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Abstract— Precise near-ground trajectory control is difficult
for multi-rotor drones, due to the complex aerodynamic effects
caused by interactions between multi-rotor airflow and the en-
vironment. Conventional control methods often fail to properly
account for these complex effects and fall short in accomplishing
smooth landing. In this paper, we present a novel deep-
learning-based robust nonlinear controller (Neural-Lander) that
improves control performance of a quadrotor during landing.
Our approach combines a nominal dynamics model with a Deep
Neural Network (DNN) that learns high-order interactions. We
apply spectral normalization (SN) to constrain the Lipschitz
constant of the DNN. Leveraging this Lipschitz property, we
design a nonlinear feedback linearization controller using the
learned model and prove system stability with disturbance
rejection. To the best of our knowledge, this is the first DNN-
based nonlinear feedback controller with stability guarantees
that can utilize arbitrarily large neural nets. Experimental
results demonstrate that the proposed controller significantly
outperforms a baseline nonlinear tracking controller in both
landing and cross-table trajectory tracking cases. We also
empirically show that the DNN generalizes well to unseen data
outside the training domain.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) require high precision
control of aircraft positions, especially during landing and
take-off. This problem is challenging largely due to complex
interactions of rotor and wing airflows with the ground. The
aerospace community has long identified such ground effect
that can cause an increased lift force and a reduced aerody-
namic drag. These effects can be both helpful and disruptive
in flight stability [1], and the complications are exacerbated
with multiple rotors. Therefore, performing automatic landing
of UAVs is risk-prone, and requires expensive high-precision
sensors as well as carefully designed controllers.

Compensating for ground effect is a long-standing problem
in the aerial robotics community. Prior work has largely
focused on mathematical modeling (e.g. [2]) as part of system
identification (ID). These models are later used to approximate
aerodynamics forces during flights close to the ground and
combined with controller design for feed-forward cancellation
(e.g. [3]). However, existing theoretical ground effect models
are derived based on steady-flow conditions, whereas most
practical cases exhibit unsteady flow. Alternative approaches,
such as integral or adaptive control methods, often suffer
from slow response and delayed feedback. [4] employs
Bayesian Optimization for open-air control but not for take-
off/landing. Given these limitations, the precision of existing
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fully automated systems for UAVs are still insufficient for
landing and take-off, thereby necessitating the guidance of a
human UAV operator during those phases.

To capture complex aerodynamic interactions without
overly-constrained by conventional modeling assumptions, we
take a machine-learning (ML) approach to build a black-box
ground effect model using Deep Neural Networks (DNNs).
However, incorporating such models into a UAV controller
faces three key challenges. First, it is challenging to collect
sufficient real-world training data, as DNNs are notoriously
data-hungry. Second, due to high-dimensionality, DNNs can
be unstable and generate unpredictable output, which makes
the system susceptible to instability in the feedback control
loop. Third, DNNs are often difficult to analyze, which makes
it difficult to design provably stable DNN-based controllers.

The aforementioned challenges pervade previous works
using DNNs to capture high-order non-stationary dynamics.
For example, [5], [6] use DNNs to improve system ID of
helicopter aerodynamics, but not for controller design. Other
approaches aim to generate reference inputs or trajectories
from DNNs [7]–[10]. However, these approaches can lead
to challenging optimization problems [7], or heavily rely
on well-designed closed-loop controller and require a large
number of labeled training data [8]–[10]. A more classical
approach of using DNNs is direct inverse control [11]–[13]
but the non-parametric nature of a DNN controller also makes
it challenging to guarantee stability and robustness to noise.
[14] proposes a provably stable model-based Reinforcement
Learning method based on Lyapunov analysis, but it requires
a potentially expensive discretization step and relies on the
native Lipschitz constant of the DNN.

Contributions. In this paper, we propose a learning-based
controller, Neural-Lander, to improve the precision of quadro-
tor landing with guaranteed stability. Our approach directly
learns the ground effect on coupled unsteady aerodynamics
and vehicular dynamics. We use deep learning for system
ID of residual dynamics and then integrate it with nonlinear
feedback linearization control.

