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Abstract—This paper presents a personalized gait optimiza-
tion framework for lower-body exoskeletons. Rather than op-
timizing numerical objectives such as the mechanical cost
of transport, our approach directly learns from user prefer-
ences, e.g., for comfort. Building upon work in preference-
based interactive learning, we present the COSPAR algorithm.
COSPAR prompts the user to give pairwise preferences between
trials and suggest improvements; as exoskeleton walking is
a non-intuitive behavior, users can provide preferences more
easily and reliably than numerical feedback. We show that
COSPAR performs competitively in simulation and demonstrate
a prototype implementation of COSPAR on a lower-body ex-
oskeleton to optimize human walking trajectory features. In
the experiments, COSPAR consistently found user-preferred pa-
rameters of the exoskeleton’s walking gait, which suggests that
it is a promising starting point for adapting and personalizing
exoskeletons (or other assistive devices) to individual users.

I. INTRODUCTION

The field of human-robot interaction is receiving increasing
attention in many application domains, from mobility assis-
tance to autonomous driving, and from education to dialog
systems. In many such domains, for a robotic system to
interact optimally with a human user, it must adapt to user
feedback. In particular, learning from user feedback could
help to improve robotic assistive devices.

This work focuses on optimizing walking gaits for a
lower-body exoskeleton, Atalante, to maximize user comfort.
Atalante, developed by Wandercraft [1], uses 12 actuated
joints to restore mobility to individuals with lower-limb
mobility impairments, which could potentially benefit ap-
proximately 6.4 million people in the United States alone [2].
Existing work with Atalante has demonstrated dynamically-
stable walking using the method of partial hybrid zero
dynamics (PHZD), originally designed for bipedal robots [3]–
[5]. While this method generates stable bipedal locomotion,
there is no current framework to optimize for comfort; yet,
user comfort should be a critical objective of gait optimiza-
tion for exoskeleton walking. While existing methods [6]
can generate human-like walking gaits for bipedal robots,
it is unlikely that these methods fulfill the preferences of
individuals using robotic assistance.
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Fig. 1. Atalante Exoskeleton with and without the user. The user is wearing
a mask to measure metabolic expenditure.

Existing human-in-the-loop algorithms optimize quantita-
tive metrics such as metabolic expenditure [7]; however, since
the goal of this work is to optimize for user comfort, the pre-
sented learning approach uses user preferences obtained from
sequential gait trials. By directly incorporating personalized
feedback, we avoid making overly-strong assumptions about
gait preference, or optimizing for a numerical quantity not
aligned to personalized comfort.

For exoskeleton gait generation, as in many real-world
settings involving people [8]–[10], it is challenging for people
to reliably specify numerical scores or provide demonstra-
tions. In such cases, the users’ relative preferences measure
their comfort more reliably. Previous studies have found
preferences to be more reliable than numerical scores in a
range of domains, including information retrieval [11] and
autonomous driving [10].

Building upon techniques from dueling bandits [12]–[14]
and coactive learning [15], [16], we propose the COSPAR al-
gorithm to learn user-preferred exoskeleton gaits. COSPAR is
a mixed-initiative approach, which both queries the user for
preferences and allows the user to suggest improvements. We
also validate COSPAR in simulation and human experiments,
in which COSPAR finds user-preferred gaits within a gait
library. This procedure not only identifies users’ preferred
walking trajectories, but also provides insights into the users’
preferences for certain gaits.

II. GAIT GENERATION FOR BIPEDAL ROBOTS

Many existing lower-body exoskeletons either require the
use of arm-crutches [17]–[19] or use slow static gaits with
speeds around 0.05 m/s [20]. Using the PHZD method, dy-
namic crutchless exoskeleton walking has been demonstrated



to generate dynamically-stable gaits. We briefly explain this
method to illustrate how it can be adapted based on user
preferences; for more details, refer to [3]–[5].

