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Abstract
Inference models are a key component in scal-
ing variational inference to deep latent variable
models, most notably as encoder networks in
variational auto-encoders (VAEs). By replacing
conventional optimization-based inference with a
learned model, inference is amortized over data
examples and therefore more computationally ef-
ficient. However, standard inference models are
restricted to direct mappings from data to approx-
imate posterior estimates. The failure of these
models to reach fully optimized approximate pos-
terior estimates results in an amortization gap.
We aim toward closing this gap by proposing
iterative inference models, which learn to per-
form inference optimization through repeatedly
encoding gradients. Our approach generalizes
standard inference models in VAEs and provides
insight into several empirical findings, including
top-down inference techniques. We demonstrate
the inference optimization capabilities of iterative
inference models and show that they outperform
standard inference models on several benchmark
data sets of images and text.

1. Introduction
Variational inference (Jordan et al., 1998) has been essen-
tial in learning deep directed latent variable models on
high-dimensional data, enabling extraction of complex, non-
linear relationships, such as object identities (Higgins et al.,
2016) and dynamics (Xue et al., 2016; Karl et al., 2017) di-
rectly from observations. Variational inference reformulates
inference as optimization (Neal & Hinton, 1998; Hoffman
et al., 2013). However, the current trend has moved toward
employing inference models (Dayan et al., 1995; Gregor
et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014),
mappings from data to approximate posterior estimates that
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are amortized across examples. Intuitively, the inference
model encodes observations into latent representations, and
the generative model decodes these representations into re-
constructions. Yet, this approach has notable limitations.
For instance, in models with empirical priors, such as hier-
archical latent variable models, “bottom-up” data-encoding
inference models cannot account for “top-down” priors (Sec-
tion 4.1). This has prompted the use of top-down inference
techniques (Sønderby et al., 2016), which currently lack a
rigorous theoretical justification. More generally, the inabil-
ity of inference models to reach fully optimized approximate
posterior estimates results in decreased modeling perfor-
mance, referred to as an amortization gap (Krishnan et al.,
2018; Cremer et al., 2017).

To combat this problem, our work offers a departure from
previous approaches by re-examining inference from an
optimization perspective. We utilize approximate poste-
rior gradients to perform inference optimization. Yet, we
improve computational efficiency over conventional opti-
mizers by encoding these gradients with an inference model
that learns how to iteratively update approximate posterior
estimates. The resulting iterative inference models resemble
learning to learn (Andrychowicz et al., 2016) applied to
variational inference optimization. However, we refine and
extend this method along several novel directions. Namely,
(1) we show that learned optimization models can be ap-
plied to inference optimization of latent variables; (2) we
show that non-recurrent optimization models work well in
practice, breaking assumptions about the necessity of non-
local curvature for outperforming conventional optimizers
(Andrychowicz et al., 2016; Putzky & Welling, 2017); and
(3) we provide a new form of optimization model that en-
codes errors rather than gradients to approximate higher or-
der derivatives, empirically resulting in faster convergence.

Our main contributions are summarized as follows:

1. we introduce a family of iterative inference models,
which generalize standard inference models,

2. we provide the first theoretical justification for top-
down inference techniques,

3. we empirically evaluate iterative inference models,
demonstrating that they outperform standard inference
models on several data sets of images and text.
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2. Background
2.1. Latent Variable Models & Variational Inference

Latent variable models are generative probabilistic mod-
els that use local (per data example) latent variables, z, to
model observations, x, using global (across data examples)
parameters, �. A model is defined by the joint distribution
p�(x; z) = p�(xjz)p�(z), composed of the conditional like-
lihood and the prior. Learning the model parameters and
inferring the posterior, p(zjx), are intractable for all but the
simplest models, as they require evaluating the marginal
likelihood, p�(x) =

R
p�(x; z)dz, which involves integrat-

ing the model over z. For this reason, we often turn to
approximate inference methods.

