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Abstract
Efficient and interpretable spatial analysis is cru-
cial in many fields such as geology, sports, and
climate science. Tensor latent factor models can
describe higher-order correlations for spatial data.
However, they are computationally expensive to
train and are sensitive to initialization, leading to
spatially incoherent, uninterpretable results. We
develop a novel Multiresolution Tensor Learn-
ing (MRTL) algorithm for efficiently learning in-
terpretable spatial patterns. MRTL initializes the
latent factors from an approximate full-rank ten-
sor model for improved interpretability and pro-
gressively learns from a coarse resolution to the
fine resolution to reduce computation. We also
prove the theoretical convergence and computa-
tional complexity of MRTL. When applied to two
real-world datasets, MRTL demonstrates 4 ∼ 5x
speedup compared to a fixed resolution approach
while yielding accurate and interpretable latent
factors.

1. Introduction
Analyzing large-scale spatial data plays a critical role in
sports, geology, and climate science. In spatial statistics,
kriging or Gaussian processes are popular tools for spa-
tial analysis (Cressie, 1992). Others have proposed vari-
ous Bayesian methods such as Cox processes (Miller et al.,
2014; Dieng et al., 2017) to model spatial data. However,
while mathematically appealing, these methods often have
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difficulties scaling to high-resolution data.

Figure 1. Latent factors: random
(left) vs. good (right) initializa-
tion. Latent factors vary in inter-
pretability depending on initial-
ization.

We are interested in learn-
ing high-dimensional ten-
sor latent factor models,
which have shown to be
a scalable alternative for
spatial analysis (Yu et al.,
2018; Litvinenko et al.,
2019). High resolution
spatial data often con-
tain higher-order corre-
lations between features
and locations, and ten-
sors can naturally encode
such multi-way correlations. For example, in competitive
basketball play, we can predict how each player’s decision to
shoot is jointly influenced by their shooting style, his or her
court position, and the position of the defenders by simul-
taneously encoding these features as a tensor. Using such
representations, learning tensor latent factors can directly
extract higher-order correlations.

A challenge in such models is high computational cost.
High-resolution spatial data is often discretized, leading
to large high-dimensional tensors whose training scales ex-
ponentially with the number of parameters. Low-rank tensor
learning (Yu et al., 2018; Kossaifi et al., 2019) reduces the
dimensionality by assuming low-rank structures in the data
and uses tensor decomposition to discover latent semantics;
for an overview of tensor learning, see review papers (Kolda
& Bader, 2009; Sidiropoulos et al., 2017). However, many
tensor learning methods have been shown to be sensitive to
noise (Cheng et al., 2016) and initialization (Anandkumar
et al., 2014). Other numerical techniques, including random
sketching (Wang et al., 2015; Haupt et al., 2017) and paral-
lelization, (Austin et al., 2016; Li et al., 2017a) can speed up
training, but they often fail to utilize the unique properties
of spatial data such as spatial auto-correlations.

Using latent factor models also gives rise to another issue:
interpretability. It is well known that a latent factor model
is generally not identifiable (Allman et al., 2009), leading to
uninterpretable factors that do not offer insights to domain
experts. In general, the definition of interpretability is highly
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application dependent (Doshi-Velez & Kim, 2017). For spa-
tial analysis, one of the unique properties of spatial patterns
is spatial auto-correlation: close objects have similar values
(Moran, 1950), which we use as a criterion for interpretabil-
ity. As latent factor models are sensitive to initialization,
previous research (Miller et al., 2014; Yue et al., 2014) has
shown that randomly initialized latent factor models can
lead to spatial patterns that violate spatial auto-correlation
and hence are not interpretable (see Fig. 1).

In this paper, we propose a Multiresolution Tensor Learning
algorithm, MRTL, to efficiently learn accurate and inter-
pretable patterns in spatial data. MRTL is based on two key
insights. First, to obtain good initialization, we train a full-
rank tensor model approximately at a low resolution and
use tensor decomposition to produce latent factors. Second,
we exploit spatial auto-correlation to learn models at multi-
ple resolutions: we train starting from a coarse resolution
and iteratively finegrain to the next resolution. We provide
theoretical analysis and prove the convergence properties
and computational complexity of MRTL. We demonstrate
on two real-world datasets that this approach is significantly
faster than fixed resolution methods. We develop several
finegraining criteria to determine when to finegrain. We
also consider different interpolation schemes and discuss
how to finegrain in different applications. The code for our
implementation is available 1.

In summary, we:

• propose a Multiresolution Tensor Learning (MRTL) op-
timization algorithm for large-scale spatial analysis.

• prove the rate of convergence for MRTL which depends
on the spectral norm of the interpolation operator. We
also show the exponential computational speedup for
MRTL compared with fixed resolution.

• develop different criteria to determine when to transi-
tion to a finer resolution and discuss different finegrain-
ing methods.

• evaluate on two real-world datasets and show MRTL
learns faster than fixed-resolution learning and can
produce interpretable latent factors.

2. Related Work.
Spatial Analysis Discovering spatial patterns has signifi-
cant implications in scientific fields such as human behavior
modeling, neural science, and climate science. Early work
in spatial statistics has contributed greatly to spatial analysis
through the work in Moran’s I (Moran, 1950) and Getis-Ord
general G (Getis & Ord, 1992) for measuring spatial auto-
correlation. Geographically weighted regression (Brunsdon
et al., 1998) accounts for the spatial heterogeneity with a

1https://github.com/Rose-STL-Lab/mrtl

local version of spatial regression but fails to capture higher
order correlation. Kriging or Gaussian processes are popular
tools for spatial analysis but they often require carefully de-
signed variograms (also known as kernels) (Cressie, 1992).
Other Bayesian hierarchical models favor spatial point pro-
cesses to model spatial data (Diggle et al., 2013; Miller
et al., 2014; Dieng et al., 2017). These frameworks are
conceptually elegant but often computationally intractable.

Tensor Learning Latent factor models utilize correlations
in the data to reduce the dimensionality of the problem, and
have been used extensively in multi-task learning (Romera-
Paredes et al., 2013) and recommendation systems (Lee &
Seung, 2001). Tensor learning (Zhou et al., 2013; Bahadori
et al., 2014; Haupt et al., 2017) uses tensor latent factor
models to learn higher-order correlations in the data in a
supervised fashion. In particular, tensor latent factor models
aim to learn the higher-order correlations in spatial data by
assuming low-dimensional representations among features
and locations. However, high-order tensor models are non-
convex by nature, suffer from the curse of dimensionality,
and are notoriously hard to train (Kolda & Bader, 2009;
Sidiropoulos et al., 2017). There are many efforts to scale
up tensor computation, e.g., parallelization (Austin et al.,
2016) and sketching (Wang et al., 2015; Haupt et al., 2017;
Li et al., 2017b). In this work, we propose an optimization
algorithm to learn tensor models at multiple resolutions that
is not only fast but can also generate interpretable factors.
We focus on tensor latent factor models for their wide appli-
cability to spatial analysis and interpretability. While deep
neural networks models can be more accurate, they are com-
putationally more expensive and are difficult to interpret.