Partial Hybrid Zero Dynamics Method. Systems with
impulse effects, such as ground impacts, can be represented
as hybrid control systems [21]–[23]. Summarizing from [4],
the natural system dynamics can then be represented on
an invariant reduced-dimensional surface, termed the zero
dynamics surface [24], by appropriately defining the virtual
constraints and using a feedback-linearizing controller to
drive them to zero. Since the exoskeleton’s desired forward
hip velocity is constant and its actual velocity experiences
a jump at impact, the partial zero dynamics surface is con-
sidered. The virtual constraints are defined as the difference
between the actual and desired outputs:

y1(q, q̇) = ya1 (q, q̇)− vd (1)

y2(q, α) = ya2 (q)− yd2(τ(q), α), (2)

where the actual outputs ya1 and ya2 are velocity-regulating
and position-modulating terms, respectively. The output ya1
is driven to a constant desired velocity vd, while ya2 is driven
to a vector of desired trajectories, yd2 . The trajectories yd2 are
represented using a Bézier polynomial with coefficients α
and state-based timing variable τ(q).

According to Theorem 2 in [6], if there exist virtual
constraints that yield an impact-invariant periodic orbit on
the partial zero dynamics surface, then these outputs, when
properly controlled on the exoskeleton, yield stable periodic
walking. The orbit is impact-invariant if it returns to the
partial zero dynamics surface PZα after an impact event.
To find the polynomials α that yield an impact-invariant
periodic orbit on the reduced-order manifold, we formulate
an optimization problem of the form:

α∗ = argmin
α

J (α), (3)

s.t. ∆(S ∩ PZα) ⊂ PZα, (4)
Wix ≤ bi, (5)

where J (α) is a user-determined cost, (4) is the impact
invariance condition, (5) are other physical constraints, S
is the guard defining the conditions under which impulsive
behavior occurs, and ∆ is the reset map governing the
system’s dynamical response to hitting the guard.

The optimization in (3)-(5) produces a gait that can be
altered by varying the cost function J (α) and/or adding
physical constraints. In bipedal walking, this cost is fre-
quently the mechanical cost of transport (COT) defined by
Eqs. (17)-(18) in [25]. To create the desired motion, one must
add physical constraints such as step length and foot height.

Gait Generation Applied to Lower-Body Exoskeletons.
To translate gait generation to lower-body exoskeletons, one
must choose the optimization cost function and physical
constraints to obtain user-preferred gaits. While it is possible
to optimize generated gaits for mechanical properties such
as COT, there is currently no well-understood relationship
between the parameters of the optimization problem and

user preferences. Additionally, due to the time-consuming
nature of gait generation—both the time required to tune the
optimization problem’s constraints and the time required to
run the program—the issue of generating human-preferred
dynamically-stable walking gaits remains largely unexplored.

Gait Library. It has become increasingly common to pre-
compute a set of nominal walking gaits over a grid of various
parameters [26]. These pre-computed gaits are combined to
form a “gait library,” through which gaits can be selected
and executed immediately. For the purpose of exoskeleton
walking, a gait library allows the operator to select a gait
that is comfortable for the patient; however, it is not yet clear
how to select an appropriate walking gait to optimize user
comfort and preference. Thus, we consider learning from the
user’s preferences, as discussed below.

III. PREFERENCE-BASED LEARNING ALGORITHM

We leverage preference-based learning (e.g., does the user
prefer gait A over gait B?) to determine the gait parameters
most preferred by the user [13], [14], [16], [27]–[29], since
preference feedback has been shown to be much more
reliable than absolute feedback when learning from subjective
human responses [13], [30]. Thus, our goal to personalize the
exoskeleton’s gait can be framed as dueling bandit [13], [14]
and coactive learning [15], [16] problems.

Our work builds upon the Self-Sparring algorithm, a
Bayesian dueling bandits approach that enjoys both competi-
tive theoretical convergence guarantees and empirical perfor-
mance [12]. Self-Sparring learns a Bayesian posterior over
each action’s utility to the user and draws multiple samples
from the model’s posterior to “duel” or “spar” via preference
elicitation. The Self-Sparring algorithm iteratively: a) draws
multiple samples from the posterior model of the actions’
utilities; b) for each sampled model, executes the action with
the highest sampled utility; c) queries for preference feedback
between the executed actions; and d) updates the posterior
according to the acquired preference data.

