEARN on the visual speech dataset. For
all methods, the base decision tree model was trained using
minimum leaf node size Nmin = 10. We see that combining
SSW+DT with other decomposition approaches does not im-
prove performance.

(while being significantly faster to train). The gains of SSW+DT
are particularly notable on our main benchmark dataset for visual
speech generation, where even a heavily regularized SSW+DT out-
performs every version of SEARN and DAgger.

Figure 6 shows a comparison on the visual speech dataset with
existing state-of-the-art visual speech approaches, such as Dynamic
Visemes [33] and HMM-based approaches [40]. We observe that
SSW+DT substantially outperforms all baselines. In Section 6, we
provide additional evidence of the practicality of our approach via
a user preference study on the generated animation sequences.

5.2.1 Combining Decomposition Frameworks
Since SEARN and DAgger employ complementary decomposi-

tion approaches to the decomposition employed by SSW+DT, we
also evaluate combining SSW+DT with SEARN and DAgger. We
combine in the straightforward way: the decision tree base model
is a recurrent sliding window predictor that predicts a length-Ky

subsequence using both the standard input subsequence x̂ as well
as the previous Ky predicted frames. In other words, combining
SSW+DT with SEARN or DAgger results in a multi-frame exten-
sion of conventional SEARN or DAgger, respectively.

Figure 7 shows the results for our main benchmark setting of
visual speech. We used base models trained with minimum leaf
node size Nmin = 10. We observe that combining SSW+DT with
SEARN or DAgger does not improve performance.

5.3 Evaluating Robustness to Corrupted Train-
ing Data

We now evaluate the robustness of our latent variable extension,
which we refer to as SSWL+DT, to corrupted training data. We
evaluate for both missing values and misalignments, as described in
Section 3.1. We focus on the visual speech dataset for this analysis.
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Figure 8: Showing squared error on the visual speech dataset
with missing entries in the training labels. We see that
SSWL+DT can robustly tolerate many missing values.

Table 1: Evaluating the ability of SSWL+DT to infer the miss-
ing entries in the training set. The table below shows the mean
squared error of SSW+DT and SSWL+DT when predicting on
every missing entry in the training set.

Frac. w/ Missing Entries 0.1 0.3 0.5 0.8
SSW+DT 184.42 191.32 206.97 235.82

SSWL+DT 185.21 186.02 189.24 199.24

5.3.1 Missing Values
For the missing values setting, we randomly remove a fraction of

the training labels from the training set. Specifically, each output
frame y is a 30-dimensional output, and each dimension of each
frame is independently eligible for being missing. We instantiate
SSWL+DT as described in Section 4.3.1.

Figure 8 shows the results comparing SSWL+DT with SSW+DT
(which ignores missing values during training). We observe that
SSWL+DT can more robustly tolerate a substantial amount of miss-
ing entries in the training set. Table 1 analyzes how well SSWL+DT
can infer the missing entries in the training set, where we again ob-
serve that SSWL+DT is more robust than SSW+DT.

5.3.2 Misalignments
For the misalignments setting, we randomly choose training sen-

tences to misalign, and we randomly shift a misaligned training
sentence by one of {−3,−2,−1,+1,+2,+3} frames. We instan-
tiate SSWL+DT as described in Section 4.3.2, and we specify the
range of each latent variable as z ∈ [−3,+3].5

Figure 9 shows the results comparing SSWL+DT with SSW+DT
(which assumes that all sentences are correctly aligned during train-
ing). We observe that SSWL+DT is surprisingly robust to misalign-
ments in the training set, and actually achieves slightly better per-
formance than SSW+DT on the uncorrupted training set (although
the difference is not statistically significant). One possible inter-
pretation is that the visual speech dataset from [33] actually does
suffer from a small degree of misalignment in the data generation
process. Table 2 analyzes how well SSWL+DT can infer the cor-
rect alignments in the training set (assuming that the gold standard
is properly aligned), and we see that SSWL+DT is able to recover
a substantial fraction of the correct alignments.

6. VISUAL SPEECH USER STUDY
While squared error is a standard measure of prediction qual-

ity, it may not be fully indicative of which method achieves better
performance in the target application domain. For instance, one

5When the range of misalignments is not known exactly, one can
conservatively overspecify the the range of z, e.g., z ∈ [−5,+5].



Portion of Misalignments
0 0.2 0.5 0.66 0.9

S
qu

ar
ed

 E
rr

or

145

150

155

160

165

170

175

180

185

190

195

SSW+DT
SSWL+DT

Figure 9: Showing squared error on the visual speech dataset
with misalignments in the training labels. We see that
SSWL+DT is extremely robust to misalignments.

Table 2: Showing the fraction of training sentences in visual
speech dataset whose alignment zi was correctly inferred by
SSWL+DT. We see that SSWL+DT is able to correctly infer a
substantial fraction of correct alignments in the training data.

