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Abstract— Many modern nonlinear control methods aim to
endow systems with guaranteed properties, such as stability
or safety, and have been successfully applied to the domain
of robotics. However, model uncertainty remains a persistent
challenge, weakening theoretical guarantees and causing im-
plementation failures on physical systems. This paper develops
a machine learning framework centered around Control Lya-
punov Functions (CLFs) to adapt to parametric uncertainty
and unmodeled dynamics in general robotic systems. Our
proposed method proceeds by iteratively updating estimates
of Lyapunov function derivatives and improving controllers,
ultimately yielding a stabilizing quadratic program model-
based controller. We validate our approach on a planar Segway
simulation, demonstrating substantial performance improve-
ments by iteratively refining on a base model-free controller.

I. INTRODUCTION

The use of Control Lyapunov Functions (CLFs) [4], [38]
for nonlinear control of robotic systems is becoming in-
creasingly popular [26], [17], [29], often utilizing quadratic
program (QP) controllers [2], [1], [17]. While effective, one
major challenge is the need for extensive tuning, which
is largely due to modeling deficiencies such as parametric
error and unmodeled dynamics (cf. [26]). While there has
been much research in developing robust control methods
that maintain stability under uncertainty (e.g., via input-
to-state stability [39]) or in adapting to limited forms of
uncertainty (e.g., adaptive control [23], [20]), relatively little
work has been done on systematically reducing uncertainty
while maintaining stability for general function classes of
models.

We take a machine learning approach to address the above
limitations. Learning-based approaches have already shown
great promise for controlling imperfectly modeled robotic
platforms [22], [35]. Successful learning-based approaches
have typically focused on learning model-based uncertainty
[5], [8], [7], [37], or direct model-free controller design [25],
[36], [14], [42], [24].

We are particularly interested in learning-based approaches
that guarantee Lyapunov stability [21]. From that perspective,
the bulk of previous work has focused on using learning to
construct a Lyapunov function [31], [12], [30], or to assess
the region of attraction for a Lyapunov function [9], [6].
One limitation of previous work is that learning is conducted
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Fig. 1. CAD model & physical system, a modified Ninebot Segway.

over the full-dimensional state space, which can be data
inefficient. We instead constructively prescribe a CLF, and
focus on learning only the necessary information to choose
control inputs that achieve the associated stability guarantees,
which can be much lower-dimensional.

One challenge in developing learning-based methods for
controller improvement is how best to collect training data
that accurately reflects the desired operating environment
and control goals. In particular, exhaustive data collection
typically scales exponentially with dimensionality of the joint
state and control output space, and so should be avoided. But
first pre-collecting data upfront can lead to poor performance
as downstream control behavior may enter states that are not
present in the pre-collected training data. We will leverage
episodic learning approaches such as Dataset Aggregation
(DAgger) [33] to address these challenges in a data-efficient
manner, and lead to iteratively refined controllers.

In this paper we present a novel episodic learning approach
that utilizes CLFs to iteratively improve controller design and
achieve Lyapunov stability. To the best of our knowledge,
our approach is the first that combines CLFs with general
supervised learning (e.g., including deep learning) in a
mathematically integrated way. Another distinctive aspect is
that our approach performs learning on the projection of state
dynamics onto the CLF time derivative, which can be much
lower dimensional than learning the full state dynamics or
the region of attraction.

Our paper is organized as follows. Section [lI| reviews
input-output feedback linearization focused on constructing
CLFs for unconstrained robotic systems. Section dis-
cusses model uncertainty of a general robotic system and
establishes assumptions on the structure of this uncertainty.