We train DNNs with layer-wise spectrally normalized
weight matrices. We prove that the resulting controller is
globally exponentially stable under bounded learning errors.
This is achieved by exploiting the Lipschitz bound of
spectrally normalized DNNs. It has earlier been shown that
spectral normalization of DNNs leads to good generalization,
i.e. stability in a learning-theoretic sense [15]. It is intriguing
that spectral normalization simultaneously guarantees stability
both in a learning-theoretic and a control-theoretic sense.



We evaluate Neural-Lander on trajectory tracking of
quadrotor during take-off, landing and cross-table maneuvers.
Neural-Lander is able to land a quadrotor much more
accurately than a Baseline Nonlinear Tracking Controller with
a pre-identified system. In particular, we show that compared
to the baseline, Neural-Lander can decrease error in z axis
from 0.13 m to 0, mitigate x and y drifts by as much as 90%,
in the landing case. Meanwhile, Neural-Lander can decrease
z error from 0.153 m to 0.027 m, in the cross-table trajectory
tracking task.1 We also demonstrate that the learned model
can handle temporal dependency, and is an improvement over
the steady-state theoretical models.

II. PROBLEM STATEMENT: QUADROTOR LANDING

Given quadrotor states as global position p ∈ R3, velocity
v ∈ R3, attitude rotation matrix R ∈ SO(3), and body angular
velocity ω ∈ R3, we consider the following dynamics:

ṗ = v, mv̇ = mg +Rfu + fa, (1a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τu + τa, (1b)

where m and J are mass and inertia matrix of the system re-
spectively, S(·) is skew-symmetric mapping. g = [0, 0,−g]>

is the gravity vector, fu = [0, 0, T ]> and τu = [τx, τy, τz]
>

are the total thrust and body torques from four rotors predicted
by a nominal model. We use η = [T, τx, τy, τz]

> to denote the
output wrench. Typical quadrotor control input uses squared
motor speeds u = [n21, n

2
2, n

2
3, n

2
4]>, and is linearly related

to the output wrench η = B0u, with

B0 =

[ cT cT cT cT
0 cT larm 0 −cT larm

−cT larm 0 cT larm 0
−cQ cQ −cQ cQ

]
, (2)

where cT and cQ are rotor force and torque coefficients, and
larm denotes the length of rotor arm. The key difficulty of
precise landing is the influence of unknown disturbance forces
fa = [fa,x, fa,y, fa,z]

> and torques τa = [τa,x, τa,y, τa,z]
>,

which originate from complex aerodynamic interactions
between the quadrotor and the environment.

Problem Statement: We aim to improve controller accuracy
by learning the unknown disturbance forces fa and torques τa
in (1). As we mainly focus on landing and take-off tasks, the
attitude dynamics is limited and the aerodynamic disturbance
torque τa is bounded. Thus position dynamics (1a) and fa will
our primary concern. We first approximate fa using a DNN
with spectral normalization to guarantee its Lipschitz constant,
and then incorporate the DNN in our exponentially-stabilizing
controller. Training is done off-line, and the learned dynamics
is applied in the on-board controller in real-time to achieve
smooth landing and take-off.

III. DYNAMICS LEARNING USING DNN
We learn the unknown disturbance force fa using a DNN

with Rectified Linear Units (ReLU) activation. In general,
DNNs equipped with ReLU converge faster during training,
demonstrate more robust behavior with respect to changes in
hyperparameters, and have fewer vanishing gradient problems
compared to other activation functions such as sigmoid [16].

1Demo videos: https://youtu.be/FLLsG0S78ik

A. ReLU Deep Neural Networks
A ReLU deep neural network represents the functional

mapping from the input x to the output f(x,θ), parameterized
by the DNN weights θ = W 1, · · · ,WL+1:

f(x,θ) = WL+1φ(WL(φ(WL−1(· · ·φ(W 1x) · · · )))), (3)

where the activation function φ(·) = max(·, 0) is called the
element-wise ReLU function. ReLU is less computationally
expensive than tanh and sigmoid because it involves simpler
mathematical operations. However, deep neural networks are
usually trained by first-order gradient based optimization,
which is highly sensitive on the curvature of the training
objective and can be unstable [17]. To alleviate this issue,
we apply the spectral normalization technique [15].