Variational inference reformulates this intractable integra-
tion as an optimization problem by introducing an ap-
proximate posterior1, q(zjx), typically chosen from some
tractable family of distributions, and minimizing the KL-
divergence from the posterior, DKL(q(zjx)jjp(zjx)). This
quantity cannot be minimized directly, as it contains the
posterior. Instead, KL-divergence can be decomposed into

DKL(q(zjx)jjp(zjx)) = log p�(x)� L; (1)

where L is the evidence lower bound (ELBO), which is
defined as:

L � Ez�q(zjx) [log p�(x; z)� log q(zjx)] (2)
= Ez�q(zjx) [log p�(xjz)]�DKL(q(zjx)jjp�(z)): (3)

The first term in eq. 3 expresses how well the output re-
constructs the data example. The second term quantifies
the dissimilarity between the approximate posterior and the
prior. Because log p�(x) is not a function of q(zjx), we can
minimize DKL(q(zjx)jjp(zjx)) in eq. 1 by maximizing L
w.r.t. q(zjx), thereby performing approximate inference.
Likewise, becauseDKL(q(zjx)jjp(zjx)) is non-negative, L
is a lower bound on log p�(x). Therefore, once we have
inferred an optimal q(zjx), learning corresponds to maxi-
mizing L w.r.t. �.

2.2. Variational Expectation Maximization (EM) via
Gradient Ascent

The optimization procedures for variational inference and
learning are respectively the expectation and maximization
steps of the variational EM algorithm (Dempster et al., 1977;
Neal & Hinton, 1998), which alternate until convergence.
This is typically performed in the batched setting of stochas-
tic variational inference (Hoffman et al., 2013). When
q(zjx) takes a parametric form, the expectation step for data

1We use q(zjx) to denote that the approximate posterior is
conditioned on a data example (i.e. local), however this does not
necessarily imply a direct functional mapping.

example x(i) involves finding a set of distribution parame-
ters, �(i), that are optimal w.r.t. L. With a factorized Gaus-
sian density over continuous latent variables, i.e. �(i) =

f�(i)
q ;�

2(i)
q g and q(z(i)jx(i)) = N (z(i);�

(i)
q ;diag�

2(i)
q ),

conventional optimization techniques repeatedly estimate
the stochastic gradients r�L to optimize L w.r.t. �(i), e.g.:

�(i)  �(i) + �r�L(x(i);�(i); �); (4)

where � is the step size. This procedure, which is repeated
for each example, is computationally expensive and requires
setting step-size hyper-parameters.

2.3. Amortized Inference Models

Due to the aforementioned issues, gradient updates of ap-
proximate posterior parameters are rarely performed in prac-
tice. Rather, inference models are often used to map obser-
vations to approximate posterior estimates. Optimization
of each data example’s approximate posterior parameters,
�(i), is replaced with the optimization of a shared, i.e. amor-
tized (Gershman & Goodman, 2014), set of parameters, �,
contained within an inference model, f , of the form:

�(i)  f(x(i);�): (5)

While inference models have a long history, e.g. (Dayan
et al., 1995), the most notable recent example is the vari-
ational auto-encoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014), which employs the reparameterization
trick to propagate stochastic gradients from the generative
model to the inference model, both of which are parame-
terized by neural networks. We refer to inference models
of this form as standard inference models. As discussed in
Section 3, the aim of this paper is to move beyond the direct
encoder paradigm of standard inference models to develop
improved techniques for performing inference.

3. Iterative Amortized Inference
In Section 3.3, we introduce our contribution, iterative in-
ference models. However, we first motivate our approach
in Section 3.1 by discussing the limitations of standard
inference models. We then draw inspiration from other
techniques for learning to optimize (Section 3.2).