These assumptions allow us to prescribe a CLF for the true
system, but leave open the question of how to model its time
derivative. Section [[V]provides an episodic learning approach
to iteratively improving a model of the time derivative of the
CLFE. We also present a variant of optimal CLF-based control
that integrates the learned representation. Finally, Section
provides simulation results on a model of a modified Ninebot
by Segway E+, seen in Fig. [I} We also provide a Python
software package (LyaPy) implementing our experiments and
learning framework

II. PRELIMINARIES ON CLFs

This section provides a brief review of input-output feed-
back linearization, a control technique which can be used to
synthesize a CLF. The resulting CLF will be used to quantify
the impact of model uncertainty and specify the learning
problem outlined in Section

A. Input-Output Linearization

Input-Output (IO) Linearization is a nonlinear control
method that creates stable linear dynamics for a selected
set of outputs of a system [34]. Outputs encode information
such as the position of a floating-based robot or robotic
arm end effector as a function of configuration in a way
that is useful for designing controllers. Additionally, IO
Linearization provides a constructive method for generating
Lyapunov functions, a central tool in certifying stability and
synthesizing controllers for nonlinear systems.

Consider an affine robotic control system with configura-
tion space @ C R™ and an input space &/ C R™. Assume
@ is path-connected and non-empty. The dynamics of the
system are specified by:

D(q)4 + C(q,4)q + G(q) = Bu, (1)
—_——————

H(q,q)

with generalized coordinates q € Q, coordinate rates ¢ €
R™, input u € U, inertia matrix D : @ — S |, centrifugal
and Coriolis terms C : @ x R™ — R™*"™, gravitational forces
G : Q — R", and static actuation matrix B € R™"*™, Here
S, denotes the set of n x n symmetric positive definite
matrices. Define twice-differentiable outputs y : Q — RF,
with k£ < m, and assume each output has relative degree 2
on some domain R C Q (see [34] for details). Intuitively,
the relative degree assumption implies that no configuration
in R results in an inability to actuate the system. Consider
the time interval Z = [to,¢s] for initial and final times
to, ty and define twice-differentiable time-dependent desired
outputs yg : Z — R¥ with r(t) = [ya(t)" yd(t)T]T
The error between actual and desired outputs (referred to as
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virtual constraints [45]) yields the dynamic system:

f(a,q)
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d [ y(a) = ya(t) } _
dt |y(a,q) —ya(t)

2

noting that % = a—z. For all q € R, g(q) is full rank by the

relative degree assumption. Define i : @ x R" x 7 — R2k,
f:OxR* > RF and g: Q — RF*™ as:

- | ¥(a) —yalt)
M(@an = [y_<q, b o) ©
f(q,q) = g%q — %D(q)‘lmq, ) 4)
glq) = g—zD(quB, (5)

and assume U/ = R™. The input-output linearizing control
law kjo : @ X R™ x T — U is specified by:

kro(a,a,t) = g(a) (—f(a,a) + ya(t) + v(a,a,1), (©)

with auxiliary input v(q,q,t) € R* for all q € Q,
q € R", and t € Z, where { denotes the Moore-Penrose
pseudoinverse. Eliminating nonlinear terms, this controller
used in (2) generates linear error dynamics of the form:

. . 0 I ) 0 .
i, t) = [ F (g a0 + [ v, a.t),
Orxr  Orxk L

——
F G

(M
where (F, G) are a controllable pair. Defining gain matrix
K= [Kp Kd] where K,,, K4 € SfﬁH, the auxiliary con-
trol input v(q, q,t) = —Kn(q, q, t) induces error dynamics:

n(q,q,t) = Aun(q,q,t), ®)

where A, = F — GK is Hurwitz. This implies the desired
output trajectory y4 is exponentially stable, allowing us to
construct a Lyapunov function for the system using converse
theorems found in [21]. With A ; Hurwitz, for any Q € Siﬁ,
there exists a unique P € S?ﬂ such that the Continuous
Time Lyapunov Equation (CTLE):

AP +PA, = -Q, ©)
is satisfied. Let C = {n(q,q,t) : (q,q) € R x R",t € T}.
Then V(n) = n' Pn, implicitly a function of q, ¢, and ¢,

is a Lyapunov function certifying exponential stability of (8)
on C satisfying:

Aumin (P[5 < V(1) < A (P) ]
V(n) < —Auin(Q) 7],

for all 7 € C. Here Apin(-) and Apax(-) denote the min-
imum and maximum eigenvalues of a symmetric matrix,

(10)
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respectively. A similar Lyapunov function can be constructed
directly from using the Continuous Algebraic Riccati
Equation (CARE) [1], [21].