Multiresolution Methods Multiresolution methods have
been applied successfully in machine learning, both in la-
tent factor modeling (Kondor et al., 2014; Ozdemir et al.,
2017) and deep learning (Reed et al., 2017; Serban et al.,
2017). For example, multiresolution matrix factorization
(Kondor et al., 2014; Ding et al., 2017) and its higher order
extensions (Schifanella et al., 2014; Ozdemir et al., 2017;
Han & Dunson, 2018) apply multi-level orthogonal opera-
tors to uncover the multiscale structure in a single matrix.
In contrast, our method aims to speed up learning by ex-
ploiting the relationship among multiple tensors of different
resolutions. Our approach resembles the multigrid method
in numerical analysis for solving partial differential equa-
tions (Trottenberg et al., 2000; Hiptmair, 1998), where the
idea is to accelerate iterative algorithms by solving a coarse
problem first and then gradually finegraining the solution.

3. Tensor Models for Spatial Data
We consider tensor learning in the supervised setting. We
describe both models for the full-rank case and the low-rank

https://github.com/Rose-STL-Lab/mrtl
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case. An order-3 tensor is used for ease of illustration but
our model covers higher order cases.

3.1. Full Rank Tensor Models

Given input data consisting of both non-spatial and spa-
tial features, we can discretize the spatial features at r =
1, . . . , R resolutions, with corresponding dimensions as
D1, . . . , DR. Tensor learning parameterizes the model with
a weight tensorW(r) ∈ RI×F×Dr over all features, where
I is number of outputs and F is number of non-spatial fea-
tures. The input data is of the form X (r) ∈ RI×F×Dr . Note
that both the input features and the learning model are res-
olution dependent. Yi ∈ R, i = 1, . . . , I is the label for
output i.

At resolution r, the full rank tensor learning model can be
written as

Yi = a

 F∑
f=1

Dr∑
d=1

W(r)
i,f,dX

(r)
i,f,d + bi

 , (1)

where a is the activation function and bi is the bias for output
i. The weight tensorW is contracted with X along the non-
spatial mode f and the spatial mode d. In general, Eqn.
(1) can be extended to multiple spatial features and spatial
modes, each of which can have its own set of resolution-
dependent dimensions. We use a sigmoid activation function
for the classification task and the identity activation function
for regression.

3.2. Low Rank Tensor Model

Low rank tensor models assume a low-dimensional latent
structure inW which can characterize distinct patterns in
the data and also alleviate model overfitting. To transform
the learned tensor model to a low-rank one, we use CANDE-
COMP/PARAFAC (CP) decomposition (Hitchcock, 1927)
onW , which assumes thatW can be represented as the sum
of rank-1 tensors. Our method can easily be extended for
other decompositions as well.

Let K be the CP rank of the tensor. In practice, K cannot
be found analytically and is often chosen to sufficiently ap-
proximate the dataset. The weight tensorW(r) is factorized
into multiple factor matrices as

W(r)
i,f,d =

K∑
k=1

Ai,kBf,kC
(r)
d,k

The tensor latent factor model is

Yi = a

 F∑
f=1

Dr∑
d=1

K∑
k=1

Ai,kBf,kC
(r)
d,kX

(r)
i,f,d + bi

 , (2)

where the columns of A,B,Cr are latent factors for each
mode ofW and C(r) is resolution dependent.

CP decomposition reduces dimensionality by assuming that
A,B,Cr are uncorrelated, i.e. the features are uncorre-
lated. This is a reasonable assumption depending on how
the features are chosen and leads to enhanced spatial in-
terpretability as the learned spatial latent factors can show
common patterns regardless of other features.

3.3. Spatial Regularization

Interpretability is in general hard to define or quantify
(Doshi-Velez & Kim, 2017; Ribeiro et al., 2016; Lipton,
2018; Molnar, 2019). In the context of spatial analysis, we
deem a latent factor as interpretable if it produces a spatially
coherent pattern exhibiting spatial auto-correlation. To this
end, we utilize a spatial regularization kernel (Lotte & Guan,
2010; Miller et al., 2014; Yue et al., 2014) and extend this
to the tensor case.

Let d = 1, . . . , Dr index all locations of the spatial dimen-
sion for resolution r. The spatial regularization term is:

Rs =

Dr∑
d=1

Dr∑
d′=1

Kd,d′‖W:,:,d −W:,:,d′‖2F , (3)

where ‖ · ‖F denotes the Frobenius norm and Kd,d′ is the
kernel that controls the degree of similarity between loca-
tions. We use a simple RBF kernel with hyperparameter σ.

Kd,d′ = e(−‖ld−ld′‖
2/σ) , (4)

where ld denotes the location of index d. The distances
are normalized across resolutions such that the maximum
distance between two locations is 1. The kernels can be
precomputed for each resolution. If there are multiple spatial
modes, we apply spatial regularization across all different
modes. We additionally use L2 regularization to encourage
smaller weights. The optimization objective function is

f(W) = L(W;X ,Y) + λRR(W) , (5)

where L is a task-dependent supervised learning loss, R(W)
is the sum of spatial and L2 regularization, and λR is the
regularization coefficient.

4. Multiresolution Tensor Learning
We now describe our algorithm MRTL, which addresses both
the computation and interpretability issues. Two key con-
cepts of MRTL are learning good initializations and utilizing
multiple resolutions.

4.1. Initialization

In general, due to their nonconvex nature, tensor latent
factor models are sensitive to initialization and can lead
to uninterpretable latent factors (Miller et al., 2014; Yue
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et al., 2014). We use full-rank initialization in order to learn
latent factors that correspond to known spatial patterns.

We first train an approximate full-rank version of the tensor
model at a low resolution in Eqn. (1). The weight tensor
is then decomposed into latent factors and these values are
used to initialize the low-rank model. The low-rank model
in Eqn. (2) is then trained to the final desired accuracy.
As we use approximately optimal solutions of the full-rank
model as initializations for the low-rank model, our algo-
rithm produces interpretable latent factors in a variety of
different scenarios and datasets.