3.1. Standard Inference Models & Amortization Gaps

As described in Section 2.1, variational inference refor-
mulates inference as the maximization of L w.r.t. q(zjx),
constituting the expectation step of the variational EM al-
gorithm. In general, this is a difficult non-convex optimiza-
tion problem, typically requiring a lengthy iterative estima-
tion procedure. Yet, standard inference models attempt to
perform this optimization through a direct, discriminative
mapping from data observations to approximate posterior
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Figure 1.Visualizing the amortization gap. Optimization surface ofL (in nats) for a 2-D latent Gaussian model and an MNIST data
example. Shown on the plots are the optimal estimate (MAP), the output of a standard inference model, and an optimization trajectory of
gradient ascent. The plot on the right shows an enlarged view near the optimum. Conventional optimization outperforms the standard
inference model, exhibiting an amortization gap. With additional latent dimensions or more complex data, this gap could become larger.

parameters. Of course, generative models can adapt to ac-
commodate sub-optimal approximate posteriors. Neverthe-
less, the possible limitations of a direct inference mapping
applied to this dif�cult optimization procedure may result
in a decrease in overall modeling performance.

We demonstrate this concept in Figure 1 by visualizing the
optimization surface ofL de�ned by a 2-D latent Gaussian
model and a particular binarized MNIST (LeCun et al.,
1998) data example. To visualize the approximate pos-
terior, we use a point estimate,q(zjx) = � (� q), where
� q = ( � 1; � 2) is the estimate and� is the Dirac delta func-
tion. See Appendix C.1 for details. Shown on the plot are
the optimal (maximum a posteriori or MAP) estimate, the
estimate from a standard inference model, and an optimiza-
tion trajectory of gradient ascent. The inference model is
unable to achieve the optimum, but manages to output a rea-
sonable estimate in one pass. Gradient ascent requires many
iterations and is sensitive to step-size, but through the itera-
tive estimation procedure, ultimately arrives at a better �nal
estimate. The inability of inference models to reach opti-
mal approximate posterior estimates, as typically compared
with gradient-based methods, creates an amortization gap
(Krishnan et al., 2018; Cremer et al., 2017), which impairs
modeling performance. Additional latent dimensions and
more complex data could further exacerbate this problem.

3.2. Learning to Iteratively Optimize

While offering signi�cant bene�ts in computational ef�-
ciency, standard inference models can suffer from sizable
amortization gaps (Krishnan et al., 2018). Parameterizing
inference models as direct, static mappings fromx to q(zjx)

may be overly restrictive, widening this gap. To improve
upon this direct encoding paradigm, we pose the following
question:can we retain the computational ef�ciency of in-
ference models while incorporating more powerful iterative
estimation capabilities?Our proposed solution is a new
class of inference models, capable of learning how to up-
date approximate posterior estimates by encoding gradients
or errors. Due to the iterative nature of these models, we
refer to them asiterative inference models. Through an
analysis with latent Gaussian models, we show that itera-
tive inference models generalize standard inference models
(Section 4.3) and offer theoretical justi�cation for top-down
inference in hierarchical models (Section 4.1).

Our approach relates to learning to learn (Andrychowicz
et al., 2016), where anoptimizermodel learns to optimize
the parameters of anoptimizeemodel. The optimizer re-
ceives the optimizee's parameter gradients and outputs up-
dates to these parameters to improve the optimizee's loss.
The optimizer itself can be learned due to the differen-
tiable computation graph. Such models can adaptively ad-
just step sizes, potentially outperforming conventional op-
timizers. For inference optimization, previous works have
combined standard inference models with gradient updates
(Hjelm et al., 2016; Krishnan et al., 2018; Kim et al., 2018),
however, these works do notlearn to iteratively optimize.
(Putzky & Welling, 2017) use recurrent inference models for
MAP estimation of denoised images in linear models. We
propose a uni�ed method for learning to perform variational
inference optimization, generally applicable to probabilis-
tic latent variable models. Our work extends techniques
for learning to optimize along several novel directions, dis-
cussed in Section 4.