B. Spectral Normalization
Spectral normalization stabilizes DNN training by con-

straining the Lipschitz constant of the objective function.
Spectrally normalized DNNs have also been shown to
generalize well [18], which is an indication of stability in
machine learning. Mathematically, the Lipschitz constant of
a function ‖f‖Lip is defined as the smallest value such that

∀x,x′ : ‖f(x)− f(x′)‖2/‖x− x′‖2 ≤ ‖f‖Lip.

It is known that the Lipschitz constant of a general differen-
tiable function f is the maximum spectral norm (maximum
singular value) of its gradient over its domain ‖f‖Lip =
supx σ(∇f(x)).

The ReLU DNN in (3) is a composition of functions.
Thus we can bound the Lipschitz constant of the network
by constraining the spectral norm of each layer gl(x) =
φ(W lx). Therefore, for a linear map g(x) = Wx, the spectral
norm of each layer is given by ‖g‖Lip = supx σ(∇g(x)) =
supx σ(W ) = σ(W ). Using the fact that the Lipschitz norm
of ReLU activation function φ(·) is equal to 1, with the
inequality ‖g1 ◦ g2‖Lip ≤ ‖g1‖Lip · ‖g2‖Lip, we can find the
following bound on ‖f‖Lip:

‖f‖Lip ≤ ‖gL+1‖Lip · ‖φ‖Lip · · · ‖g1‖Lip =
L+1∏
l=1

σ(W l). (4)

In practice, we can apply spectral normalization to the weight
matrices in each layer during training as follows:

W̄ = W/σ(W ) · γ
1

L+1 , (5)

where γ is the intended Lipschitz constant for the DNN. The
following lemma bounds the Lipschitz constant of a ReLU
DNN with spectral normalization.

Lemma 3.1: For a multi-layer ReLU network f(x,θ),
defined in (3) without an activation function on the output
layer. Using spectral normalization, the Lipschitz constant of
the entire network satisfies:

‖f(x, θ̄)‖Lip ≤ γ,

with spectrally-normalized parameters θ̄ = W̄ 1, · · · , W̄L+1.
Proof: As in (4), the Lipschitz constant can be written

as a composition of spectral norms over all layers. The proof
follows from the spectral norms constrained as in (5).



C. Constrained Training

We apply gradient-based optimization to train the ReLU
DNN with a bounded Lipschitz constant. Estimating fa in
(1) boils down to optimizing the parameters θ in the ReLU
network in (3), given the observed value of x and the target
output. In particular, we want to control the Lipschitz constant
of the ReLU network.

The optimization objective is as follows, where we mini-
mize the prediction error with constrained Lipschitz constant:

minimize
θ

T∑
t=1

1

T
‖yt − f(xt,θ)‖2

subject to ‖f‖Lip ≤ γ. (6)

In our case, yt is the observed disturbance forces and xt is
the observed states and control inputs. According to the upper
bound in (4), we can substitute the constraint by minimizing
the spectral norm of the weights in each layer. We use
stochastic gradient descent (SGD) to optimize (6) and apply
spectral normalization to regulate the weights. From Lemma
3.1, the trained ReLU DNN has a Lipschitz constant.

IV. NEURAL LANDER CONTROLLER DESIGN

Our Neural-Lander controller for 3-D trajectory tracking
is constructed as a nonlinear feedback linearization controller
whose stability guarantees are obtained using the spectral
normalizaion of the DNN-based ground-effect model. We
then exploit the Lipschitz property of the DNN to solve for
the resulting control input using fixed-point iteration.

A. Reference Trajectory Tracking

The position tracking error is defined as p̃ = p− pd. Our
controller uses a composite variable s = 0 as a manifold on
which p̃(t)→ 0 exponentially:

s = ˙̃p + Λp̃ = ṗ− vr (7)

with Λ as a positive definite or diagonal matrix. Now the
trajectory tracking problem is transformed to tracking a
reference velocity vr = ṗd − Λp̃.