To collect more feedback beyond just one bit per prefer-
ence, we also allow the user to suggest improvements during
their trials. This approach resembles the coactive learning
framework [15], [16], in which the user identifies an im-
proved action as feedback to each presented action. Coactive
learning has been applied to robot trajectory planning [31],
[32], but has not, to our knowledge, yet been applied to
robotic gait generation or in concert with preference learning.

The COSPAR Algorithm. To optimize an exoskeleton’s
gait within the gait library (Section II), we propose the
COSPAR algorithm, a mixed-initiative learning approach
[33], [34] which extends the Self-Sparring algorithm to
incorporate coactive feedback. Similarly to Self-Sparring,
COSPAR maintains a Bayesian preference relation function
over the possible actions, which is fitted to observed pref-
erence feedback. COSPAR updates this model with user
feedback and uses it to select actions for new trials and
to elicit feedback. We first define the Bayesian preference
model, and then detail the steps of Algorithm 1.



Modeling Utilities from Preference Data. We adopt the
preference-based Gaussian process model of [35]. Let A ⊂
Rd be the finite set of available actions with cardinality
A = |A|. At any point in time, COSPAR has collected a pref-
erence feedback dataset D = {xk1 � xk2 | k = 1, . . . , N}
consisting of N preferences, where xk1 � xk2 indicates
that the user prefers action xk1 ∈ A to action xk2 ∈ A
in preference k. Furthermore, we assume each action xi
has a latent, underlying utility to the user, f(xi). For finite
action spaces, the utilities can be written in vector form:
f := [f(x1), f(x2), . . . , f(xA)]T . Given preference data D,
we are interested in the posterior probability of f :

P (f |D) ∝ P (D|f)P (f). (6)

We define a Gaussian prior over f :

P (f) =
1

(2π)A/2|Σ|1/2
exp

(
−1

2
fTΣ−1f

)
,

where Σ ∈ RA×A, [Σ]ij = K(xi,xj), and K is a kernel, for
instance the squared exponential kernel.

For computing the likelihood P (D|f), we assume feed-
back may be corrupted by i.i.d. Gaussian noise: when
presented with action xi, the user determines her internal
valuation y(xi) = f(xi) + εi, where εi ∼ N (0, σ2). Then,

P (xk1 � xk2|f) = P (y(xk1) > y(xk2)|f(xk1), f(xk2))

= Φ

[
f(xk1)− f(xk2)√

2σ

]
,

where Φ is the standard normal cumulative distribution
function, and y(xkj) = f(xkj) + εkj , j ∈ {1, 2}. Thus,
the full expression for the likelihood is:

P (D|f) =

N∏
k=1

Φ

[
f(xk1)− f(xk2)√

2σ

]
. (7)

The posterior P (f |D) can be estimated via the Laplace ap-
proximation as a multivariate Gaussian distribution; see [35]
for details. Finally, in formulating the posterior, preferences
can be weighted relatively to one another if some are thought
to be noisier than others. This is accomplished by changing
σ to σk in (7) to model differing values of the preference
noise parameter among the data points, and is analogous to
weighted Gaussian process regression [36].

The Learning Algorithm. Let (Σ, σ) represent the prior
parameters of the Bayesian preference model, as outlined
above. From these parameters, one obtains the prior mean
and covariance, (µ0,Σ0) (Line 3 in Alg. 1). In each iteration,
COSPAR updates the utility model (Line 21) via the Laplace
approximation to the posterior in (6) to obtain N (µt,Σt).

To select actions in the tth iteration (Lines 5-8),
the algorithm first draws n samples from the posterior,
N (µt−1,Σt−1). Each of these is a utility function fj , giving
a utility value for each action in A. The corresponding
selected action is simply the one maximizing fj (Line 7).