Iterative Amortized Inference

Figure 2.Computation graph for a single-level latent variable
model with an iterative inference model. Black components eval-
uate the ELBO. Blue components are used during variational in-
ference. Red corresponds to gradients. Solid arrows denote deter-
ministic values. Dashed arrows denote stochastic values. During
inference,� , the distribution parameters ofq(zjx ), are �rst initial-
ized.z is sampled fromq(zjx ) to evaluate the ELBO. Stochastic
gradients are then backpropagated to� . The iterative inference
model uses these gradients to update the current estimate of� . The
process is repeated iteratively. The inference model parameters,� ,
are trained through accumulated estimates ofr � L .

3.3. Iterative Inference Models

We denote an iterative inference model asf with parame-
ters� . With L ( i )

t � L (x ( i ) ; � ( i )
t ; � ) as the ELBO for data

examplex ( i ) at inference iterationt, the model uses the
approximate posterior gradients, denotedr � L ( i )

t , to output
updated estimates of� ( i ) :

� ( i )
t +1  f t (r � L ( i )

t ; � ( i )
t ; � ); (6)

where� ( i )
t is the estimate of� ( i ) at inference iterationt.

Eq. 6 is in a general form and contains, as special cases,
the linear update in eq. 4, as well as the residual, non-
linear update used in (Andrychowicz et al., 2016). Figure
2 displays a computation graph of the inference procedure,
and Algorithm 1 in Appendix B describes the procedure
in detail. As with standard inference models, the parame-
ters of an iterative inference model can be updated using
estimates ofr � L , obtained through the reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014) or
through score function methods (Gregor et al., 2014; Ran-
ganath et al., 2014). Model parameter updating is performed
using stochastic gradient techniques withr � L andr � L .

4. Iterative Inference in Latent Gaussian
Models

We now describe an instantiation of iterative inference mod-
els for (single-level) latent Gaussian models, which have
a Gaussian prior density over latent variables:p(z) =
N (z; � p; diag � 2

p). Although the prior is typically a stan-
dard Normal density, we use this prior form for general-
ity. Latent Gaussian models are often used in VAEs and
are a common choice for continuous-valued latent vari-
ables. While the approximate posterior can be any prob-
ability density, it is typically also chosen as Gaussian:
q(zjx) = N (z; � q; diag � 2

q). With this choice,� ( i ) cor-

responds tof � ( i )
q ; � 2( i )

q g for examplex ( i ) . Dropping the
superscript(i ) to simplify notation, we can express eq. 6
for this model as:

� q;t +1 = f � q
t (r � q L t ; � q;t ; � ); (7)

� 2
q;t +1 = f

� 2
q

t (r � 2
q
L t ; � 2

q;t ; � ); (8)

wheref � q
t andf

� 2
q

t are the iterative inference models for
updating� q and� 2

q respectively. In practice, these models
can be combined, with shared inputs and model parameters
but separate outputs to update each term.

In Appendix A, we derive the stochastic gradientsr � q L
andr � 2

q
L for the cases wherep� (x jz) takes a Gaussian

and Bernoulli form, thoughany output distribution can
be used. Generally, these gradients are comprised of
(1) errors, expressing the mismatch in distributions, and
(2) Jacobian matrices, which invert the generative map-
pings. For instance, assuming a Gaussian output density,
p(x jz) = N (x; � x ; diag � 2

x ), the gradient for� q is

r � q L = J | " x � " z ; (9)

where the Jacobian (J), bottom-up errors (" x ), and top-
down errors (" z ) are de�ned as

J � Ez� q(zjx )

�
@� x

@� q

�
; (10)

" x � Ez� q(zjx ) [(x � � x )=� 2
x ]; (11)

" z � Ez� q(zjx ) [(z � � p)=� 2
p ]: (12)

Here, we have assumed� x is a function ofz and� 2
x is

a global parameter. The gradientr � 2
q
L is comprised of

similar terms as well as an additional term penalizing ap-
proximate posterior entropy. Inspecting and understanding
the composition of the gradients reveals the forces pushing
the approximate posterior toward agreement with the data,
through" x , and agreement with the prior, through" z . In
other words,inference is as much a top-down process as
it is a bottom-up process, and the optimal combination of
these terms is given by the approximate posterior gradients.
As discussed in Section 4.1, standard inference models have
traditionally been purely bottom-up, only encoding the data.
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4.1. Reinterpreting Top-Down Inference

