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ABSTRACT
The recent explosion of sports tracking data has dramatically
increased the interest in effective data processing and access
of sports plays (i.e., short trajectory sequences of players and
the ball). And while there exist systems that offer improved
categorizations of sports plays (e.g., into relatively coarse
clusters), to the best of our knowledge there does not exist
any retrieval system that can effectively search for the most
relevant plays given a specific input query. One significant
design challenge is how best to phrase queries for multi-agent
spatiotemporal trajectories such as sports plays.We have de-
veloped a novel query paradigm and retrieval system, which
we call Chalkboarding, that allows the user to issue queries
by drawing a play of interest (similar to how coaches draw up
plays). Our system utilizes effective alignment, templating,
and hashing techniques tailored to multi-agent trajectories,
and achieves accurate play retrieval at interactive speeds. We
showcase the efficacy of our approach in a user study, where
we demonstrate orders-of-magnitude improvements in search
quality compared to baseline systems.
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INTRODUCTION
Like many data-rich domains, sports analytics is currently ex-
periencing an explosive growth in both the quantity and gran-
ularity of data sources [35]. For instance, STATS SportVU
generates location data for every player, ball, and referee at 25
Hz along with detailed logs for events such as passes, shots,
fouls, etc. Given the overwhelming amount of data now being
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Figure 1. (a) Conventional methods for sports play access are based on
“keywords” (A1), which lack specificity and requires the user to browse
through a large collection before finding the specific plays of interest
(A2). (b) To improve retrieval effectiveness, we instead use a “chalk-
board” (B1), which is an intuitive and powerful query format that al-
lows the user to specify plays similar to how a coach draws up plays,
and can capture the rich semantics required for effective sports play re-
trieval (B2). The user can use the “selection tool“ (B3) to select specific
trajectories, or use the “drawing tool” (B4) to draw a query.

collected, the interest in effective information management
and access for sports data has correspondingly grown as well.

In many sports domains, an important unit of information is a
“play” or a short sequence of plays. Roughly speaking, a play
comprises the deliberate behavior of one or more players that
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Figure 2. Our Chalkboarding query language can take three different input types. (A) Exemplar-based where a user can play an existing game in
the database and choose a short segment play as query – features include: (A1) Visualization window of play containing player and ball trajectories
(red=ball, green=offensive-players, yellow=defensive-players, dots=end-of-trajectory), (A2) Retrieval window which displays the most relevant plays
in terms of rank, (A3) Retrieval button, (A4) Game-selection and scroll-bar to scrub through game of interest, (A5) Specify length of trajectories in
seconds. (B) Manipulating exemplars where a user can select just a subset of trajectories which they deem relevant – it is the same interface except for
(B1) the visualization window where the user can right-click to select the trajectories of interest. (C) Drawing plays where the user draws the play of
interest like a coach would on a chalkboard – additional features include (C1) visualization window where the user draws the play of interest, (C6) draw
tool selection button, (C7) toggle buttons to include actions in play (note, the user must also select the length of the play).

is designed to achieve a certain outcome, and can be thought
of as short annotated trajectories of the players and the ball.

Conventional approaches to sports play access has largely fo-
cused on improving categorization of plays [38], which offers
limited utility when the goal is to retrieve specific plays. In-
deed, the lack of specificity from categorizations often results
in the user to browse through a large collection of candidate
plays before finding the specific play of interest. For exam-
ple, in Figure 1(a), a user may search for all three point shots
resulting from a pass from the right (A1).

A key challenge in sports play retrieval is how to design a
query format that is both intuitive to use and rich enough to
enable precise specification of an information need. Given
the spatiotemporal nature of plays, it is clear that one must
depart from conventional text-based query formats.

In this paper, we present a new query paradigm for sports play
retrieval, which we call Chalkboarding. Instead of search-
ing plays using “keywords”, we use a visual representation of
player trajectories - inspired by the “x’s and o’s” a coach uses
to draw up plays. Figure 1(b) depicts our basic setup: given
an example play as the input query (B1), the system retrieves
a ranked list of plays ordered by relevance to the query (B2).
With a chalkboard, a user can use the “selection tool“ (B3) to
select trajectories for a particular example or use the “draw-
ing tool” (B4) to draw a query. As such, Chalkboarding is
an intuitive yet powerful query format that allows the user to
specify plays similar to how a coach draws up plays, and can
thus capture the rich semantics required for effective sports
play retrieval.