The n actions are executed (Line 9), and the user provides
pairwise preference feedback between pairs of actions (the

Algorithm 1 COSPAR

1: procedure COSPAR(A = action set, n = number of actions to
select at each iteration, b = buffer size, (Σ, σ) = utility prior
parameters, β = coactive feedback weight)

2: D = ∅ . Initialize preference dataset
3: Obtain prior (µ0,Σ0) over A from (Σ, σ)
4: for all t = 1, 2, . . . do
5: for all j = 1, . . . , n do
6: Sample utility function fj from (µt−1,Σt−1)
7: Select action aj(t) = argmaxx∈Afj(x)
8: end for
9: Execute n actions; observe pairwise feedback matrix
R = {rjk ∈ {0, 1, ∅}}n×(n+b)

10: for all j = 1, . . . , n; k = 1, . . . , n+ b do
11: if rjk 6= ∅ then
12: Append preference to dataset D
13: end if
14: end for
15: for all j = 1, . . . , n do
16: Obtain coactive feedback ãj(t) ∈ A ∪ ∅
17: if ãj(t) 6= ∅ then
18: Add to D: ãj(t) preferred to aj(t), weight β
19: end if
20: end for
21: Update Bayesian posterior over D to obtain (µt,Σt)
22: end for
23: end procedure

user can always state “no preference”). We extend Self-
Sparring [12] to extract more preference comparisons from
the available trials by assuming that the user can remember
the b actions preceding the current n actions. The user thus
provides preferences between any combination of the current
n actions and the previous b actions. For instance, for n = 1,
b > 0, one can interpret b as a buffer of previous trials that
the user remembers. For n = b = 1, the user can report
preferences between any pair of two consecutive trials, i.e.,
the user is asked, “Did you like this trial more or less than the
last trial?” We expect that setting n = 1 while increasing b
to as many trials as the user can accurately remember would
minimize the trials required to reach a preferred gait. In Line
9, the pairwise preferences from iteration t form a matrix
R ∈ Rn×(n+b), where rjk ∈ {0, 1, ∅}; the values 0 and 1
express preference information, while ∅ denotes the lack of
a preference between the actions concerned.

Finally, the user can suggest improvements in the form
of coactive feedback (Line 16). For example, the user could
request a longer or shorter step length. In Line 16, ∅ indicates
that no coactive feedback was provided. Otherwise, the user’s
suggestion is appended to the data D as preferred to the
previously-tested action. In learning the model posterior, one
can assign the coactive preferences a smaller weight relative
to pairwise preferences via the input parameter β > 0.

IV. SIMULATION RESULTS

The performance of COSPAR is evaluated in two sets of
simulations: (1) the compass-gait (CG) biped’s COT,1 and (2)

1Bayesian model’s kernel: squared exponential with lengthscale = 0.025,
signal variance = 0.0001, noise variance = 1e-8; preference noise (σ) = 0.01



Fig. 2. Leftmost: COT for the CG biped at different step lengths and a fixed 0.2 m/s velocity. Remaining plots: posterior utility estimates of COSPAR (n = 2,
b = 0; without coactive feedback) after varying iterations of learning (posterior mean +/- 2 standard deviations). The plots each show 3 posterior samples,
which lie in the high-confidence region (mean +/- 2 stds) with high probability. The posterior utility estimate quickly converges to identifying the optimal
action.

(a) Objective function (b) Model posterior

Fig. 3. a) Example synthetic 2D objective function. b) Utility model
posterior learned after 150 iterations of COSPAR in simulation (n = 1;
b = 1; coactive feedback). COSPAR prioritizes identifying and exploring
the optimal region, rather than learning a globally-accurate utility landscape.

a set of synthetic optimization objective functions.2 In both
cases, COSPAR efficiently converges to the optimum.

Optimizing the Compass-Gait Biped’s Cost-of-Transport.
We first evaluate our approach with a simulated CG biped,
optimizing its COT over the step length via preference
feedback (Fig. 2). Preferences are determined by comparing
COT values, calculated by simulating gaits for multiple step
lengths, each at a fixed forward hip velocity of 0.2 m/s. These
simulated gaits were synthesized via a single-point shooting
partial hybrid zero dynamics method [24].