Full-rank initialization requires more computation than
other simpler initialization methods. However, as the full-
rank model is trained only for a small number of epochs,
the increase in computation time is not substantial. We
also train the full-rank model only at lower resolutions, for
further reduction.

Previous research (Yue et al., 2014) showed that spatial reg-
ularization alone is not enough to learn spatially coherent
factors, whereas full-rank initialization, though computa-
tionally costly, is able to fix this issue. We confirm the
same holds true in our experiments (see Section 6.4). Thus,
full-rank initialization is critical for spatial interpretability.

4.2. Multiresolution

Learning a high-dimensional tensor model is generally com-
putationally expensive and memory inefficient. We utilize
multiple resolutions for this issue. We outline the procedure
of MRTL in Alg. 1, where we omit the bias term in the
description for clarity.

We represent the resolution r with superscripts and the it-
erate at step t with subscripts, i.e. W(r)

t isW at resolution
r at step t. W0 is the initial weight tensor at the lowest
resolution. F (r) = (A,B,C(r)) denotes all factor matrices
at resolution r and we use n to index the factor F (r),n.

For efficiency, we train both the full rank and low rank
models at multiple resolutions, starting from a coarse spatial
resolution and progressively increase the resolution. At each
resolution r, we learnW(r) using the stochastic optimiza-
tion algorithm of choice Opt (we used Adam (Kingma &
Ba, 2014) in our experiments). When the stopping criterion
is met, we transformW(r) toW(r+1) in a process we call
finegraining (Finegrain). Due to spatial auto-correlation,
the trained parameters at a lower resolution will serve as a
good initialization for higher resolutions. For both models,
we only finegrain the factors that corresponds to resolution
dependent mode, which is the spatial mode in the context
of spatial analysis. Finegraining can be done for other non-
spatial modes for more computational speedup as long as
there exists a multiresolution structure (e.g. video or time
series data).

Algorithm 1 Multiresolution Tensor Learning: MRTL
1: Input: initializationW0, data X ,Y .
2: Output: latent factors F (r)

3: # full rank tensor model
4: for each resolution r ∈ {1, . . . , r0} do
5: Initialize t← 0
6: Get a mini-batch B from training set
7: while stopping criterion not true do
8: t← t+ 1

9: W(r)
t+1 ← Opt

(
W(r)

t | B
)

10: end while
11: W(r+1) = Finegrain

(
W(r)

)
12: end for
13: # tensor decomposition
14: F (r0) ← CP ALS

(
W(r0)

)
15: # low rank tensor model
16: for each resolution r ∈ {r0, . . . , R} do
17: Initialize t← 0
18: Get a mini-batch B from training set
19: while stopping criterion not true do
20: t← t+ 1

21: F (r)
t+1 ← Opt

(
F (r)

t | B
)

22: end while
23: for each spatial factor n ∈ {1, · · · , N} do
24: F (r+1),n = Finegrain

(
F (r),n

)
25: end for
26: end for

Once the full rank resolution has been trained up to resolu-
tion r0 (which can be chosen to fit GPU memory or time
constraints), we decomposeW(r) using CP ALS, the stan-
dard alternating least squares (ALS) algorithm (Kolda &
Bader, 2009) for CP decomposition. Then the low-rank
model is trained at resolutions r0, . . . , R to final desired
accuracy, finegraining to move to the next resolution.

When to finegrain There is a tradeoff between training
times at different resolutions. While training for longer at
lower resolutions significantly decreases computation, we
do not want to overfit to the coarse, lower resolution data.
On the other hand, training at higher resolutions can yield
more accurate solutions using more detailed information.
We investigate four different criteria to balance this tradeoff:
1) validation loss, 2) gradient norm, 3) gradient variance,
and 4) gradient entropy.

Increase in validation loss (Prechelt, 1998; Yao et al., 2007)
is a commonly used heuristic for early stopping. Another
approach is to analyze the gradient distributions during train-
ing. For a convex function, stochastic gradient descent will
converge into a noise ball near the optimal solution as the
gradients approach zero. However, lower resolutions may
be too coarse to learn more finegrained curvatures and the
gradients will increasingly disagree near the optimal solu-
tion. We quantify the disagreement in the gradients with
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metrics such as norm, variance, and entropy. We use in-
tuition from convergence analysis for gradient norm and
variance (Bottou et al., 2018), and information theory for
gradient entropy (Srinivas et al., 2012).

LetWt and ξt represent the weight tensor and the random
variable for sampling of minibatches at step t, respectively.
Let f(Wt; ξt) := ft be the validation loss and g(Wt; ξt) :=
gt be the stochastic gradients at step t. The finegraining
criteria are:

• Validation Loss: E[ft+1]− E[ft] > 0

• Gradient Norm: E[‖gt+1‖2]− E[‖gt‖2] > 0

• Gradient Variance: V (E[gt+1])− V (E[gt]) > 0

• Gradient Entropy: S(E[gt+1])− S(E[gt]) > 0 ,

where S(p) =
∑
i−pi ln(pi). One can also use thresholds,

e.g. |ft+1 − ft| < τ , but as these are dependent on the
dataset, we use τ = 0 in our experiments. One can also
incorporate patience, i.e. setting the maximum number of
epochs where the stopping conditions was reached.

How to finegrain We discuss different interpolation
schemes for different types of features. Categori-
cal/multinomial variables, such as a player’s position on
the court, are one-hot encoded or multi-hot encoded onto
a discretized grid. Note that as we use higher resolutions,
the sum of the input values are still equal across resolutions,∑
d X

(r)
:,:,d =

∑
d X

(r+1)
:,:,d . As the sum of the features re-

mains the same across resolutions and our tensor models are
multilinear, nearest neighbor interpolation should be used
in order to produce the same outputs.

Dr∑
d=1

W(r)
:,:,dX

(r)
:,:,d =

Dr+1∑
d=1

W(r+1)
:,:,d X

(r+1)
:,:,d

as X (r)
i,f,d = 0 for cells that do not contain the value. This

scheme yields the same outputs and thus the same loss
values across resolutions.

Continuous variables that represent averages over locations,
such as sea surface salinity, often have similar values at each
finegrained cell at higher resolutions (as the values at coarse
resolutions are subsampled or averaged from values at the
higher resolution). Then

∑Dr+1

d X (r+1)
:,:,d ≈ 22

∑Dr

d X
(r)
:,:,d,

where the approximation comes from the type of downsam-
pling used.