We view Chalkboarding as complementary to existing cate-
gorization methods. Much like how the early work on in-
formation access for the World Wide Web was largely di-
chotomized into directory/taxonomy versus query/retrieval
paradigms [45], we view our approach as the first instance of
the query/retrieval paradigm for sports plays to complement
the existing approaches for the directory/taxonomy paradigm.

Note that the two types of approaches can be integrated to-
gether for improved performance (e.g., one can retrieve for
only certain types of plays).

An immediate technical question that arises from our Chalk-
boarding query format is how to measure relevance between
the query and a candidate play, i.e., how to interpret the query.
For instance, sports plays are multi-agent trajectories, and so
relevance estimation requires solving a potentially combina-
torial alignment problem between the agents in the query and
in the candidate play.

In this paper, we also present a retrieval system tailored to-
wards retrieval of multi-agent trajectories. Our system uti-
lizes a role representation technique based on [36, 4] that can
be used to quickly and accurately find the best agent-to-agent
alignments between the query and a candidate play (or be-
tween two plays) for a variety of spatiotemporal distance and
similarity measures. We then leverage this representation to
develop efficient templating and hashing techniques for fast
indexing of a large repository of plays. Our full-stack system
can thus achieve accurate retrieval at interactive speeds.

We validate our system using a variety of empirical evalua-
tions, ranging from analyzing the accuracy/efficiency trade-
off of the various system components, to conducting a user
study on the end-to-end task of sports play retrieval. Our re-
trieval user study demonstrates that our Chalkboarding sys-
tem can achieve orders-of-magnitude improvements in search
quality compared to systems based only on categorization,
which showcases the efficacy of our approach.

CHALKBOARDING QUERY LANGUAGE
Our Chalkboarding query language is based on a spatiotem-
poral trajectories,and uses the x,y (and z if available) posi-
tions of players and the ball as the primary input. Trajecto-
ries can either be drawn by hand or extracted/selected from
recorded trajectories from real games (or a mix of both). Fig-
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Figure 3. Different input queries using the whole game-exemplars (Query (a) and (b))and select only the trajectories of interest (Query (c) and (d)).
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Figure 4. Different input queries using user drawn plays.

ure 2 illustrates the subtle differences between the various in-
put queries.

Exemplar-based query: A user can use a short play se-
quence from an existing game as the query (Figure 2(a)). The
features include: (A1) a visualization window of play con-
taining player and ball trajectories, (A2) a retrieval window
which displays the most relevant plays, (A3) a retrieval but-
ton, (A4) a game-selection and scroll-bar to scrub through
game of interest until the portion of game is found, and (A5) a
time-window selection. The last feature is quite important as
the current system requires the user to define a time-window
to the nearest second (1-5 seconds), and all searches will be
constrained to look for trajectories fitting that time duration.

Manipulating exemplar-based queries: A user can also ma-
nipulate an existing play sequence before using it the query
(Figure 2)(b)). The primary manipulation we consider in this
paper is erasing irrelevant players (B1). More generally, one
could also consider adjusting the trajectories of an existing
play as well.

Drawing-based query: A user can draw a play of interest on
the chalkboard. Again, the interface is similar to the other two
with the only difference being that the visualization window
is now a canvas in which the user draws their input play (C1).
To select the drawing feature, a “draw-tool” selection button
needs to be enabled (C6) and to include semantics such as
“pass” or “shot” onto the trajectories, we have a toggle button
for those actions included (C7).
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Figure 5. Our retrieval system is divided into two parts, preprocessing
and retrieval. The first part aligns the raw data and builds a hash ta-
ble while the second part contains a fast retrieval procedure. They are
explained separately in this section.