To increase the model capacity of latent variable models, it is
common to add higher-level latent variables, thereby provid-
ing �exible empirical priorson lower-level variables. Tra-
ditionally, corresponding standard inference models were
parmeterized as purely bottom-up (e.g. Fig. 1 of (Rezende
et al., 2014)). It was later found to be bene�cial to incor-
porate top-down information from higher-level variables in
the inference model, the given intuition being that “a purely
bottom-up inference process . . . does not correspond well
with real perception” (Sønderby et al., 2016), however, a
rigorous justi�cation of this technique was lacking.

Iterative inference models, or rather, the gradients that they
encode, provide a theoretical explanation for this previously
empirical heuristic. As seen in eq. 9, the approximate poste-
rior parameters are optimized to agree with the prior, while
also �tting the conditional likelihood to the data. Analo-
gous terms appear in the gradients for hierarchical models.
For instance, in a chain-structured hierarchical model, the
gradient of� `

q, the approximate posterior mean at layer`, is

r � `
q
L = J ` | " ` � 1

z � " `
z ; (13)

whereJ ` is the Jacobian of the generative mapping at layer
` and" `

z is de�ned similarly to eq. 12." `
z depends on the

top-down prior at layer̀ , which, unlike the single-level
case, varies across data examples. Thus, a purely bottom-up
inference procedure may struggle, as it must model both the
bottom-up data dependence as well as the top-down prior.
Top-down inference (Sønderby et al., 2016) explicitly uses
the prior to perform inference. Iterative inference models
instead rely on approximate posterior gradients, which natu-
rally account for both bottom-up and top-down in�uences.

4.2. Approximating Approximate Posterior Derivatives

In the formulation of iterative inference models given in
eq. 6, inference optimization is restricted to �rst-order ap-
proximate posterior derivatives. Thus, it may require many
inference iterations to reach reasonable approximate pos-
terior estimates. Rather than calculate costly higher-order
derivatives, we can take a different approach.

Approximate posterior derivatives (e.g. eq. 9 and higher-
order derivatives) are essentially de�ned by the errors at the
current estimate, as the other factors, such as the Jacobian
matrices, are internal to the model. Thus, the errors pro-
vide more general information about the curvature beyond
the gradient. As iterative inference models already learn
to perform approximate posterior updates, it is natural to
ask whether the errors provide a suf�cient signal for faster
inference optimization. In other words, we may be able to
of�oad approximate posterior derivative calculation onto
the inference model, yielding a model that requires fewer in-

ference iterations while maintaining or possibly improving
computational ef�ciency.

Comparing with eqs. 7 and 8, the form of this new iterative
inference model is

� q;t +1 = f � q
t (" x ;t ; " z;t ; � q;t ; � ); (14)

� 2
q;t +1 = f

� 2
q

t (" x ;t ; " z;t ; � 2
q;t ; � ); (15)

where, again, these models can be shared, with separate
outputs per parameter. In Section 5.2, we empirically �nd
that models of this form converge to better solutions than
gradient-encoding models when given fewer inference itera-
tions. It is also worth noting that this error encoding scheme
is similar to DRAW (Gregor et al., 2015). However, in ad-
dition to architectural differences in the generative model,
DRAW and later extensions do not include top-down errors
(Gregor et al., 2016), nor error precision-weighting.

4.3. Generalizing Standard Inference Models

Under certain assumptions on single-level latent Gaussian
models, iterative inference models of the form in Section
4.2generalizestandard inference models. First, note that" x

(eq. 11) is a stochastic af�ne transformation ofx:

" x = Ax + b; (16)

where
A � Eq(zjx )

�
(diag � 2

x ) � 1�
; (17)

b � � Eq(zjx )

�
� x

� 2
x

�
: (18)

Reasonably assuming that the initial approximate poste-
rior and prior are both constant, then in expectation,A ,
b, and" z are constant across all data examples at the �rst
inference iteration. Using proper weight initialization and
input normalization, it is equivalent to inputx or an af�ne
transformation ofx into a fully-connected neural network.
Therefore,standard inference models are equivalent to the
special case of a one-step iterative inference model. Thus,
we can interpret standard inference models as learning a
map of local curvature around a �xed approximate poste-
rior estimate. Iterative inference models, on the other hand,
learn to traverse the optimization landscape more generally.