Dr∑
d=1

W(r)
:,:,dX

(r)
:,:,d ≈ 22

Dr+1∑
d=1

W(r+1)
:,:,d X

(r+1)
:,:,d

using a linear interpolation scheme. The weights are divided
by the scale factor of Dr+1

Dr
to keep the outputs approxi-

mately equal. We use bilinear interpolation, though any
other linear interpolation can be used.

5. Theoretical Analysis.
5.1. Convergence

We prove the convergence rate for MRTL with a single spa-
tial mode and one-dimensional output, where the weight
tensor reduces to a weight vector w. We defer all proofs
to Appendix A. For the loss function f and a stochastic
sampling variable ξ, the optimization problem is:

w? = argmin E[f(w; ξ)] (6)

We consider a fixed-resolution model that follows Alg. 1
with r = {R}, i.e. only the final resolution is used. For
a fixed-resolution miniSGD algorithm, under common as-
sumptions in convergence analysis:

• f is µ- strongly convex, L-smooth

• (unbiased) gradient E[g(wt; ξt)] = Of(wt) given ξ<t

• (variance) for all the w, E[‖g(w; ξ)‖22] ≤ σ2
g +

cg‖Of(w)‖22
Theorem 5.1. (Bottou et al., 2018) If the step size ηt ≡
η ≤ 1

Lcg
, then a fixed resolution solution satisfies

E[‖wt+1 −w?‖22] ≤γt(E[‖w0 −w?‖22)− β] + β,

where γ = 1 − 2ηµ, β =
ησ2

g

2µ , and w? is the optimal
solution.

which gives O(1/t) +O(η) convergence.

At resolution r, we define the number of total iterations as
tr, and the weights as w(r). We let Dr denote the num-
ber of dimensions at r and we assume a dyadic scaling
between resolutions such that Dr+1 = 2Dr. We define
finegraining using an interpolation operator P such that
w

(r+1)
0 = Pw

(r)
tr as in (Bramble, 2019). For the simple

case of a 1D spatial grid where w
(r)
t has spatial dimension

Dr, P would be of a Toeplitz matrix of dimension 2Dr×Dr.
For example, for linear interpolation of Dr = 2,

Pw(r) =
1

2


1 0
2 0
1 1
0 2


[
w

(r)
1

w
(r)
2

]
=


w

(r+1)
1 /2

w
(r+1)
1

w
(r+1)
1 /2 + w

(r+1)
2 /2

w
(r+1)
2

 .

Any interpolation scheme can be expressed in this form.

The convergence of multiresolution learning algorithm de-
pends on the following property of spatial data:
Definition 5.2 (Spatial Smoothness). The difference be-
tween the optimal solutions of consecutive resolutions is
upper bounded by ε

‖w(r+1)
? − Pw(r)

? ‖ ≤ ε,

with P being the interpolation operator.
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The following theorem proves the convergence rate of MRTL,
with a constant that depends on the operator norm of the
interpolation operator P .
Theorem 5.3. If the step size ηt ≡ η ≤ 1

Lcg
, then the

solution of MRTL satisfies

E[‖w(r)
t −w?‖22] ≤ γt‖P‖2rop E[‖w0 −w?‖22 +O(η‖P‖op),

where γ = 1 − 2ηµ, β =
ησ2

g

2µ , and ‖P‖op is the operator
norm of the interpolation operator P .

5.2. Computational Complexity

To analyze computational complexity, we resort to fixed
point convergence (Hale et al., 2008) and the multigrid
method (Stüben, 2001). Intuitively, as most of the training
iterations are spent on coarser resolutions with fewer number
of parameters, multiresolution learning is more efficient than
fixed-resolution training.

Assuming that ∇f is Lipschitz continuous, we can view
gradient-based optimization as a fixed-point iteration oper-
ator F with a contraction constant of γ ∈ (0, 1) (note that
stochastic gradient descent converges to a noise ball instead
of a fixed point):

w← F (w), F := I − η∇f,
‖F (w)− F (w′)‖ ≤ γ‖w −w′‖

Let w(r)
? be the optimal estimator at resolution r and w(r) be

a solution satisfying ‖w(r)
? −w(r)‖ ≤ ε/2. The algorithm

terminates when the estimation error reaches C0R
(1−γ)2 . The

following lemma describes the computational cost of the
fixed-resolution algorithm.
Lemma 5.4. Given a fixed point iteration operator F with
contraction constant of γ ∈ (0, 1), the computational com-
plexity of fixed-resolution training for tensor model of order
p and rank K is

C = O
(

1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
, (7)

where ε is the terminal estimation error.

The next Theorem 5.5 characterizes the computational
speed-up gained by MRTL compared to fixed-resolution
learning, with respect to the contraction factor γ and the
terminal estimation error ε.
Theorem 5.5. If the fixed point iteration operator (gradi-
ent descent) has a contraction factor of γ, multiresolution
learning with the termination criteria of C0r

(1−γ)2 at resolu-
tion r is faster than fixed-resolution learning by a factor of
log 1

(1−γ)ε , with the terminal estimation error ε.

Note that the speed-up using multiresolution learning uses a
global convergence criterion ε for each r.

6. Experiments
We apply MRTL to two real-world datasets: basketball track-
ing and climate data. More details about the datasets and
pre-processing steps are provided in Appendix B.

6.1. Datasets

Tensor classification: Basketball tracking We use a
large NBA player tracking dataset from (Yue et al., 2014;
Zheng et al., 2016) consisting of the coordinates of all play-
ers at 25 frames per second, for a total of approximately
6 million frames. The goal is to predict whether a given
ball handler will shoot within the next second, given his
position on the court and the relative positions of the de-
fenders around him. In applying our method, we hope to
obtain common shooting locations on the court and how a
defender’s relative position suppresses shot probability.

Figure 2. Left: Discretizing a continuous-valued position of a
player (red) via a spatial grid. Right: sample frame with a ball-
handler (red) and defenders (green). Only defenders close to the
ballhandler are used.

The basketball data contains two spatial modes: the ball
handler’s position and the relative defender positions around
the ball handler. We instantiate a tensor classification model
in Eqn (1) as follows:

Yi =

D1
r∑

d1=1

D2
r∑

d2=1

σ(W(r)
i,d1,d2X

(r)
i,d1,d2 + bi) ,

where i ∈ {1, . . . , I} is the ballhandler ID, d1 indexes the
ballhandler’s position on the discretized court of dimension
{D1

r}, and d2 indexes the relative defender positions around
the ballhandler in a discretized grid of dimension {D2

r}.
We assume that only defenders close to the ballhandler
affect shooting probability and set D2

r < D1
r to reduce

dimensionality. As shown in Fig. 2, we orient the defender
positions so that the direction from the ballhandler to the
basket points up. Yi ∈ {0, 1} is the binary output equal
to 1 if player i shoots within the next second and σ is the
sigmoid function.