Drawing-based query on broadcast feed: Additionally, the
user can also draw on a broadcast feed of a game. To draw the
play on the broadcast view is a more intuitive way of interac-
tion. This requires an additional process of court calibration.
To calibrate the court from the broadcast view with the stan-
dard overhead view, we utilize a two-step calibration method
based on [12, 47] and [8]. The first step is template-based
matching similar to [12, 47]. In order to do landmark match-
ing on the court, we synthesize a relatively clean overhead
view of the court by annotating a number of frames in differ-
ent perspectives. Calibration is accomplished by using scale-
invariant feature transform (SIFT) [34] and random sample
consensus (RANSAC) [18] to match every frame to one of
the templates and find the correspondence. To deal with ill-
posed initial conditions, pointless calibration [8] is applied by
using the calibration matrix from the previous frame.

The query types are all expressed in the format of multi-agent
trajectories, and can be viewed as differing ways of con-
structing such trajectories. In particular, the exemplar-based
and drawing-based input types represent subtractive versus
additive query construction procedures: the exemplar-based
queries take a full-set of multi-agent trajectories and subtract
irrelevant players, whereas the drawing-based queries directly
construct the trajectories of the relevant players. Note also
that exemplar-based queries strictly require the user to have
already identified a play of interested (e.g., from browsing
existing plays), whereas drawing-based queries can be con-
structed without any other information.

Examples of exemplar-based and drawing-based queries are
depicted in Figures 3 & 4, respectively. Note that the top-
ranked retrieval plays are much more specific to the input
query than those that could be retrieved from a text-based
(i.e., categorization) query.

CHALKBOARDING RETRIEVAL SYSTEM
Figure 5 shows an overview of our retrieval system. To en-
able quick and accurate retrieval, “intelligent preprocessing”

Figure 6. (a) Shows the raw trajectories (left) and the covariance (right)
of each player during a quarter of play, which shows that players can
be located in any part of the court. (b) However, if we align the player
positions to a formation template at each frame, we show that players
are spaced into a formation.

of the raw trajectory data is required. This preprocessing
takes the form of using a role-based representation to enable
fast alignment of trajectories, using a simple similarity mea-
sure to estimate relevance, followed by learning a hash-table
to find the most relevant plays quickly.

After preprocessing, play retrieval comprises of first comput-
ing the hash entry from the query to find the most likely candi-
dates, and then followed by local search to rank the candidate
plays. Descriptions of these modules are given in the follow-
ing subsections. Our full-stack system can retrieve relevant
results from a repository of hundreds of thousands of plays in
less than second, and can thus support interactive use cases.

Role Representation for Fast Alignment
To measure play similarity, we employ an agent-to-agent tra-
jectory comparison method. The advantages of using such an
approach are: i) the representation is lossless (i.e., no quanti-
zation is required), ii) only a limited number of additional fea-
tures are required to be stored (and not an overcomplete set of
hand-crafted features which maybe hard to store in memory),
iii) the representation is visual and interpretable, and iv) it al-
lows for full interactivity with the data (i.e., users can select
the precise time-window and agents of interest).

A drawback however, is the problem of permutations. An
example of this problem is shown in Figure 6(a) where we
show the raw trajectories and the covariances of each player
across a quarter of a match. Here we can see players tend
to move all around the court and not in one distinct area. In
terms of matching trajectories, this means we would have to
check all permutations, which in the case of basketball is 5! =
120 (if we compare the trajectories of both teams it is 1202).

Although exhaustively comparing all trajectories would yield
the optimal agent-to-agent alignment, recent research in
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Figure 7. A toy example of the data alignment problem. (a) S1 is the play
of interest, if we find an exactly identical play, the distance between them
d(S1,S1) should be zero. (b) However, if there is another same play S2,
but player Jordan and changed their roles, the distance d(S1,S2) will
no longer be zero due to the misalignment of these two players.

multi-agent systems have shown that matching the trajecto-
ries to a predefined formation template can yield near-optimal
agent-to-agent alignments [36, 4] in a single pass. We discuss
the choice of distance metric in the next section on relevance
estimation.

Figure 7 depicts a toy example that illustrates the intuition
behind the formation-based approach [36, 4]. We can rep-
resent the play in Figure 7(a) as S1 = [sball,SoffTeam],
where each individual trajectory can be described as the
vector s = [x1, y1, . . . , xF , yF ]

T , and F is the num-
ber of frames in a play. Team behavior can then
be described as the trajectories of the five players:
SoffTeam = [sJordan, sPippen, sKukoc, sLongley, sRodman]. If the
team runs exactly the same play at some other point in time,
then those two plays will already be pre-aligned (i.e., each
player runs the exact same trajectories in both plays), and the
distance between them will be zero (for any distance metric).
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an 100,000-sample database and only the attacking team is considered.