Fraction with Misalignments 0.2 0.5 0.66 0.9
Fraction Correctly Aligned 0.78 0.78 0.79 0.78

animation sequence might suffer higher squared error than another
animation sequence, but is more appealing visually. In this sec-
tion, we provide a complementary evaluation of the visual speech
animation setting via a user preference study.

We asked human raters to provide preference judgements be-
tween two animations for a common audio input sequence. The two
animations are placed side-by-side, thus allowing raters to make a
paired frame-by-frame comparison of how well the two animations
align with input audio. Figure 10 depicts a screenshot of this setup.

We considered five experimental conditions. Each experiment
condition compares our SSW+DT method with an alternative ap-
proach, in particular the four baselines evaluated in Section 5.2 as
well as the ground truth animations. Each experimental condition
was evaluated over all 50 test sentences with five judgements per
sentence. The left/right placements were selected randomly.

Table 3 shows the results. A win indicates that our SSW+DT
approach accumulated at least 3/5 votes for a test sentence, and a
loss indicates the opposite. The vote difference indicates the aver-
age difference in votes for SSW+DT and the alternative approach.
We see that SSW+DT is significantly preferred over all baselines,
which showcases the effectiveness of our approach in a practical
setting.6 The comparison between SSW+DT and the ground truth
indicates that there is still significant room for improvement. In-
terestingly, it appears that the preference gap between SSW+DT
and the ground truth is smaller than the preference gap between
SSW+DT and the other baselines.

7. LIMITATIONS AND FUTURE WORK
Although our approach showed significant promise in contextual

spatiotemporal sequence prediction, there is still significant room
for improvement. For instance, it would be interesting to train
on significantly larger and more heterogenous datasets (e.g., visual
speech that accounts for a variety of tones such as angry and sad).

For many settings, the spatiotemporal output sequences must
obey physical constraints. For example, visual speech is typically
animated on a virtual or physical rig [33]. Typically, an end-to-end
pipeline requires mapping the predicted spatiotemporal sequence
to a physically feasible trajectory, which often results in degraded

6See sample videos at: http://tinyurl.com/m52p64m.

Figure 10: Screenshot of our user study. For each test sentence,
we ask raters to view two competing visual speech animations
for the same audio sequence, and judge which appears more
natural. The left/right placement is randomly chosen.

Table 3: User study results for visual speech animation. For
each comparison, we ask five raters to view two competing
animations for the same audio sequence (see Figure 10), and
judge which animation appears more natural. Our SSW+DT
approach significantly outperforms all competing methods, al-
though there is still a sizeable gap versus the ground truth. All
results are 99% significant using a two-tailed signed-rank test.

COMPARISON WIN/LOSS VOTE DIFF

SSW+DT vs Dynamic Visemes [33] 47 / 3 3.32
SSW+DT vs HMM [40] 50 / 0 3.76

SSW+DT vs SEARN+DT [7] 44 / 6 1.96
SSW+DT vs DAgger+DT [25] 45 / 5 2.12

SSW+DT vs Ground Truth 10 / 40 -1.68

performance. A better approach would be develop a more holistic
machine learning approach that can directly learn to predict physi-
cally feasible spatiotemporal sequences.

In some sense, our latent variable approach only considered the
simplest types of corrupted training data. As such, another inter-
esting direction of research is to consider more complex forms of
corrupted training data, such as large contiguous regions of occlu-
sion [36], severe measurement error generating the output labels,
and warping effects [20].

A related issue is the fact that spatiotemporal sequence labels are
often generated from human demonstrations, and thus exhibit nat-
ural human variations. One interesting direction is to treat the gold
standard demonstration as a latent variable, which can be inferred
from imperfect demonstrations (cf. [5]).

Finally, our experiments showed that combining our SSW-DT
approach with SEARN [7] and DAgger [25] did not yield improved
performance. SEARN and DAgger focus on controlling for cascad-
ing error effects due to longer range dependences, and it would be
interesting to identify and formally characterize settings that might
enjoy improved performance from inheriting the strengths of both
SSW-DT as well as SEARN & DAgger.

8. CONCLUSIONS
We have presented a discriminative learning approach for spa-

tiotemporal sequence prediction. Our approach employs a sliding
window decomposition that enables using powerful non-parametric
base models such as decision trees. We also presented a latent vari-
able extension that robustly tolerates corrupted training labels such
as missing values and mis-alignments. We demonstrate empiri-
cally the benefits of our approach over existing decomposition ap-
proaches, as well as the robustness of our latent variable extension.
We showcased the practicality of our approach in a user preference
study for visual speech animation, where we found our approach to
be significantly preferred over several state-of-the-art baselines.

http://tinyurl.com/m52p64m
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