We use nearest neighbor interpolation for finegraining and a
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weighted cross entropy loss (due to imbalanced classes):

Ln = −β
[
Yn · log Ŷn + (1− Yn) · log (1− Ŷn)

]
, (8)

where n denotes the sample index and β is the weight of the
positive samples and set equal to the ratio of the negative
and positive counts of labels.

Tensor regression: Climate Recent research (Li et al.,
2016a;b; Zeng et al., 2019) shows that oceanic variables
such as sea surface salinity (SSS) and sea surface temper-
ature (SST) are significant predictors of the variability in
rainfall in land-locked locations, such as the U.S. Midwest.
We aim to predict the variability in average monthly precipi-
tation in the U.S. Midwest using SSS and SST to identify
meaningful latent factors underlying the large-scale pro-
cesses linking the ocean and precipitation on land (Fig. 3).
We use precipitation data from the PRISM group (PRISM
Climate Group, 2013) and SSS/SST data from the EN4
reanalysis (Good et al., 2013).

Figure 3. Left: precipitation over continental U.S. Right: regions
considered in particular.

Let X be the historical oceanic data with spatial features
SSS and SST across Dr locations, using the previous 6
months of data. As SSS and SST share the spatial mode
(the same spatial locations), we set the F2 = 2 to denote
the index of these features. We also consider the lag as a
non-spatial feature so that F1 = 6. We instantiate the tensor
regression model in Eqn (1) as follows:

Y =

F1∑
f1=1

F2∑
f2=1

Dr∑
d=1

W(r)
f1,f2,d

X (r)
f1,f2,d

+ b

The features and outputs (SSS, SST, and precipitation) are
subject to long-term trends and a seasonal cycle. We use dif-
ference detrending for each timestep due to non-stationarity
of the inputs, and remove seasonality in the data by standard-
izing each month of the year. The features are normalized
using min-max normalization. We also normalize and desea-
sonalize the outputs, so that the model predicts standardized
anomalies. We use mean square error (MSE) for the loss
function and bilinear interpolation for finegraining.

Implementation Details For both datasets, we discretize
the spatial features and use a 60-20-20 train-validation-test

Figure 4. Basketball: F1 scores of MRTL vs. the fixed-resolution
model for the full rank (left) and low rank model (right). The
vertical lines indicate finegraining to the next resolution.

Figure 5. Basketball: F1 scores different finegraining criteria for
the full rank (left) and low rank (right) model

set split. We use Adam (Kingma & Ba, 2014) for opti-
mization as it was empirically faster than SGD in our ex-
periments. We use both L2 and spatial regularization as
described in Section 3. We selected optimal hyperparame-
ters for all models via random search. We use a stepwise
learning rate decay with stepsize of 1 with γ = 0.95. We
perform ten trials for all experiments. All other details are
provided in Appendix B.

6.2. Accuracy and Convergence

We compare MRTL against a fixed-resolution model on ac-
curacy and computation time. We exclude the computation
time for CP ALS as it was quick to compute for all experi-
ments (< 5 seconds for the basketball dataset). The results
of all trials are listed in Table 1. Some results are provided
in Appendix B.

Fig. 4 shows the F1 scores of MRTL vs a fixed resolution
model for the basketball dataset (validation loss was used
as the finegraining criterion for both models). For the full
rank case, MRTL converges 9 times faster than the fixed res-
olution case (the scaling of the axes obscures convergence;
nevertheless, both algorithms have converged). The fixed-
resolution model is able to reach a higher F1 score for the
full rank case, as it uses a higher resolution than MRTL and
is able to use more finegrained information, translating to a
higher quality solution. This advantage does not transfer to
the low rank model.

For the low rank model, the training times are comparable
and both reach a similar F1 score. There is decrease in the
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Table 1. Runtime and prediction performance comparison of a fixed-resolution model vs MRTL for datasets

Dataset Model Full Rank Low Rank

Time [s] Loss F1 Time [s] Loss F1

Basketball Fixed 11462 ±565 0.608 ±0.00941 0.685 ±0.00544 2205 ±841 0.849 ±0.0230 0.494 ±0.00417

MRTL 1230 ±74.1 0.699 ±0.00237 0.607 ±0.00182 2009 ±715 0.868 ±0.0399 0.475 ±0.0121

Climate Fixed 12.5±0.0112 0.0882 ±0.0844 - 269 ±319 0.0803 ±0.0861 -
MRTL 1.11 ±0.180 0.0825 ±0.0856 - 67.1 ±31.8 0.0409 ±0.00399 -

Figure 6. Climate: Some latent factors of sea surface locations after training. The red areas in the northwest Atlantic region (east of North
America and Gulf of Mexico) represent areas where moisture export contributes to precipitation in the U.S. Midwest.

F1 score going from full rank to low rank for both MRTL
and the fixed resolution model due to approximation error
from CP decomposition. Note that this is dependent on the
choice of K, specific to each dataset. Furthermore, we see
a smaller increase in performance for the low rank model
vs. the full rank case, indicating that the information gain
from finegraining does not scale linearly with the resolution.
We see a similar trend for the climate data, where MRTL
converges faster than the fixed-resolution model. Overall,
MRTL is approximately 4 ∼ 5 times faster and we get a
similar speedup in the climate data.

6.3. Finegraining Criteria

We compare the performance of different finegraining cri-
teria in Fig. 5. Validation loss converges much faster than
other criteria for the full rank model while the other fine-
graining criteria converge slightly faster for the low rank
model. In the classification case, we observe that the full
rank model spends many epochs training when we use
gradient-based criteria, suggesting that they can be too strict
for the full rank case. For the regression case, we see all
criteria perform similarly for the full rank model, and valida-
tion loss converges faster for the low rank model. As there
are differences between finegraining criteria for different
datasets, one should try all of them for fastest convergence.

6.4. Interpretability

We now demonstrate that MRTL can learn semantic repre-
sentations along spatial dimensions. For all latent factor
figures, the factors have been normalized to (−1, 1) so that
reds are positive and blues are negative.

Figure 7. Basketball: Latent factor heatmaps of ballhandler po-
sition after training for k = 1, 3, 20. They represent common
shooting locations such as the right/left sides of the court, the paint,
or near the three point line.