B. Control Lyapunov Functions

Lyapunov functions encode information about the dynam-
ics in a low-dimensional representation suitable for learning.
The preceding formulation of a Lyapunov function required
the choice of the specific control law given in (6) to analyze
stability of a closed-loop system. More generally, Control
Lyapunov Functions (CLFs) extend this idea to enable syn-
thesis of optimal nonlinear controllers. Let C C R?*. A
function V : R?* — R, is a Control Lyapunov Function
(CLF) for on C certifying exponential stability if there
exist constants ¢y, co, c3 > 0 such that:

allnllz < V(n) < callnll3

lnf V(T]7 ) 703“”7”2; (11)

for all n € C. We see that the previously constructed
Lyapunov function satisfying (I0) satisfies (I} by choosing
the control law specified in (6). In the absence of a specific
control law, we may write the CLF time derivative as:

8V oV
o' o
Dynamic information directly appears within the scalar func-

tion V. Also note that V' is affine in u, leading to a QP based
control law kgp : @ x R" x Z — U given by:

V(n,u) = ——(f(q,q) — £(t) + g(qu). (12)

1
kQP(q7 q» t) = arg min 7uTMu+ STu+T
uceld 2

s.t. V(n, u) <

for M € ST, s € R™, and r € R, provided U is a
polyhedron. Here S’ denotes the set of m X m symmetric
positive semi-definite matrices.

—cgllnll,  (13)

ITI. UNCERTAINTY MODELS & LEARNING

This section defines the class of model uncertainty we
consider in this work and investigates its impact on the
control system, and concludes with motivation for a data-
driven approach to mitigate this impact.

A. Uncertainty Modeling Assumptions

As defined in Section[[I, we consider affine robotic control
systems that evolve under dynamics described by (I). In
practice, we do not know the dynamics of the system exactly,
and instead develop our control systems using the estimated
model:

D(q)q+ C(q,9)q + G(q) = Bu. (14)
N——
H(q,4)
We assume the estimated model (T4) satisfies the relative
degree condition on the domain R, and thus may use the
method of input-output linearization to produce a Control

Lyapunov Function (CLF), V, for the system. Using the def-
initions established in (Z) in conjunction with the estimated
model, we see that true system evolves as:

f(a,q) — () + g(q)u
+(g(a) — &(a))u+f(q,q) — f(q,q).

A(q) b(q,q)

7'7:
15)

We note the following features of modeling uncertainty in
this fashion:

o Uncertainty is allowed to enter the system dynamics
via parametric error as well as through completely
unmodeled dynamics. In particular, the function H can
capture a wide variety of nonlinear behavior and only
needs to be Lipschitz continuous.

o This formulation explicitly allows uncertainty in how
the input is introduced into the dynamics via uncertainty
in the inertia matrix D and static actuation matrix B.
This definition of uncertainty is also compatible with a
dynamic actuation matrix B : @ x R"™ — R"*™ given
proper assumptions on the relative degree of the system.

Given this formulation of our uncertainty, we make the
following assumptions of the true dynamics:

Assumption 1. The true system is assumed to be determin-
istic, time invariant, and affine in the control input.

Assumption 2. The CLF V, formulated for the estimated
model, is a CLF for the true system.

It is sufficient to assume that the true system have relative
degree 2 on the domain R to satisfy Assumption [2| This
holds since the true values of f and g, if known, enable
choosing control inputs as in () that respect the same linear
error dynamics (8). Given that V is a CLF for the true
system, its time derivative under uncertainty is given by:

V(n,u)

. oV ~ . . ~
V(n,u) = %(f(q, q) —1(t) +g(q)u)

8V oV

A = : 1
371 (q)u+ anb(q,Q% (16)
———
a(n,q) " b(n,q,9)

for all n € R?* and u € U. While V is a CLF for the true
system, it is no longer possible to determine if a specific
control value will satisfy the derivative condition in (TT)) due
to the unknown components a and b. Rather than form a new
Lyapunov function, we seek to better estimate the Lyapunov
function derivative V to enable control selection that satisfies
the exponential stability requirement. This estimate should be
affine in the control input, enabling its use in the controller
described in (I3). Instead of learning the unknown dynamics
terms A and b, which scale with both the dimension of
the configuration space and the number of inputs, we will
learn the terms a and b, which scale only with the number
of inputs. In the case of the planar Segway model we
simulate, we reduce the number of learned components from



4 to 2 (assuming kinematics are known). These learned
representations need to accurately capture the uncertainty
over the domain in which the system is desired to evolve
to ensure stability during operation.