If we instead compare S1 with S2 from Figure 7(b) using the
same representation as S1, then the distance will not be zero
as Jordan and Pippen have switched positions. However, if
we discard the identity of the player and use their role infor-
mation at that frame – SoffTeam = [sPG, sSG, sSF, sPF, sC], the
distance between S1 and S2 both plays are seen as the same
as the distance is zero (Figure 7(c)). In addition to normaliz-
ing for permutation, the role-representation is also robust to
substitutions, and agnostic to team identity.

In terms of preprocessing, we first calculate the formation
template directly from data in way similar to [4]. At each
frame, we then assign each player for each team to one of
five roles (PG=point-guard, SG=shooting-guard, SF=small-
forward, PF=power-forward and center=C). We do this by
first calculating the cost matrix between the template and the
current frame snapshot. We then use the Hungarian algo-
rithm [29] to make the assignment, which results in a single



l2 l∞ DTW Frechet LCSS Edit
ACC 0.773 0.755 0.787 0.741 0.430 0.412

Table 1. The average accuracy of each metric in 5-fold cross validation
experiment.

role feature being added to the raw position data, which is
basically just an extra column in the database.

We also run a sliding window (i.e., 1-5 seconds) and do a
majority vote to determine which role that player was in for
different time-windows (i.e., 1-5 seconds), which results in an
additional 5 columns in the database of features, and is still
very lightweight. In order to make all the plays comparable,
we rotate all the plays that are conducted on the right side of
court by 180 degrees so that the coordinates of all the plays
are aligned.

To show that our fast alignment method approximates the op-
timal alignment, we randomly selected 10 queries and chose
the top 50 retrieved results. Figure 8 shows the plot of the av-
erage distance against the curve of three different alignment
methods (see next subsection for metric distance used). The
best performing alignment method was that of the exhaustive
method. The next best was our fast-alignment using the role-
representation which was a close approximation to the opti-
mal alignment. The worse performing alignment algorithm
was that of identity, where the initial representation was fixed
for the entire play.

Figure 9 shows the timing comparison, where we see that the
role-representation alignment method is substantially faster
than exhaustive alignment. This experiment was conducted
on a 3.2GHz, 8GB RAM computer. It should be noted that
only the attacking team is considered in this test. Had both
teams (offense and defense) been involved in the retrieval
task, the time cost difference would be even more significant
by another order of magnitude.

Relevance Estimation
Relevance estimation is the problem of determining which
plays in the data repository is most relevant to an input query,
and is typically addressed by producing a ranking of de-
creasing similarity to the input query [42, 37]. Given that
our approach compares agent-to-agent trajectories, we need a
suitable similarity metric to capture the differences between
plays.

We use a supervised classification experiment to evaluate
which distance measure is most suitable for measuring play
similarity. We asked a domain expert to annotate 1666 three-
second plays into 38 classes based solely on the ball trajec-
tory. We conducted the experiment via 5-fold cross validation
and we compared six different metrics on the aligned trajec-
tories: l2 distance, l∞ distance, Frechet distance, dynamic
time warping (DTW), longest common subsequence (LCSS)
and edit distance (Edit). For LCSS and edit distance, we use
the SAX [30] to transform the time series into symbol series
representation, which eliminates the effect of absolute posi-
tion and focuses on the shape of trajectories. We used nearest
neighbor as our classifier.
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Figure 10. The reconstruction error against the number of clusters for
time window sizes from 1 to 5 seconds.

Figure 11. Some examples of the ball trajectories distribution in each
cluster with 3-second time window. Red curve is the mean trajectory
and the small red circles are the end points.

Table 1 shows the classification accuracy. We can that the
first four metrics all worked reasonably well. To test if there
were any significant differences between these four metrics
we used the Mann-Whitney U significance test, which we
chose as the number of examples per class were imbalanced.
After running our significance tests, we found that there was
no significant difference between these four. As such, we
used the l2 distance as our similarity measure as it is the eas-
iest to deploy.