Figure 8. Basketball: Latent factor heatmaps of relative defender
positions after training for k = 1, 3, 20. The green dot represents
the ballhandler at (6, 2). The latent factors show spatial patterns
near the ballhandler, suggesting important positions to suppress
shot probability.

Figs. 7, 8 visualize some latent factors for ballhandler po-
sition and relative defender positions, respectively (see Ap-
pendix for all latent factors). For the ballhandler position
in Fig. 7, coherent spatial patterns (can be both red or blue
regions as they are simply inverses of each other) can corre-
spond to common shooting locations. These latent factors
can represent known locations such as the paint or near the
three-point line on both sides of the court.

For relative defender positions in Fig. 8, we see many con-
centrated spatial regions near the ballhandler, indicating that
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Figure 9. Latent factor comparisons (k = 3, 10) of randomly ini-
tialized low-rank model (1st and 3rd) and MRTL (2nd and 4th) for
ballhandler position (left two plots) and the defender positions
(right two plots). Random initialization leads to uninterpretable
latent factors.

such close positions suppress shot probability (as expected).
Some latent factors exhibit directionality as well, suggesting
that guarding one side of the ballhandler may suppress shot
probability more than the other side.

Fig. 6 depicts two latent factors of sea surface locations. We
would expect latent factors to correspond to regions of the
ocean which independently influence precipitation. The left
latent factor highlights the Gulf of Mexico and northwest
Atlantic ocean as influential for rainfall in the Midwest due
to moisture export from these regions. This is consistent
with findings from (Li et al., 2018; 2016a).

Random initialization We also perform experiments us-
ing a randomly initialized low-rank model (without the full-
rank model) in order to verify the importance of full rank
initialization. Fig. 9 compares random initialization vs.
MRTL for the ballhandler position (left two plots) and the
defender positions (right two plots). We observe that even
with spatial regularization, randomly initialized latent factor
models can produce noisy, uninterpretable factors and thus
full-rank initialization is essential for interpretability.

7. Conclusion and Future Work
We presented a novel algorithm for tensor models for spatial
analysis. Our algorithm MRTL utilizes multiple resolutions
to significantly decrease training time and incorporates a
full-rank initialization strategy that promotes spatially coher-
ent and interpretable latent factors. MRTL is generalized to
both the classification and regression cases. We proved the
theoretical convergence of our algorithm for stochastic gradi-
ent descent and compared the computational complexity of
MRTL to a single, fixed-resolution model. The experimental
results on two real-world datasets support its improvements
in computational efficiency and interpretability.

Future work includes 1) developing other stopping criteria in
order to enhance the computational speedup, 2) applying our
algorithm to more higher-dimensional spatiotemporal data,
and 3) studying the effect of varying batch sizes between
resolutions as in (Wu et al., 2019).
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A. Theoretical Analysis
A.1. Convergence Analysis

Theorem A.1. (Bottou et al., 2018) If the step size ηt ≡ η ≤ 1
Lcg

, then a fixed resolution solution satisfies

E[‖wt+1 −w?‖22] ≤ γt[E[‖w0 −w?‖22]− β] + β

where γ = 1− 2ηµ, β =
ησ2

g

2µ , and w? is the optimal solution.

Proof. For a single step update,

‖wt+1 −w?‖22 = ‖wt − ηtg(wt; ξt)−w?‖22
= ‖wt −w?‖22 + ‖ηtg(wt; ξt)‖22 − 2ηtg(wt; ξt)(wt −w?) (9)

by the law of total expectation

E[g(xt; ξt)(wt −w?)] = E[E[g(wt; ξt)(wt −w?)|ξ<t]]
= E[(wt −w?)E[g(wt; ξt)|ξ<t]]
= E[(wt −w?)

>Of(wt)] (10)

From strong convexity,

〈Of(wt)− Of(w?),wt −w?〉 = 〈Of(wt),wt −w?〉 ≥ µ‖wt −w?‖22 (11)

which implies E[(wt −w?)
>Of(wt)] ≥ µE[‖wt −w?‖22] as Of(w?) = 0. Putting it all together yields

E[‖wt+1 −w?‖22] ≤ (1− 2ηtµ)E[‖wt −w?‖22] + (ηtσg)
2 (12)

As ηt = η, we complete the contraction, by setting β =
(ησg)

2

(2ηµ)

E[‖wt+1 −w?‖22]− β ≤ (1− 2ηtµ)(E[‖wt −w?‖22]− β) (13)

Repeat the iterations

E[‖wt+1 −w?‖22]− β ≤ (1− 2ηµ)t(E[‖w0 −w?‖22]− β) (14)

Rearranging the terms, we get

E[‖wt+1 −w?‖22] ≤ (1− 2ηµ)tE[‖w0 −w?]− ((1− 2ηµ)t + 1)
(ησg)

2

(2ηµ)
(15)

Theorem A.2. If the step size ηt ≡ η ≤ 1
Lcg

, then MRTL solution satisfies

E[‖w(r)
t −w?‖22] ≤ γt(‖P‖2op)r[E[‖w(1)

0 −w(1),?‖22]

− γt‖P‖22β + γt2(‖P‖2opβ − β) +O(1)

where γ = 1− 2ηµ, β =
ησ2

g

2µ , and ‖P‖op is the operator norm of the interpolation operator P .

Consider a two resolution case where R = 2 and w
(2)
? = w?. Let tr be the total number of iterations of resolution r. Based

on Eqn. (12), for a fixed resolution algorithm, after t1 + t2 number of iterations,

E[‖wt1+t2 −w?‖22]− β ≤ (1− 2ηµ)t1+t2(E[‖w0 −w?‖22]− β)



Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis

For multiresolution, where we train on resolution r = 1 first, we have

E[‖w(1)
t1 −w

(1)
? ‖22]− β ≤ (1− 2ηµ)t1(E[‖w(1)

0 −w
(1)
? ‖22]− β)

At resolution r = 2, we have

E[‖w(2)
t2 −w?‖22]− β ≤ (1− 2ηµ)t2(E[‖w(2)

0 −w?‖22]− β) (16)

Using interpolation, we have w
(2)
0 = Pw

(1)
t1 . Given the spatial autocorrelation assumption, we have

‖w(2)
? − Pw(1)