B. Motivating a Data-Driven Learning Approach

The formulation from and (I6) defines a general class
of dynamics uncertainty. It is natural to consider a data-
driven method to estimate the unknown quantities a and b
over the domain of the system. To motivate our learning-
based framework, first consider a simple approach of learning
a and b via supervised regression [19]: we operate the system
using some given state-feedback controller to gather data
points along the system’s evolution and learn a function that
approximates a and b via supervised learning.

Concretely, let qg € Q be an initial configuration. An
experiment is defined as the evolution of the system over a
finite time interval from the initial condition (qo,0) using
a discrete-time implementation of the given controller. A
resulting discrete-time state history is obtained, which is then
transformed with Lyapunov function V' and finally differen-
tiated numerically to estimate 1% throughout the experiment.
This yields a data set comprised of input-output pairs:

x R?* x U) x R.

a7
Consider a class H, of nonlinear functions mapping from
R%* x Q to R™ and a class H; of nonlinear functions
mapping from R%/X\Q x R™ to R. For a given a € H,
and b € Hp, define W as:

— o~

W(n,q,dq,u) = V(n,u) +a(n,q) utbnqdq), (18

_{< qlaqw’rlz?ul) ‘/7,)} (QXR”

and let H be the class of all such estimators mapping R?* x
O xR"™ xU to R. Defining a loss function £ : RxR — R,
the supervised regression task is then to find a function in
‘H via empirical risk minimization (ERM):

A

’b\G’H(,

This experiment protocol can be executed either in simulation
or directly on hardware. While being simple to implement,
supervised learning critically assumes independently and
identically distributed (i.i.d) training data. Each experiment
violates this assumption, as the regression target of each data
point is coupled with the input data of the next time step. As
a consequence, standard supervised learning with sequential,
non-i.i.d data collection often leads to error cascades [24].

IV. INTEGRATING EPISODIC LEARNING & CLFs

In this section we present the main contribution of this
work: an episodic learning algorithm that captures the un-
certainty present in the Lyapunov function derivative in a
learned model and utilizes it in a QP based controller.

Algorithm 1 Dataset Aggregation for Control Lyapunov
Functions (DaCLyF)

Require: Control Lyapunov Function V, derivative esti-

mate Vg, model classes H, and Hy, loss function £,
set of initial configurations Qy, nominal state-feedback
controller ky, number of experiments 7', sequence of trust

coefficients 0 < w; < --- <wp <1
D=1 > Initialize data set
for k=1,...,7 do

(qo, 0) < sample(Qp x {0}) > Get initial condition
Dy, < experiment((qo, 0),kr—1) > Run experiment
D <+ DUDyg > Aggregate data set
éj; — ERM(Haa Hbv Ea Da VO)
Vk — VO +a'u +3 > Upclate derivative estimator
ki < ko + wy, - augment(ky, Vk) > Update controller

end for _

return VT, ur

> Fit estimators

A. Episodic Learning Framework

Episodic learning refers to learning procedures that itera-
tively alternates between executing an intermediate controller
(also known as a roll-out in reinforcement learning [22]),
collecting data from that roll-out, and designing a new
controller using the newly collected data. Our approach
integrates learning a and b with improving the performance
and stability of the control policy u in such an iterative
fashion. First, assume we are given a nominal state-feedback
controller k: O x R* x Z — Z/{ which may not stabilize the

system. With an estimator W € H as defined in |.i we
specify an augmenting controller as:

K/(q,4,1) = argminJ(u)

u’eRm™
- ) . 2
s.t. W(n,q,q,k(q,q,t) +u') < —c3 ||nll;
k(q,4,1) +u’ €U, (20)

where J : R™ — R is any positive semi-definite quadratic
cost function. This augmenting control law effectively finds
the minimal addition u’ to the input determined by the nom-
inal control law k such that the sum stabilizes the system;

however, stability degrades with error in the estimator w.
In an effort to reduce the remaining error, we use this new
controller to obtain better estimates of a and b. One option,
as seen in Section is to perform experiments and use
conventional supervised regression to update a and b. To
overcome the limitations of conventional supervised learning,
we leverage reduction techniques: a sequential prediction
problem is reduced to a sequence of supervised learning
problems over multiple episodes [15], [32]. In particular,
in each episode, an experiment generates data using a
different controller. The data set is aggregated and a new
ERM problem is solved after each episode. Our episodic
learning implementation is inspired by the Data Aggregation
algorithm (DAgger) [32], with some key differences:
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(Left) Model based QP controller fails to track trajectory. (Right) Improvement in angle tracking of system with augmented controller over nominal

PD controller. (Bottom) Corresponding visualizations of state data. Note that Segway is tilted in the incorrect direction at the end of the QP controller
simulation, but is correctly aligned during the augmented controller simulation. Video of this animation is found at https://youtu.be/cB5MY_8vCrQ.

e DAgger is a model-free policy learning algorithm,
which trains a policy directly in each episode using
optimal computational oracles. Our algorithm defines
a controller indirectly via a CLF to ensure stability.

e The ERM problem/\is underdetermined, i.e., different
approximations (a,b) may achieve similar loss for a
given data set while failing to accurately model a and
b. This potentially introduces error in estimating 1%
for control inputs not reflected in the training data,
and necessitates the use of exploratory control action
to constrain the estimators a and b. Such exploration
can be achieved by randomly perturbing the controller
used in an experiment at each time step. This need
for exploration is an analog to the notion of persistent
excitation from adaptive systems [28].

Algorithm [I] specifies a method of computing a sequence
of Lyapunov function derivative estimates and augmenting
controllers. During each episode, the augmenting controller
associated with the estimate of the Lyapunov function deriva-
tive is scaled by a heuristically chosen factor reflecting trust
in the estimate and added to the nominal controller for use
in the subsequent experiment. The trust coefficients form
a monotonically non-decreasing sequence on the interval
[0,1]. Importantly, this experiment need not take place in
simulation; the same procedure may be executed directly on
hardware. It may be infeasible to choose a specific configura-
tion for an initial condition on a hardware platform; therefore
we specify a set of initial configurations Qy C Q from which
an initial condition may be sampled, potentially randomly.
At a high level, this episodic approach makes progress by

gathering more data in relevant regions of the state space,
such as states close to a target trajectory. This extends the
generalizability of the estimator in its use by subsequent
controllers, and improves stability results as explored in [43].

B. Additional Controller Details

During augmentation, we specify the controller in (20) by
selecting the minimum-norm cost function:
1 . 2

J(W) = 3 Ik(a,q,6) +u'lf;, @

forall w € R™, q € Q, q € R", and ¢t € Z. For practical

considerations we incorporate the following smoothing term
into the cost:

- 2
R(u') = R|[u’ = tprevl, ,

for all v € R™, where up.ey, € R™ is the previously
computed augmenting controller and R > 0. This is done
to avoid chatter that may arise from the optimization based
nature of the CLF-QP formulation [27].