Hashing for Fast Indexing
In our dataset, we had over 600 hours worth of tracking data
(∼30GB), making similarity comparisons between a query
and the entire database an expensive task. For example, if we
were to break the database into a series of three second plays,
this would equate to 4 million different examples. If each
comparison took 30ms, searching the entire dataset would
take 120secs – far too long to be usable as an interactive re-
trieval system.
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Figure 12. An example of our retrieval process: (a) 3-second query with only ball trajectory, (b) Compare to the centroid of each cluster, (c) Acquire
the plays with entry cc (cluster index) from hash table, only look at 3s entry (red column) in this case, (d) According to the game index, fetch the
corresponding plays from raw tracking data, (e) Find the top K nearest neighbor.

The standard approach to improve retrieval speed is to use a
hash-table or some other kind of indexing [37]. Based on do-
main experts’ opinions as well as our own observations while
building the initial version of the system, we used the ball
trajectory as our index feature. To learn the dictionary of in-
dexes, we applied K-means clustering using the l2 distance
on all ball trajectories for time-windows of 1, 2, 3, 4 and 5
seconds. To choose K, we inspected the reconstruction error
plots (Figure 10), which we chose to be around 60 clusters.
Examples of some of the clusters for the 3 second trajectories
are shown in Figure 11.

In addition to using the spatial location, ball-actions (e.g.,
pass, dribble, shots) were incorporated by further splitting the
clusters into semantic clusters. To ensure that each cluster
contained less than 1000 plays, we further divided clusters
which had more than 1000 plays into sub-clusters by apply-
ing another round of K-means on the specific cluster until this
was achieved (K was chosen according to the size of plays
within the current cluster – e.g., if a cluster had 2000 plays,
we used K=3).

In terms of preprocessing, we use each frame as the starting
point of the ball trajectory and obtain the ball trajectory for
various time-windows (1-5 seconds). For each time-window,
we then compare that trajectory to the centroid trajectory
within the hash-table for the various time-windows. We then
assign the index value of the closest centroid trajectory to that
frame for each time-window.

Summary of Retrieval Process
Figure 12 depicts the end-to-end process of computing sim-
ilarity measures of plays in our repository against an input
query. Given an input query (Figure 12(a)), we first compare
its ball trajectory against the centroids of every cluster (Fig-
ure 12(b)). In this case, cluster ‘cc’ has the best match, and
acquire the 3-second plays from that cluster using a hash table
lookup (Figure 12(c) and Figure 12(d)). Finally, we perform
alignment and similarity matching between the query and the
plays in the cluster, and return a ranking of the most similar
plays. Note that our approach can continuously run in the
background and produce increasingly better rankings of re-

trieved plays over time, e.g., by checking the next best cluster
from Figure 12(b) (although the top retrieved plays tend to be
from the best cluster and so does not change).

USER STUDY EXPERIMENTS
Since Chalkboarding is designed to help users to quickly find
similar plays in a huge database, we validated our system
via an user study on the end-to-end task of play retrieval.
The goal of the user study was to compare the search quality
of rankings generated by Chalkboarding versus conventional
keyword-based queries.

Baseline
The baseline system that we compare against is a keyword-
based retrieval system. A basketball expert provided the key-
words (action + coarse location) for each retrieval task, so
that users with little prior knowledge do not need to select the
keyword themselves.

Experiment Design
We selected eight retrieval tasks for our user study that are
representative of basketball plays which are shown in Fig-
ure 13. For the Chalkboarding system, the first four plays
are provided as exemplar-based queries which the users can
use. For the remaining four queries, we only showed them
the exemplar figures with selected trajectories and asked the
users to draw the queries on the chalkboard as a drawing-
based query.

We evaluated the retrieval quality via an interleaved evalua-
tion, where the top thirty results from the Chalkboarding and
baseline systems combined via the Team-Draft Interleaving
method [9] into a single ranking (see Figure 14). The com-
bined ranking is then embedded in the retrieval window of the
Chalkboarding retrieval interface (pane B2 in Figure 1(b)),
after which the user will scan the results top-down and select
the relevant plays.

This setup offers two benefits: i) it is a blind paired test that
can control for user- and task-specific variability, which is
often more reliable and sensitive than two-sample or A/B
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Figure 13. Depicting the eight test queries for our user study. These queries cover a wide range of plays in competitive basketball.