? ‖2 ≤ ε

By the definition of operator norm and triangle inequality,

E[‖w(2)
0 −w

(2)
? ‖22 ≤ E[‖Pw(1)

t1 −w
(2)
? ‖22] ≤ ‖P‖2opE[‖w(1)

t1 −w
(1)
? ‖22] + ε2

Combined with eq. (16), we have

E[‖w(2)
t2 −w?‖22]− β ≤(1− 2ηµ)t2(‖P‖2opE[‖w(1)

t1 −w
(1)
? ‖22] + ε2 − β) (17)

=(1− 2ηµ)t1+t2‖P‖2op(E[‖w(1)
0 −w

(1)
? ‖22]− β) + (1− 2ηµ)t2(‖P‖2opβ + ε2 − β) (18)

If we initialize w0 and w
(1)
0 such that ‖w(1)

0 −w
(1)
? ‖22 = ‖w0 −w?‖22, we have MRTL solution

E[‖w
′

t1+t2 −w?‖22]− α ≤ (1− 2ηµ)t1+t2‖P‖2op(E[‖w
′

0 −w?‖22]− α) (19)

for some α that completes the contraction. Repeat the resolution iterates in Eqn. (18), we reach our conclusion.

A.2. Computational Complexity Analysis

In this section, we analyze the computational complexity for MRTL (Algorithm 1). Assuming that∇f is Lipschitz continuous,
we can view gradient-based optimization as a fixed-point iteration operator F with a contraction constant of γ ∈ (0, 1) (note
that stochastic gradient descent converges to a noise ball instead of a fixed point).

w← F (w), F := I − η∇f, ‖F (w)− F (w′)‖ ≤ γ‖w −w′‖.

Let w(r)
? be the optimal estimator at resolution r. Suppose for each resolution r, we use the following finegrain criterion:

‖w(r)
t −w

(r)
t−1‖ ≤

C0Dr

γ(1− γ)
. (20)

where tr is the number of iterations taken at level r. The algorithm terminates when the estimation error reaches C0R
(1−γ)2 .

The following main theorem characterizes the speed-up gained by multiresolution learning MRTL w.r.t. the contraction
factor γ and the terminal estimation error ε.

Theorem A.3. Suppose the fixed point iteration operator (gradient descent) for the optimization algorithm has a contraction
factor (Lipschitz constant) of γ, the multiresolution learning procedure is faster than that of the fixed resolution algorithm
by a factor of log 1

(1−γ)ε , with ε as the terminal estimation error.

We prove several useful Lemmas before proving the main Theorem A.3. The following lemma analyzes the computational
cost of the fixed-resolution algorithm.

Lemma A.4. Given a fixed point iteration operator with a contraction factor γ, the computational complexity of a
fixed-resolution training for a p-order tensor with rank K is

C = O
(

1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
. (21)



Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis

Proof. At a high level, we can prove this by choosing a small enough resolution r such that the approximation error is
bounded with a fixed number of iterations. Let w(r)

? be the optimal estimate at resolution r and wt be the estimate at step t.
Then

‖w? −wt‖ ≤ ‖w? −w
(r)
? ‖+ ‖w(r)

? −wt‖ ≤ ε. (22)

We pick a fixed resolution r small enough such that

‖w? −w
(r)
? ‖ ≤

ε

2
, (23)

then using the termination criteria ‖w? −w
(r)
? ‖ ≤ C0R

(1−γ)2 gives Dr = Ω((1− γ)2ε) where Dr is the discretization size at
resolution r. Initialize w0 = 0 and apply F to w for t times such that

γt

2(1− γ)
‖F (w0)‖ ≤ ε

2
. (24)

As w0 = 0, ‖F (w0)‖ ≤ 2C, we obtain that

t ≤ 1

| log γ|
· log

(
2C

(1− γ)ε

)
, (25)

Note that for an order p tensor with rank K, the computational complexity of every iteration in MRTL is O(Kp/Dr) with
Dr as the discretization size. Hence, the computational complexity of the fixed resolution training is

C = O
(

1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp
Dr

)
= O

(
1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
.

Given a spatial discretization r, we can construct an operator Fr that learns discretized tensor weights. The next lemma
relates the estimation error with resolution. The following lemma relates the estimation error with resolution:

Lemma A.5. (Nash, 2000) For each resolution level r = 1, · · · , R, there exists a constant C1 and C2, such that the fixed
point iteration with discretization size Dr has an estimation error:

‖F (w)− F (r)(w)‖ ≤ (C1 + γC2‖w‖)Dr (26)

Proof. See (Nash, 2000) for details.

We have obtained the discretization error for the fixed point operation at any resolution. Next we analyze the number of
iterations tr needed at each resolution r before finegraining.

Lemma A.6. For every resolution r = 1, . . . , R, there exists a constant C ′ such that the number of iterations tr before
finegraining satisfies:

tr ≤ C ′/ log |γ| (27)

Proof. According to the fixed point iteration definition, we have for each resolution r:

‖Fr(wtr )−w
(r)
tr )‖ ≤ γtr−1‖Fr(w(r)

0 )−w
(r)
0 ‖ (28)

≤ γtr−1
C0Dr

1− γ
(29)

≤ C ′γtr−1 (30)
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using the definition of the finegrain criterion.

By combining Lemmas A.6 and the computational cost per iteration, we can compute the total computational cost for our
MRTL algorithm, which is proportional to the total number of iterations for all resolutions:

CMRTL = O
(

1

| log γ|
[
(Dr/Kp)

−1 + (2Dr/Kp)
−1 + (4Dr/Kp)

−1 + · · ·
])

= O
(

1

| log γ|

(
Kp

Dr

)[
1 +

1

2
+

1

4
+ · · ·

])
= O

(
1

| log γ|

(
Kp

Dr

)[
1− ( 1

2 )n

1− 1
2

])
= O

(
1

| log γ|

(
Kp

(1− γ)2ε

))
, (31)

where the last step uses the termination criterion in (20). Comparing with the complexity analysis for the fixed resolution
algorithm in Lemma A.4, we complete the proof.

B. Experiment Details
Basketball We list implementation details for the basketball dataset. We focus only on half-court possessions, where all
players have crossed into the half court as in (Yue et al., 2014). The ball must also be inside the court and be within a 4 foot
radius of the ballhandler. We discard any passing/turnover events and do not consider frames with free throws.

For the ball handler location {D1
r}, we discretize the half-court into resolutions 4× 5, 8× 10, 20× 25, 40× 50. For the

relative defender locations, at the full resolution, we choose a 12× 12 grid around the ball handler where the ball handler is
located at (6, 2) (more space in front of the ball handler than behind him/her). We also consider a smaller grid around the
ball handler for the defender locations, assuming that defenders that are far away from the ball handler do not influence
shooting probability. We use 6× 6, 12× 12 for defender positions.