Using the methods described in Sec. III, we define f̂a(ζ,u)
as the DNN approximation to the disturbance aerodynamic
forces, with ζ being the partial states used as input features
to the network. We design the total desired rotor force fd as

fd = (Rfu)d = f̄d − f̂a,with f̄d = mv̇r −Kvs−mg. (8)

Substituting (8) into (1), the closed-loop dynamics would
simply become mṡ + Kvs = ε, with approximation error
ε = fa − f̂a. Hence, p̃(t) → 0 globally and exponentially
with bounded error, as long as ‖ε‖ is bounded [19]–[21].

Consequently, desired total thrust Td and desired force
direction k̂d can be computed as

Td = fd · k̂, and k̂d = fd/ ‖fd‖ , (9)

with k̂ being the unit vector of rotor thrust direction (typically
z-axis in quadrotors). Using k̂d and fixing a desired yaw angle,
desired attitude Rd can be deduced [22]. We assume that a

nonlinear attitude controller uses the desired torque τd from
rotors to track Rd(t). One such example is in [21]:

τd = Jω̇r − Jω × ωr −Kω(ω − ωr), (10)

where the reference angular rate ωr is designed similar to (7),
so that when ω → ωr, exponential trajectory tracking of a
desired attitude Rd(t) is guaranteed within some bounded
error in the presence of bounded disturbance torques.

B. Learning-based Discrete-time Nonlinear Controller

From (2), (9) and (10), we can relate the desired wrench
ηd = [Td, τ

>
d ]> with the control signal u through

B0u = ηd =

[(
f̄d − f̂a(ζ,u)

)
· k̂

τd

]
. (11)

Because of the dependency of f̂a on u, the control synthesis
problem here is non-affine. Therefore, we propose the
following fixed-point iteration method for solving (11):

uk = B−10 ηd (uk−1) , (12)

where uk and uk−1 are the control input for current and
previous time-step in the discrete-time controller. Next, we
prove the stability of the system and convergence of the
control inputs in (12).

V. NONLINEAR STABILITY ANALYSIS

The closed-loop tracking error analysis provides a direct
correlation on how to tune the neural network and controller
parameter to improve control performance and robustness.

A. Control Allocation as Contraction Mapping

We first show that the control input uk converges to the
solution of (11) when all states are fixed.

Lemma 5.1: Define mapping uk = F(uk−1) based on (12)
and fix all current states:

F(u) = B−10

[(
f̄d − f̂a(ζ,u)

)
· k̂

τd

]
. (13)

If f̂a(ζ,u) is La-Lipschitz continuous, and σ(B−10 ) ·La < 1;
then F(·) is a contraction mapping, and uk converges to
unique solution of u∗ = F(u∗).

Proof: ∀u1,u2 ∈ U with U being a compact set of
feasible control inputs; and given fixed states as f̄d, τd and
k̂, then:

‖F(u1)−F(u2)‖2 =
∥∥∥B−10

(
f̂a(ζ,u1)− f̂a(ζ,u2)

)∥∥∥
2

≤ σ(B−10 ) · La ‖u1 − u2‖2 .

Thus, ∃ α < 1, s.t ‖F(u1) − F(u2)‖2 < α ‖u1 − u2‖2.
Hence, F(·) is a contraction mapping.



B. Stability of Learning-based Nonlinear Controller

Before continuing to prove the stability of the full system,
we make the following assumptions.

Assumption 1: The desired states along the position tra-
jectory pd(t), ṗd(t), and p̈d(t) are bounded.

Assumption 2: One-step difference of control signal satis-
fies ‖uk − uk−1‖ ≤ ρ ‖s‖ with a small positive ρ.

Here we provide the intuition behind this assumption.
From (13), we can derive the following approximate relation
with ∆(·)k = ‖(·)k − (·)k−1‖:

∆uk ≤ σ(B−10 )
(
La∆uk−1 + La∆ζk

+m∆v̇r,k + λmax(Kv)∆sk + ∆τd,k
)
.