We use COSPAR to minimize the one-dimensional objec-
tive function in Fig. 2, using pairwise preferences obtained by
comparing COT values for the different step lengths. Here,
we use COSPAR with n = 2, b = 0, and without coactive
feedback. Note that without a buffer or coactive feedback,
COSPAR reduces to Self-Sparring [12]. At each iteration,
two new samples are drawn from the Bayesian posterior,
and the resultant two step lengths are compared to elicit a
preference. Using the new preferences, COSPAR updates its
posterior over the utility of each step length.

Fig. 2 depicts the evolution of the posterior preference
model, where each iteration corresponds to a preference
between two new trials. With more preference data, the
posterior utility increasingly peaks at the point of lowest
COT. These results suggest that COSPAR can efficiently
identify high-utility actions from preference feedback alone.

2Kernel: squared exponential with lengthscale = [0.15, 0.15], signal
variance = 0.0001, noise variance = 1e-5; preference noise (σ) = 0.01

Fig. 4. COSPAR simulation results on 2D synthetic objective functions,
comparing COSPAR with and without coactive feedback for three parameter
settings n and b (see Algorithm 1). Mean +/- standard error of the objective
values achieved over 100 repetitions. The maximal and minimal objective
function values are normalized to 0 and 1. We see that coactive feedback
always helps, and that n = 2, b = 0—which receives the fewest
preferences—performs worst.

Optimizing Synthetic Two-Dimensional Functions. We
next test COSPAR on synthetic 2D utility functions, such as
the one shown in Fig. 3a. Each utility function was generated
from a Gaussian process prior on a 30-by-30 grid. These
experiments evaluate the potential to scale COSPAR to higher
dimensions and the advantages of coactive feedback.

We compare three settings for COSPAR’s (n, b) parame-
ters: (2, 0), (3, 0), (1, 1) as explained in Sec. III. For each
setting—as well as with and without coactive feedback—
we simulate COSPAR on each of the 100 random objective
functions. In each case, the number of objective function
evaluations, or experimental trials, was held constant at 150.

Coactive feedback is simulated using a 2nd-order differ-
encing approximation of the objective function’s gradient.
If COSPAR selects a point at which both gradient compo-
nents have magnitudes below their respective 50th percentile
thresholds, then no coactive feedback is given. Otherwise,
we consider the higher-magnitude gradient component, and
depending on the highest threshold that it exceeds (50th or
75th), simulate coactive feedback as either a 5% or 10%
increase in the appropriate direction and dimension.



Fig. 5. Experimental results for optimizing step length with three subjects (one row per subject). Columns 1-4 illustrate the evolution of the preference
model posterior (mean +/- standard deviation), shown at various trials. COSPAR converges to similar but distinct optimal gaits for different subjects.
Column 5 depicts the subjects’ blind ranking of the 3 gaits sampled after 20 trials. The rightmost column displays the experimental trials in chronological
order, with the background depicting the posterior preference mean at each step length. COSPAR draws more samples in the region of higher posterior
preference.

Fig. 4 shows the simulation results. In each case, the
mixed-initiative simulations involving coactive feedback im-
prove upon those with only preferences. Learning is slowest
for n = 2, b = 0 (Fig. 4), since that case elicits the fewest
preferences. Fig. 3b depicts the utility model’s posterior
mean for the objective function in Fig. 3a, learned in the
simulation with n = 1, b = 1, and mixed-initiative feedback.
In comparing Fig. 3b to Fig. 3a, we see that COSPAR learns a
sharp peak around the optimum, as it is designed to converge
to sampling preferred regions, rather than giving the user
undesirable options by exploring elsewhere.