Figure 14. Depicting an interleaving of two rankings.

tests [9]; and ii) by only presenting a single ranking, inter-
leaving allows for evaluation to be conducted in a natural us-
age context.

Procedure
We recruited ten volunteers with a wide range of basketball
knowledge to participate in our user study. We first provided
every volunteer with a ten minute introduction to ensure they
understood basic basketball concepts. In particular, we used
a ninth retrieval task as a demonstration for how to recognize
relevant plays.

Every participant was allocated half an hour to perform all
eight retrieval tasks. After the initial demonstration, all felt
comfortable issuing Chalkboarding queries.

Participants used our Chalkboarding interface to retrieve each
query and the result panel showed interleaved results from
both systems. They were asked to scan the results top-down
and highlight retrieved plays that they think are relevant to
the input query. For most users, it took about ten minutes
to acclimatize to the interface. After this time however, the
average time it took to determine play relevance was around
fifteen seconds.

Benchmark Results
Using the relevance judgments of the participants, we per-
formed a benchmark comparison using two standard retrieval
evaluation metrics: average precision [42, 37, 49] and ex-
pected reciprocal rank of the first result [10]. Let rj denote

Q1 Q2 Q3 Q4 Overall
Chalkboarding 0.78 0.88 0.73 0.91 0.83
Keyword 0.06 0.17 0.24 0.09 0.14
Win / Lose 10 / 0 10 / 0 10 / 0 10 / 0 40 / 0

Q5 Q6 Q7 Q8 Overall
Chalkboarding 0.90 0.71 0.83 0.85 0.82
Keyword 0.06 0.13 0.03 0.18 0.10
Win / Lose 10 / 0 10 / 0 10 / 0 10 / 0 40 / 0

Table 2. Comparing the mean average precision aggregated across all
users for each query. Query 1-4 used exemplar-based queries in our sys-
tem and 5-8 used drawing-based query. The “Win / Lose” rows show
the number of users for whom Chalkboarding achieved a higher aver-
age precision. We see that Chalkboarding achieves orders-of-magnitude
better retrieval quality.

the rank of the j-th relevant document, then the average pre-
cision of a ranking can be defined as:

AvgPrec =
1

#rel

∑
j

Prec@rj ,

where Prec@rj is the precision of the top rj items in the
ranking (i.e., fraction of relevant results in the top rj). The
expected reciprocal rank is defined as:

ERR =
1

r1
,

which is simply the inverse of the rank of the first relevant
result. Average precision is more recall-focused (i.e., places
more emphasis on the rank location of all relevant results),
whereas expected reciprocal rank is more sensitive to initial
search time to finding the first result. For our setting, we com-
puted both of the evaluation measures on the two virtual rank-
ing functions embedded in the interleaved ranking, and over
the pooling of both top-30 results (i.e., pooling based retrieval
evaluation [37]).

Table 2 shows the results for average precision. The top
two rows of the tables show the mean average precision ag-
gregated across all ten users for each system. Recall that
the first four retrieval tasks performed were using exemplar-
based queries and the second four were using drawing-based



Q1 Q2 Q3 Q4 Overall
Chalkboarding 0.83 0.85 0.63 1 0.8262
Keyword 0.03 0.06 0.14 0.04 0.07
Win / Lose 10 / 0 10 / 0 10 / 0 10 / 0 40 / 0

Q5 Q6 Q7 Q8 Overall
Chalkboarding 0.95 0.82 0.95 0.9 0.90
Keyword 0.03 0.11 0.02 0.14 0.08
Win / Lose 10 / 0 10 / 0 10 / 0 10 / 0 40 / 0

Table 3. Comparing the expected reciprocal rank of the first rele-
vant result across all users for each query. Comparing the mean av-
erage precision aggregated across all users for each query. Query 1-4
used exemplar-based queries in our system and 5-8 used drawing-based
query. The “Win / Lose” rows show the number of users for whom
Chalkboarding found a relevant result earlier in the ranking. We see
that Chalkboarding achieves orders-of-magnitude better retrieval qual-
ity.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Chalkboarding 10 9 7 10 10 9 10 8
Keyword 0 1 3 0 0 1 0 2

Table 4. Showing users’ reported interface preference for each query.
We see that users overwhelmingly preferred Chalkboarding over the
baseline system.

queries. In both settings, our Chalkboarding system substan-
tially outperformed the baseline system. It should be noted
that the difference in retrieval quality is very large for all
queries.