5. Experiments

Using latent Gaussian models, we performed an empiri-
cal evaluation of iterative inference models on both image
and text data. For images, we usedMNIST (LeCun et al.,
1998),Omniglot (Lake et al., 2013),Street View House
Numbers (SVHN) (Netzer et al., 2011), andCIFAR-10
(Krizhevsky & Hinton, 2009). MNIST and Omniglot were
dynamically binarized and modeled with Bernoulli output
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Figure 3. Direct visualization of iterative amortized inference optimization. Optimization trajectory on L (in nats) for an iterative
inference model with a 2D latent Gaussian model for a particular MNIST example. The iterative inference model adaptively adjusts
inference update step sizes to iteratively refine the approximate posterior estimate.

distributions, and SVHN and CIFAR-10 were modeled with
Gaussian output densities, using the procedure from (Gregor
et al., 2016). For text, we used RCV1 (Lewis et al., 2004),
with word count data modeled with a multinomial output.

Details on implementing iterative inference models are
found in Appendix B. The primary difficulty of training
iterative inference models comes from shifting gradient and
error distributions during the course of inference and learn-
ing. In some cases, we found it necessary to normalize these
inputs using layer normalization (Ba et al., 2016). We also
found it beneficial, though never necessary, to additionally
encode the data itself, particularly when given few inference
iterations (see Figure 7a). For comparison, all experiments
use feedforward networks, though we observed similar re-
sults with recurrent inference models. Reported values of
L were estimated using 1 sample, and reported values of
log p(x) and perplexity (Tables 1 & 2) were estimated using
5,000 importance weighted samples. Additional experiment
details, including model architectures, can be found in Ap-
pendix C. Accompanying code can be found on GitHub at
joelouismarino/iterative inference.

Section 5.1 demonstrates the optimization capabilities of it-
erative inference models. Section 5.2 explores two methods
by which to further improve the modeling performance of
these models. Section 5.3 provides a quantitative compari-
son between standard and iterative inference models.

5.1. Approximate Inference Optimization

We begin with a series of experiments that demonstrate the
inference optimization capabilities of iterative inference

models. These experiments confirm that iterative infer-
ence models indeed learn to perform inference optimization
through an adaptive iterative estimation procedure. These
results highlight the qualitative differences between this
inference optimization procedure and that of standard infer-
ence models. That is, iterative inference models are able to
effectively utilize multiple inference iterations rather than
collapsing to static, one-step encoders.

Direct Visualization As in Section 3.1, we directly visual-
ize iterative inference optimization in a 2-D latent Gaussian
model trained on MNIST with a point estimate approximate
posterior. Model architectures are identical to those used
in Section 3.1, with additional details found in Appendix
C.1. Shown in Figure 3 is a 16-step inference optimiza-
tion trajectory taken by the iterative inference model for
a particular example. The model adaptively adjusts infer-
ence update step sizes to navigate the optimization surface,
quickly arriving and remaining at a near-optimal estimate.

L During Inference We can quantify and compare opti-
mization performance through the ELBO. In Figure 4, we
plot the average ELBO on the MNIST validation set during
inference, comparing iterative inference models with con-
ventional optimizers. Details are in Appendix C.2. On av-
erage, the iterative inference model converges significantly
faster to better estimates than the optimizers. The model
actually has less derivative information than the optimizers;
it only has access to the local gradient, whereas the opti-
mizers use momentum and similar terms. The model’s final
estimates are also stable, despite only being trained using
16 inference iterations.