V. HUMAN SUBJECT EXPERIMENTS

After its validation in simulation, COSPAR was deployed
on a lower-body exoskeleton, Atalante, in two personalized
gait optimization experiments with human subjects (video:
[37]). Both experiments aimed to determine gait parameter
values that maximize user comfort, as captured by preference
and coactive feedback. The first experiment,3 repeated for
three able-bodied subjects, used COSPAR to determine the
user’s preferred step length, i.e., optimizing over a one-
dimensional feature space. The second experiment4 demon-
strates COSPAR’s effectiveness in two-dimensional feature
spaces, and optimizes simultaneously over two different gait
feature pairs. Importantly, COSPAR operates independently
of the choice of gait features. The subjects’ metabolic expen-
diture was also recorded via direct calorimetry as shown in

3Kernel: squared exponential with lengthscale = 0.03, signal variance =
0.005, noise variance = 1e-7; preference noise (σ) = 0.02

4Same parameters as in 3 except for step duration lengthscale = 0.08 and
step width lengthscale = 0.03

Fig. 1, but this data was uninformative of user preferences,
as users are not required to expend effort toward walking.

Learning Preferences between Step Lengths. In the first
experiment, all three subjects walked inside the Atalante
exoskeleton, with COSPAR selecting the gaits. We con-
sidered 15 equally-spaced step lengths between 0.08 and
0.18 meters, each with a precomputed gait from the gait
library. Feature discretization was based on users’ ability to
distinguish nearby values. The users decided when to end
each trial, so as to be comfortable providing feedback. Since
users have difficulty remembering more than two trials at
once, we used COSPAR with n = 1 and b = 1, which
corresponds to asking the user to compare each current trial
with the preceding one. Additionally, we query the user for
coactive feedback: after each trial, the user can suggest a
longer or shorter step length (±20% of the range), a slightly
longer or shorter step length (±10%), or no feedback.

Each participant completed 20 gait trials, providing prefer-
ence and coactive feedback after each trial. Fig. 5 illustrates
the posterior’s evolution over the experiment. After only five
exoskeleton trials, COSPAR was already able to identify a
relatively-compact preferred step length subregion. After the
20 trials, three points along the utility model’s posterior mean
were selected: the maximum, mean, and minimum. The user
walked in the exoskeleton with each of these step lengths in
a randomized ordering, and gave a blind ranking of the three,
as shown in Fig. 5. For each subject, the blind rankings match
the preference posterior obtained by COSPAR, indicating
effective learning of individual user preferences.

Learning Preferences over Multiple Features. We further
demonstrate COSPAR’s practicality to personalize over mul-



Fig. 6. Experimental results from two-dimensional feature spaces (top row: step length and duration; bottom row: step length and width). Columns 1-4
illustrate the evolution of the preference model’s posterior mean. Column 4 also shows the subject’s blind ranking of the 3 gaits sampled after 20 trials.
Column 5 depicts the experimental trials in chronological order, with the background as in Fig. 5. COSPAR draws more samples in the region of higher
posterior preference.

Fig. 7. Experimental phase diagrams of the left leg joints over 10 seconds of walking. The gaits shown correspond to the maximum, mean, and minimum
preference posterior values for both of subject 1’s 2D experiments. For instance, subject 1 preferred gaits with longer step lengths, as shown by the larger
range in sagittal hip angles in the phase diagram.

tiple features, by optimizing over two different feature pairs:
1) step length and step duration and 2) step length and step
width. The protocol of the 1D experiment was repeated for
subject 1, with step lengths discretized as before, step dura-
tion discretized into 10 equally-spaced values between 0.85
and 1.15 seconds (with 10% and 20% modifications under
coactive feedback), and step width into 6 values between 0.25
and 0.30 meters (20% and 40%). After each trial, the user was
queried for both a pairwise preference and coactive feedback.
Fig. 6 shows the results for both feature spaces. The estimated
preference values were consistent with a 3-sample blind
ranking evaluation, suggesting that COSPAR successfully
identified user-preferred parameters. Fig. 7 displays phase
diagrams of the gaits with minimum, mean, and maximum
posterior utility values to illustrate the difference between
preferred and non-preferred gaits.