Note that for this choice of Lyapunov function, the gra-
dient g—v, and therefore a, approach 0 as 7 approaches
0, which occurs close to the desired trajectory. While the
estimated Lyapunov function derivative may be fit with low
absolute error on the data set, the relative error may still
be high for states near the desired trajectory. Such relative
error causes the optimization problem in (20) to be poorly
conditioned near the desired trajectory. We therefore add a
slack term d € R to the decision variables, which appears
in the inequality constraint [2]. The slack term is additionally
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Fig. 3. Augmenting controllers consistently improve trajectory tracking across episodes. 10 instances of the algorithm are executed with the shaded region
formed from minimum and maximum angles for each time step within an episode. The corresponding average angle trajectories are also displayed.

incorporated into the cost as:
2

1|70V . T
o) = Lo (ang<q>) fama)| 2 @
2

for all 6 € R;, where C > 0. As states approach the
trajectory, the coefficient of the quadratic term decreases
and enables relaxation of the exponential stability inequality
constraint. In practice this leads to input-to-state stable
behavior, described in [40], around the trajectory.

The exploratory control during experiments is naively cho-
sen as additive noise from a centered uniform distribution,
with each coordinate drawn i.i.d. The variance is scaled by
the norm of the underlying controller to introduce exploration
while maintaining a high signal-to-noise ratio.

V. APPLICATION ON SEGWAY PLATFORM

In this section we apply the episodic learning algorithm
constructed in Section[[V]to the Segway platform. In particu-
lar, we consider a 4-dimensional planar Segway model based
on the simulation model in [18]. The system states consist of
horizontal position and velocity, pitch angle, and pitch angle
rate. Control is specified as a single voltage input supplied to
both motors. The parameters of the model (including mass,
inertias, and motor parameters but excluding gravity) are
randomly modified by up to 10% of their nominal values
and are fixed for the simulations.

We seek to track a pitch angle trajectoryE] generated for
the estimated model. The nominal controller is a linear
proportional-derivative (PD) controller on angle and angle
rate error. 20 experiments are conducted with trust values
varying from 0.01 to 0.99 in a sigmoid fashion. The ex-
ploratory control is drawn uniformly at random between
—20% and 20% of the norm of the underlying controller for
an episode for the first 10 episodes. The percentages decay
linearly to O in the remaining 10 episodes. The model classes
selected are sets of two-layer neural networks with ReLU
nonlinearities with hidden layer width of 2000 nodeg’] The
inputs to both models are all states and the CLF gradient.

Failure of the controller designed for the estimated
model to track the desired trajectory is seen in the left portion
of Fig. 2| The baseline PD controller and the augmented

Trajectory was generated using the GPOPS-II Optimal Control Software
3Models were implemented in Keras

controller after 20 experiments can be seen in the right
portion Fig. [2| Corresponding visualizations of the Segway
states are displayed at the bottom of Fig. [2] The augmented
controller exhibits a notable improvement over the model-
based and PD controller in tracking the trajectory.

To verify the robustness of the learning algorithm, the
20 experiment process was conducted 10 times. After each
experiment the intermediate augmented controller was tested
without exploratory perturbations. For the last three ex-
periments and a test of the final augmented controller,
the minimum, mean, and maximum angles across all 10
instances are displayed for each time step in Fig. [3| The
mean trajectory consistently improves in these later episodes
as the trust factor increases. The variation increases but
remains small, indicating that the learning problem is robust
to randomness in the initialization of the neural networks,
in the network training algorithm, and in the noise added
during the experiments. The performance of the controller
in the earlier episodes displayed negligible variation from
the baseline PD controller due to small trust factors.

VI. CONCLUSIONS & FUTURE WORK

We presented an episodic learning framework that directly
integrates into an established method of nonlinear control
using CLFs. Our method allows for the effects of both
parametric error and unmodeled dynamics to be learned from
experimental data and incorporated into an QP controller.
The success of this approach was demonstrated in simulation
on a Segway, showing improvement upon a model estimate
based controller.

There are two main interesting directions for future work.
First, a more thorough investigation of episodic learning al-
gorithms can yield superior performance as well as learning-
theoretic converge guarantees. Other episodic learning ap-
proaches to consider include SEARN [13], AggreVaTeD
[41], and MoBIL [10], amongst others. Second, our approach
can also be applied to learning with other forms of guar-
antees, such as with Control Barrier Functions (CBFs) [3].
Existing work on learning CBFs are restricted to learning
with Gaussian processes [44], [16], [11], and also learn over
the full state space rather than over the low-dimensional
projection onto the CBF time derivative.
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