The “Win / Lose” rows in Table 2 show the breakdown of
how many individual users experienced higher average pre-
cision using Chalkboarding compared to the baseline system.
We see that our Chalkboarding system wins for every user on
every retrieval task.

Table 3 shows the results for expected reciprocal rank, and
is structurally analogous to Table 2. We again see that our
Chalkboarding system achieves significantly better perfor-
mance compared to the baseline approach.

Subjective Evaluation
We also conducted two subjective evaluations. In the first
evaluation, we showed participants both the keyword-based
interface (i.e., Figure 1(a)) and the Chalkboard interface and
asked them which interface they prefer to use for each re-
trieval task. All participants had previous experience with
keyword-based search interfaces and naturally understood
how to use our keyword-based interface. Table 4 shows the
results. For most retrieval tasks, the participants unanimously
preferred Chalkboarding over the baseline system. Only for
queries 2, 3, 6 and 8, some users still like to use the search
bar because those plays were easy to describe.

We finally asked the participants to answer a short survey re-
garding their user experience, and the results are shown in in
Figure 15. All participants agreed that our system was more
enjoyable to use because it had more functions as well as be-
ing more intuitive. In terms of effectiveness, two users with
rich basketball knowledge thought the two systems were sim-
ilar because they didn’t think using terminology to describe

Figure 15. Showing results of our subjective survey. We see that users
largely preferred the Chalkboarding system and found it easy and en-
joyable to use.

a play is more complex than drawing. But for other users,
instead of using domain knowledge to describe a play, draw-
ing a play was definitely easier to find what they want. Seven
participants thought Chalkboarding was more helpful for play
retrieval, while the remaining three were neutral.

In our open-ended discussions about the system after the user
study, the main criticism raised by the three participants who
did not find Chalkboarding more helpful is that it is some-
times also important to acquire all the plays of one category.
One suggestion was to have a hybrid system, where the user
could use both the key-word and Chalkboard for their input
query. Another criticism was that the user had to assign a
role to each player, which some felt was unnecessarily com-
plicated. We agree with this comment as this step can be au-
tomated. In future iterations, we intend to include this auto-
mated role assignment feature which will make the interface
simpler.

RELATED WORK
The study of information retrieval enjoys a long and rich his-
tory in the information science and computer science com-
munities [42, 37]. The overwhelming majority of previous
work has been based on text-based or other types of tokenized
query formats, which are unsuitable for sports play retrieval
due to the inherent spatiotemporal nature of plays.

The most commonly studied type of retrieval and recom-
mender systems that incorporate spatial or temporal data are
those that are “location-aware”, i.e., make use of information
regarding the user’s location to retrieve or recommend more
relevant information [1, 48]. However, such approaches gen-
erally do not study new query formats.

Indeed, the use of free-form or “ad-hoc” queries in (mostly)
unstructured corpora has proven to be significantly more user-
friendly than more structured query types (e.g., SQL) [42,
37], and have come to dominate the commercial search indus-
try. In a sense, our Chalkboarding approach can be viewed as



a new variant of ad-hoc retrieval designed for spatiotemporal
trajectory domains.

The primary complement to the query/retrieval paradigm
within the broader field of information management and ac-
cess is the directory/taxonomy paradigm [45]. Previous work
on information access in the sports domain have largely fo-
cused on the directory/taxonomy paradigm via improving cat-
egorization of plays [38, 13, 3], which offers largely orthogo-
nal benefits compared to the query/retrieval paradigm. How-
ever, similar to how one can construct a taxonomy of queries
in web search [6], we have shown that integrating the two
types of approaches can offer further benefit. Other work in
sports analytics have largely focused on developing advanced
metrics to evaluate player performance [19], analyzing video
[32], or analyzing basic spatial patterns [39, 50].

Our approach bears affinity to other work on redesigning
the interface between the human user and the data reposi-
tory for various information retrieval and gathering tasks [5,
11, 16, 43]. Oftentimes, tuning system components such as
the relevance estimation method results in relatively modest
improvements in performance (cf. [49]), whereas design-
ing a new interface to either accept richer inputs or produce
richer outputs can lead to orders-or-magnitude improvements
in overall system quality.