VI. CONCLUSIONS

This work develops and demonstrates (video: [37]) the
COSPAR interactive learning framework for optimizing gaits
with respect to user comfort, using human preferences as

feedback. We demonstrate the algorithm in simulation, show-
ing that it efficiently learns to select optimal actions. We next
apply COSPAR in a user study with the Atalante lower-body
exoskeleton, demonstrating the first application of preference-
based learning for optimizing dynamic crutchless walking.
COSPAR successfully models the users’ preferences, identi-
fying compact subregions of preferred gaits.

In the future, we plan to apply COSPAR toward optimizing
over larger sets of gait parameters; this will likely require
integrating the algorithm with techniques for learning over
high-dimensional feature spaces [38]. The method could also
be extended beyond working with precomputed gait libraries
to generating entirely new gaits or controller designs (e.g.,
via preference-based reinforcement learning [29], [39]).

ACKNOWLEDGMENTS
The authors would like to thank the volunteers who partic-

ipated in the experiments, as well as the entire Wandercraft
team that designed Atalante and continues to provide techni-
cal support for this project.



REFERENCES

[1] Wandercraft, http://www.wandercraft.eu/, Last accessed on 2017-09-
15.

[2] A. M. Dollar and H. Herr, “Active orthoses for the lower-limbs:
Challenges and state of the art,” in 2007 IEEE 10th International
Conference on Rehabilitation Robotics. IEEE, 2007, pp. 968–977.

[3] O. Harib, A. Hereid, A. Agrawal, T. Gurriet, S. Finet, G. Boeris,
A. Duburcq, M. E. Mungai, M. Masselin, A. D. Ames et al.,
“Feedback control of an exoskeleton for paraplegics: Toward robustly
stable, hands-free dynamic walking,” IEEE Control Systems Magazine,
vol. 38, no. 6, pp. 61–87, 2018.

[4] T. Gurriet, S. Finet, G. Boeris, A. Duburcq, A. Hereid, O. Harib,
M. Masselin, J. Grizzle, and A. D. Ames, “Towards restoring lo-
comotion for paraplegics: Realizing dynamically stable walking on
exoskeletons,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2804–2811.

[5] A. Agrawal, O. Harib, A. Hereid, S. Finet, M. Masselin, L. Praly,
A. D. Ames, K. Sreenath, and J. W. Grizzle, “First steps towards
translating HZD control of bipedal robots to decentralized control of
exoskeletons,” IEEE Access, vol. 5, pp. 9919–9934, 2017.

[6] A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115–
1130, 2014.

[7] J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee,
C. G. Atkeson, and S. H. Collins, “Human-in-the-loop optimization of
exoskeleton assistance during walking,” Science, vol. 356, no. 6344,
pp. 1280–1284, 2017.

[8] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in AI safety,” arXiv preprint
arXiv:1606.06565, 2016.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[10] C. Basu, Q. Yang, D. Hungerman, M. Sinahal, and A. D. Dragan,
“Do you want your autonomous car to drive like you?” in 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction
(HRI). IEEE, 2017, pp. 417–425.

[11] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue, “Large-scale valida-
tion and analysis of interleaved search evaluation,” ACM Transactions
on Information Systems (TOIS), vol. 30, no. 1, p. 6, 2012.

[12] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Multi-dueling bandits
with dependent arms,” in Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, 2017.

[13] Y. Sui, M. Zoghi, K. Hofmann, and Y. Yue, “Advancements in dueling
bandits,” in IJCAI, 2018, pp. 5502–5510.

[14] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims, “The k-armed dueling
bandits problem,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1538–1556, 2012.

[15] P. Shivaswamy and T. Joachims, “Online structured prediction via
coactive learning,” in Proceedings of the 29th International Conference
on Machine Learning. Omnipress, 2012, pp. 59–66.

[16] ——, “Coactive learning,” Journal of Artificial Intelligence Research,
vol. 53, pp. 1–40, 2015.