Let us denote the pair of resolutions as (D1
r , D

2
r). We train the full-rank model at resolutions (4× 5, 6× 6), (8× 10, 6×

6), (8× 10, 12× 12) and the low-rank model at resolutions (8× 10, 12× 12), (20× 25, 12× 12), (40× 50, 12× 12).

There is a notable class imbalance in labels (88% of data points have zero labels) so we use weighted cross entropy loss
using the inverse of class counts as weights. For the low-rank model, we use tensor rank K = 20. The performance trend of
MRTL is similar across a variety of tensor ranks. K should be chosen appropriately to the desired level of approximation.

Climate We describe the data sources used for climate. The precipitation data comes from the PRISM group (PRISM
Climate Group, 2013), which provides estimates monthly estimates at 1/24o spatial resolution across the continental U.S
from 1895 to 2018. For oceanic data we use the EN4 reanalysis product (Good et al., 2013), which provides monthly
estimates for ocean salinity and temperature at 1o spatial resolution across the globe from 1900 to the present (see Fig. 3).
We constrain our spatial analysis to the range [-180oW, 0oW] and [-20oS, 60oN], which encapsulates the area around North
America and a large portion of South America.

The ocean data is non-stationary, with the variance of the data increasing over time. This is likely due to improvement in
observational measurements of ocean temperature and salinity over time, which reduce the amount of interpolation needed
to generate an estimate for a given month. After detrending and deseasonalizing, we split the train, validation, and test sets
using random consecutive sequences so that their samples come from a similar distribution.

We train the full-rank model at resolutions 4× 9 and 8× 18 and the low-rank model at resolutions 8× 18, 12× 27, 24× 54,
40× 90, 60× 135, and 80× 180. For finegraining criteria, we use a patience factor of 4, i.e. training was terminated when a
finegraining criterion was reached a total of 4 times. Both validation loss and gradient statistics were relatively noisy during
training (possibly due to a small number of samples), leading to early termination without the patience factor.

During finegraining, the weights were upsampled to the higher resolution using bilinear interpolation and then scaled by
the ratio of the number of inputs for the higher resolution to the number of inputs for the lower resolution (as described in
Section 4) to preserve the magnitude of the prediction.
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Details We trained the basketball dataset on 4 RTX 2080 Ti GPUs, while the climate dataset experiments were performed
on a separate workstation with 1 RTX 2080 Ti GPU. The computation times of the fixed-resolution and MRTL model were
compared on the same setup for all experiments.

B.1. Hyperparameters

Hyperparameter Basketball Climate
Batch size 32− 1024 8− 128
Full-rank learning rate η 10−3 − 10−1 10−4 − 10−1

Full-rank regularization λ 10−5 − 100 10−4 − 10−1

Low-rank learning rate η 10−5 − 10−1 10−4 − 10−1

Low-rank regularization λ 10−5 − 100 10−4 − 10−1

Spatial regularization σ 0.03− 0.2 0.03− 0.2
Learning rate decay γ 0.7− 0.95 0.7− 0.95

Table 2. Search range for Opt hyperparameters

Table 2 show the search ranges of all hyperparameters considered. We performed separate random searches over this search
space for MRTL, fixed-resolution model, and the randomly initialized low-rank model. We also separate the learning rate η
and regularization coefficient λ between the full-rank and low-rank models.

B.2. Accuracy and Convergence

Figure 10. Basketball: Loss curves of MRTL vs. the fixed-resolution model for the full rank (left) and low rank model (right). The vertical
lines indicate finegraining to the next resolution.

Fig. 10 shows the loss curves of MRTL vs. the fixed resolution model for the full rank and low rank case. They show a
similar convergence trend, where the fixed-resolution model is much slower than MRTL.

B.3. Finegraining Criteria

Table 3 lists the results for the different finegraining criteria. In the classification case, we see that validation loss reaches
much faster convergence than other gradient-based criteria in the full-rank case, while the gradient-based criteria are faster
for the low-rank model. All criteria can reach similar F1 scores. For the regression case, all stopping criteria converge to a
similar loss in roughly the same amount of time for the full-rank model. For the low-rank model, validation loss appears to
converge more quickly and to a lower loss value.

B.4. Random initialization

Fig. 11 shows all latent factors after training MRTL vs a randomly initialized low-rank model for ballhandler position. We
can see clearly that full-rank initialization produces spatially coherent factors while random initialization can produce some
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Table 3. Runtime and prediction performance comparison of different finegraining criteria

Dataset Model Full-Rank Low-Rank

Time [s] Loss F1 Time [s] Loss F1

Basketball

Validation loss 1230 ±74.1 0.699 ±0.00237 0.607 ±0.00182 2009 ±715 0.868 ±0.0399 0.475 ±0.0121

Gradient norm 7029 ±759 0.703 ±0.00216 0.610 ±0.00149 912 ±281 0.883 ±0.00664 0.476 ±0.00270

Gradient variance 7918 ±1949 0.701 ±0.00333 0.609 ±0.00315 933 ±240 0.883 ±0.00493 0.476 ±0.00197

Gradient entropy 8715 ±957 0.697 ±0.00551 0.597 ±0.00737 939 ±259 0.886 ±0.00248 0.475 ±0.00182

Climate

Validation loss 1.04 ±0.115 0.0448 ±0.0108 - 37.4 ±28.7 0.0284 ±0.00171 -
Gradient norm 1.11 ±0.0413 0.0506 ±0.00853 - 59.1 ±16.9 0.0301 ±0.00131 -
Gradient variance 1.14 ±0.0596 0.0458 ±0.00597 - 62.9 ±14.4 0.0305 ±0.00283 -
Gradient entropy 0.984 ±0.0848 0.0490 ±0.0144 - 48.4 ±21.1 0.0331 ±0.00949 -

uninterpretable factors (e.g. the latent factors for k = 3, 4, 5, 7, 19, 20 are not semantically meaningful). Fig. 12 shows
latent factors for the defender position spatial mode, and we can draw similar conclusions about random initialization.

Figure 11. Basketball: Latent factors of ball handler position after training MRTL (left) and a low-rank model using random initialization
(right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The latent factors are numbered left to
right, top to bottom.

Figure 12. Basketball: Latent factors of relative defender positions after training MRTL (left) and a low-rank model using random
initialization (right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The green dot represents
the ballhandler at (6, 2). The latent factors are numbered left to right, top to bottom.