From the technical perspective, the primary challenge that we
study is how to compare the similarity between two multi-
agent trajectories. There have been ample previous work
studying how to measure similarity between trajectories and
time series [14, 44, 15, 21, 52], but they are largely focused
on single trajectories rather than multi-agent ones. We build
upon recent work that leverage a “role-based” representation
[36, 46] that can compactly and efficiently characterize group
behavior and formation in the sports domains.

The role representation is used primarily for alignment pur-
poses and leaves open the question of what similarity measure
to use for comparing individual pairs of aligned trajectories.
One popular line of research focused on elastic measure that
address warping and shifting effects in space and/or time [14,
2, 27, 28, 41, 31], while another line of research focused on
finding the most simlar or dissimilar points in two trajecto-
ries in order to ensure some notion of robustness (e.g., via
the Hausdorff distance) [33, 25]. As the latter is designed to
measure distance between polygons and does not take the di-
rection of trajectories into consideration [52], in this paper,
we test some representative algorithms from the former cate-
gory to find an ideal one for our task.

All modern retrieval systems require fast indexing in order
to quickly search through a large repository, and one pop-
ular approach (which we also adopt) is to use a hash table
[23, 51]. In different domains, the hash function is designed
differently for specific applications. In general, the goal of
hashing is to minimize time cost. Our approach is built on the
concept of locality sensitive hashing (LSH) [24, 20], which is
designed to place similar samples into a same address. Such
an approach has also been applied in other settings where a
similarity measure or ranking is required [26, 40].

DISCUSSION OF LIMITATIONS & FUTURE WORK
In a sense, our approach can be thought of as the simplest
approach that can support effective sports play retrieval, and
motivates many directions for future work. For instance, we
can incorporate more sophisticated categorization techniques
in order to further refine our query language (i.e., further com-
bine the query/retrieval and directory/taxonomy paradigms).
From an interface design standpoint, one obvious area for im-
provement is spatial manipulation of existing or pre-drawn
trajectories (i.e., slightly translating or rotating an existing
trajectory).

There are other important information access tasks beyond
retrieval, most notably including summarization and person-
alized curation [11, 43]. A typical interface for the summa-
rization setting is to construct clusters of results and describe
the relationships between clusters. Chalkboarding can also be
used to improve categorization systems by creating exemplars
for clustering purposes.

From a system design standpoint, it would be highly benefi-
cial to further improve retrieval speeds. For instance, many
applications designed on top of web search require issuing
multiple search queries, which is impractical given our cur-
rent system. It is possible that using a hierarchical hash-
ing/indexing technique and/or coresets [22, 17] can substan-
tially improve retrieval speed.

From a relevance estimation standpoint, our choice of dis-
tance measures can be improved. For instance, one of the
early breakthroughs in conventional information retrieval is
the concept of “inverse document frequency” [42], which es-
sentially states that tokens that appear in many documents in
the corpuse (e.g., stopwords such as “the”) are not as indica-
tive of relevance more rare words. It would be interesting to
incorporate this concept into our our trajectory distance mea-
sures. More generally, one can consider applying machine
learning to develop even more accurate measures given ap-
propriate training data [49, 7].

Another interesting direction is to incorporate more spatial
regularities into the query processing. For example, under-
standing spatial equivalence classes [39, 50] can enable the
retrieval system to understand that the left corner three point
shot is (almost) equivalent to the right corner three point shot,
which can further improve the accuracy of the system.

Beyond sports domains, query formats such as Chalkboard-
ing could be applied to a wide range of spatiotemporal re-
trieval settings. Perhaps the most natural data domain is other
types of behavioral tracking data, such as animal behavior.

CONCLUSION
We have presented Chalkboarding, which is a new query for-
mat that can naturally capture complex semantics of multi-
agent trajectories for sports play retrieval. We have also pre-
sented a retrieval system tailor towards efficient and accu-
rate sports play retrieval. Our full-stack system can achieve
accurate retrieval at interactive speeds, and we demonstrate
its effectiveness in a retrieval user study where our approach
achieves orders-of-magnitude improvement in retrieval effec-
tiveness over baseline methods.
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