Because update rate of attitude controller (> 100 Hz) and
motor speed control (> 5 kHz) are much higher than that
of the position controller (≈ 10 Hz), in practice, we can
safely neglect ∆sk, ∆v̇r,k, and ∆ζk in one update (Theorem
11.1 [23]). Furthermore, ∆τd,k can be limited internally by
the attitude controller. It leads to:

∆uk ≤ σ(B−10 )
(
La∆uk−1 + c

)
,

with c being a small constant and σ(B−10 ) · La < 1 from
Lemma. 5.1, we can deduce that ∆u rapidly converges to a
small ultimate bound between each position controller update.

Assumption 3: The learning error of f̂a(ζ,u) over the
compact sets ζ ∈ Z , u ∈ U is upper bounded by εm =
supζ∈Z,u∈U‖ε(ζ,u)‖, where ε(ζ,u) = fa(ζ,u)− f̂a(ζ,u).

DNNs have been shown to generalize well to the set of
unseen events that are from almost the same distribution as
training set [24], [25]. This empirical observation is also
theoretically studied in order to shed more light toward an
understanding of the complexity of these models [18], [26]–
[28]. Based on the above assumptions, we can now present
our overall stability and robustness result.

Theorem 5.2: Under Assumptions 1-3, for a time-varying
pd(t), the controller defined in (8) and (12) with λmin(Kv) >
Laρ achieves exponential convergence of composite variable
s to error ball limt→∞ ‖s(t)‖ = εm/ (λmin(Kv)− Laρ) with
rate ((λmin(Kv)− Laρ) /m. And p̃ exponentially converges
to error ball

lim
t→∞

‖p̃(t)‖ =
εm

λmin(Λ)(λmin(Kv)− Laρ)
(14)

with rate λmin(Λ).
Proof: We begin the proof by selecting a Lyapunov func-

tion as V(s) = 1
2m‖s‖

2, then by applying the controller (8),
we get the time-derivative of V:

V̇ = s>
(
−Kvs + f̂a(ζk,uk)− f̂a(ζk,uk−1) + ε(ζk,uk)

)
≤ −s>Kvs + ‖s‖(‖f̂a(ζk,uk)− f̂a(ζk,uk−1)‖+ εm)

Let λ = λmin(Kv) denote the minimum eigenvalue of
the positive-definite matrix Kv. By applying the Lipschitz
property of f̂a theorem 3.1 and Assumption 2, we obtain

V̇ ≤ −2 (λ−Laρ)

m
V +

√
2V
m
εm

(a) (b)

Part I Part II

Fig. 1: (a) Intel Aero drone; (b) Training data trajectory. Part
I (0 to 250 s) contains maneuvers at a different fixed height
(0.05 m to 1.50 m). Part II (250 s to 350 s) includes random
x, y, and z motions for maximum state-space coverage.

Using the Comparison Lemma [23], we define W(t) =√
V(t) =

√
m/2‖s‖ and Ẇ = V̇/

(
2
√
V
)

to obtain

‖s(t)‖ ≤ ‖s(t0)‖ exp

(
−λ− Laρ

m
(t− t0)

)
+

εm
λ− Laρ

It can be shown that this leads to finite-gain Lp stability
and input-to-state stability (ISS) [29]. Furthermore, the
hierarchical combination between s and p̃ in (7) results in
limt→∞ ‖p̃(t)‖ = limt→∞ ‖s(t)‖/λmin(Λ), yielding (14).

VI. EXPERIMENTS

In our experiments, we evaluate both the generalization
performance of our DNN as well as the overall control
performance of Neural-Lander. The experimental setup is
composed of a motion capture system with 17 cameras, a
WiFi router for communication, and an Intel Aero drone,
weighing 1.47 kg with an onboard Linux computer (2.56 GHz
Intel Atom x7 processor, 4 GB DDR3 RAM). We retrofitted
the drone with eight reflective infrared markers for accurate
position, attitude and velocity estimation at 100Hz. The Intel
Aero drone and the test space are shown in Fig. 1(a).