[17] E. Bionics, https://eksobionics.com/, Last accessed on 2019-09-14.
[18] ReWalk, https://rewalk.com/, Last accessed on 2019-09-14.
[19] Indego, http://www.indego.com/indego/en/home, Last accessed on

2019-09-14.
[20] R. Bionics, https://www.rexbionics.com/, Last accessed on 2019-09-14.

[21] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42–56, 2003.

[22] D. D. Bainov and P. S. Simeonov, Systems with impulse effect: Stability,
theory and applications. Wiley, 1989.

[23] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid
dynamical systems,” IEEE transactions on Automatic Control, vol. 43,
no. 4, pp. 461–474, 1998.

[24] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2018.

[25] J. P. Reher, A. Hereid, S. Kolathaya, C. M. Hubicki, and A. D.
Ames, “Algorithmic foundations of realizing multi-contact locomotion
on the humanoid robot DURUS,” in Twelfth International Workshop
on Algorithmic Foundations on Robotics, 2016.

[26] X. Da, R. Hartley, and J. W. Grizzle, “Supervised learning for stabiliz-
ing underactuated bipedal robot locomotion, with outdoor experiments
on the wave field,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 3476–3483.

[27] J. Fürnkranz and E. Hüllermeier, Preference learning. Springer, 2010.
[28] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active

preference-based learning of reward functions,” in Robotics: Science
and Systems (RSS), 2017.

[29] J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.-H. Park, “Preference-
based reinforcement learning: A formal framework and a policy
iteration algorithm,” Machine Learning, vol. 89, no. 1-2, pp. 123–156,
2012.

[30] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, and G. Gay,
“Accurately interpreting clickthrough data as implicit feedback,” in
SIGIR, vol. 5, 2005, pp. 154–161.

[31] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 10, pp. 1296–1313,
2015.

[32] T. Somers and G. A. Hollinger, “Human–robot planning and learning
for marine data collection,” Autonomous Robots, vol. 40, no. 7, pp.
1123–1137, 2016.

[33] S. A. Wolfman, T. Lau, P. Domingos, P. Domingos, and D. S. Weld,
“Mixed initiative interfaces for learning tasks: SMARTedit talks back,”
in Proceedings of the 6th International Conference on Intelligent User
Interfaces. ACM, 2001, pp. 167–174.

[34] J. C. Lester, B. A. Stone, and G. D. Stelling, “Lifelike pedagogical
agents for mixed-initiative problem solving in constructivist learning
environments,” User Modeling and User-Adapted Interaction, vol. 9,
no. 1-2, pp. 1–44, 1999.

[35] W. Chu and Z. Ghahramani, “Preference learning with Gaussian
processes,” in Proceedings of the 22nd International Conference on
Machine Learning. ACM, 2005, pp. 137–144.

[36] X. Hong, L. Ren, L. Chen, F. Guo, Y. Ding, and B. Huang, “A weighted
Gaussian process regression for multivariate modelling,” in 2017 6th
International Symposium on Advanced Control of Industrial Processes
(AdCONIP). IEEE, 2017, pp. 195–200.

[37] “Video of the experimental results.” https://youtu.be/-27sHXsvONE.
[38] J. Kirschner, M. Mutny, N. Hiller, R. Ischebeck, and A. Krause,

“Adaptive and safe Bayesian optimization in high dimensions via
one-dimensional subspaces,” in International Conference on Machine
Learning, 2019, pp. 3429–3438.

[39] E. R. Novoseller, Y. Sui, Y. Yue, and J. W. Burdick, “Dueling posterior
sampling for preference-based reinforcement learning,” arXiv preprint
arXiv:1908.01289, 2019.

http://www.wandercraft.eu/
https://eksobionics.com/
https://rewalk.com/
http://www.indego.com/indego/en/home
https://www.rexbionics.com/
https://youtu.be/-27sHXsvONE

	INTRODUCTION
	Gait Generation for Bipedal Robots
	Preference-based Learning Algorithm
	Simulation Results
	Human Subject Experiments
	CONCLUSIONS
	References