A. Bench Test

To identify a good nominal model, we first measured the
mass, m, diameter of the rotor, D, the air density, ρ, gravity,
g. Then we performed bench test to determine the thrust
constant, cT , as well as the non-dimensional thrust coefficient
CT = cT

ρD4 . Note that CT is a function of propeller speed n,
and here we picked a nominal value at n = 2000 RPM .

B. Real-World Flying Data and Preprocessing

To estimate the disturbance force fa, an expert pilot
manually flew the drone at different heights, and we collected
training data consisting of sequences of state estimates and
control inputs {(p,v, R,u),y} where y is the observed value
of fa. We utilized the relation fa = mv̇−mg−Rfu from (1)
to calculate fa, where fu is calculated based on the nominal cT
from the bench test in Sec. VI-A. Our training set is a single
continuous trajectory with varying heights and velocities. The
trajectory has two parts shown in Fig. 1(b). We aim to learn
the ground effect through Part I of the training set, and other
aerodynamics forces such as air drag through Part II.
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New
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Fig. 2: (a) Learned f̂a,z compared to the ground effect model
with respect to height z, with vz = vx = vy = 0 m/s, R = I ,
u = 6400 RPM. Ground truth points are from hovering data
at different heights. (b) Learned f̂a,z with respect to rotation
speed n (z = 0.2 m, vz = 0 m/s), compared to CT measured
in the bench test. (c) Heatmaps of learned f̂a,z versus z and
vz . (Left) ReLU network with spectral normalization. (Right)
ReLU network without spectral normalization.

C. DNN Prediction Performance

We train a deep ReLU network f̂a(ζ,u) = f̂a(z,v, R,u),
with z, v, R, u corresponding to global height, global velocity,
attitude, and control input. We build the ReLU network using
PyTorch [30]. Our ReLU network consists of four fully-
connected hidden layers, with input and the output dimensions
12 and 3, respectively. We use spectral normalization (5) to
constrain the Lipschitz constant of the DNN.

We compare the near-ground estimation accuracy our DNN
model with existing 1D steady ground effect model [1], [3]:

T (n, z) =
n2

1− µ(D8z )2
cT (n) = n2cT (n0) + f̄a,z, (15)

where T is the thrust generated by propellers, n is the rotation
speed, n0 is the idle RPM, and µ depends on the number and
the arrangement of propellers (µ = 1 for a single propeller,
but must be tuned for multiple propellers). Note that cT is a
function of n. Thus, we can derive f̄a,z(n, z) from T (n, z).

Fig. 2(a) shows the comparison between the estimated fa
from DNN and the theoretical ground effect model (15) at
different z (assuming T = mg when z = ∞). We can see
that our DNN can achieve much better estimates than the
theoretical ground effect model. We further investigate the
trend of f̄a,z with respect to the rotation speed n. Fig. 2(b)
shows the learned f̂a,z over the rotation speed n at a given

final error: zero
final error: 0.13 m

mean L1 error: 0.007 m
mean L1 error: 0.072 m

mean L1 error: 0.021 m
mean L1 error: 0.032 m

Baseline

Baseline

Baseline

Baseline

Fig. 3: Baseline Controller and Neural-Lander performance
in take-off and landing. Means (solid curves) and standard
deviations (shaded areas) of 10 trajectories.

height, in comparison with the CT measured from the bench
test. We observe that the increasing trend of the estimates
f̂a,z is consistent with bench test results for CT .

To understand the benefits of SN, we compared f̂a,z
predicted by the DNNs trained both with and without SN
as shown in Fig. 2(c). Note that vz from −1 m/s to 1 m/s
is covered in our training set, but −2 m/s to −1 m/s is not.
We observe the following differences:

1) Ground effect: f̂a,z increases as z decreases, which is
also shown in Fig. 2(a).

2) Air drag: f̂a,z increases as the drone goes down (vz <
0) and it decreases as the drone goes up (vz > 0).

3) Generalization: the spectral normalized DNN is much
smoother and can also generalize to new input domains
not contained in the training set.

In [18], the authors theoretically show that spectral normaliza-
tion can provide tighter generalization guarantees on unseen
data, which is consistent with our empirical observation.
We will connect generalization theory more tightly with our
robustness guarantees in the future.

D. Baseline Controller

We compared the Neural-Lander with a Baseline Nonlin-
ear Tracking Controller. We implemented both a Baseline
Controller similar to (7) and (8) with f̂a ≡ 0, as well as
an integral controller variation with vr = ṗd − 2Λp̃ −
Λ2
∫ t
0
p̃(τ)dτ . Though an integral gain can cancel steady-state

error during set-point regulation, our flight results showed
that the performance can be sensitive to the integral gain,
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table

desired trajectory

Mean X error

Mean Y error

Mean Z error

Z variance

0.079m

0.052m

0.027m

0.014m

0.126m

0.061m

0.153m

0.026m

Fig. 4: (a) Heatmaps of learned f̂a,z versus x and y, with other
inputs fixed. (Left) ReLU network with spectral normalization.
(Right) ReLU network without spectral normalization. (b)
Tracking performance and statistics.

especially during trajectory tracking. This can be seen in the
demo video.2

E. Setpoint Regulation Performance

First, we tested the two controllers’ performance in take-
off/landing, by commanding position setpoint pd, from
(0, 0, 0), to (0, 0, 1), then back to (0, 0, 0), with ṗd ≡ 0.
From Fig. 3, we can conclude that there are two main
benefits of our Neural-Lander. (a) Neural-Lander can control
the drone to precisely and smoothly land on the ground
surface while the Baseline Controller struggles to achieve 0
terminal height due to the ground effect. (b) Neural-Lander
can mitigate drifts in x − y plane, as it also learned about
additional aerodynamics such as air drag.

In experiments, we observed the Neural-Lander without
spectral normalization can even result in unexpected controller
outputs leading to crash, which empirically implies the
necessity of SN in training the DNN and designing the
controller.

F. Trajectory Tracking Performance

To show that our algorithm can handle more complicated
environments where physics-based modelling of dynamics
would be substantially more difficult, we devise a task of
tracking an elliptic trajectory very close to a table with a
period of 10 seconds shown in Fig. 4. The trajectory is
partially over the table with significant ground effects, and

2Demo videos: https://youtu.be/FLLsG0S78ik

a sharp transition to free space at the edge of the table.
We compared the performance of both Neural-Lander and
Baseline Controller on this test.

In order to model the complex dynamics near the table,
we manually flew the drone in the space close to the table to
collect another data set. We trained a new ReLU DNN model
with x-y positions as additional input features: f̂a(p,v, R,u).
Similar to the setpoint experiment, the benefit of spectral
normalization can be seen in Fig. 4(a), where only the
spectrally-normalized DNN exhibits a clear table boundary.

Fig. 4(b) shows that Neural-Lander outperformed the
Baseline Controller for tracking the desired position trajectory
in all x, y, and z axes. Additionally, Neural-Lander showed
a lower variance in height, even at the edge of the table, as
the controller captured the changes in ground effects when
the drone flew over the table.

In summary, the experimental results with multiple ground
interaction scenarios show that much smaller tracking errors
are obtained by Neural-Lander, which is essentially the
nonlinear tracking controller with feedforward cancellation
of a spectrally-normalized DNN.

VII. CONCLUSIONS

In this paper, we present Neural-Lander, a deep learning
based nonlinear controller with guaranteed stability for precise
quadrotor landing. Compared to Baseline Controller, Neural-
Landeris able to significantly improve control performance.
The main benefits are: (1) our method can learn from
coupled unsteady aerodynamics and vehicle dynamics, and
provide more accurate estimates than theoretical ground effect
models; (2) our model can capture both the ground effect
and other non-dominant aerodynamics, and outperforms the
conventional controller in all axes (x, y and z); (3) we provide
rigorous theoretical analysis of our method and guarantee the
stability of the controller, which also implies generalization
to unseen domains.

Future work includes further generalization of the capabil-
ities of Neural-Lander handling unseen state and disturbance
domains even generated by a wind fan array.
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