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Abstract
We study how to effectively leverage expert feed-
back to learn sequential decision-making poli-
cies. We focus on problems with sparse rewards
and long time horizons, which typically pose
significant challenges in reinforcement learning.
We propose an algorithmic framework, called hi-

erarchical guidance, that leverages the hierarchi-
cal structure of the underlying problem to inte-
grate different modes of expert interaction. Our
framework can incorporate different combina-
tions of imitation learning (IL) and reinforcement
learning (RL) at different levels, leading to dra-
matic reductions in both expert effort and cost of
exploration. Using long-horizon benchmarks, in-
cluding Montezuma’s Revenge, we demonstrate
that our approach can learn significantly faster
than hierarchical RL, and be significantly more
label-efficient than standard IL. We also theoret-
ically analyze labeling cost for certain instantia-
tions of our framework.

1. Introduction
Learning good agent behavior from reward signals alone—
the goal of reinforcement learning (RL)—is particularly
difficult when the planning horizon is long and rewards are
sparse. One successful method for dealing with such long
horizons is imitation learning (IL) (Abbeel & Ng, 2004;
Daumé et al., 2009; Ross et al., 2011; Ho & Ermon, 2016),
in which the agent learns by watching and possibly query-
ing an expert. One limitation of existing imitation learn-
ing approaches is that they may require a large amount of
demonstration data in long-horizon problems.

The central question we address in this paper is: when ex-

perts are available, how can we most effectively leverage

their feedback? A common strategy to improve sample ef-
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ficiency in RL over long time horizons is to exploit hierar-
chical structure of the problem (Sutton et al., 1998; 1999;
Kulkarni et al., 2016; Dayan & Hinton, 1993; Vezhnevets
et al., 2017; Dietterich, 2000). Our approach leverages hi-
erarchical structure in imitation learning. We study the case
where the underlying problem is hierarchical, and subtasks
can be easily elicited from an expert. Our key design prin-
ciple is an algorithmic framework called hierarchical guid-

ance, in which feedback (labels) from the high-level ex-
pert is used to focus (guide) the low-level learner. The
high-level expert ensures that low-level learning only oc-
curs when necessary (when subtasks have not been mas-
tered) and only over relevant parts of the state space. This
differs from a naı̈ve hierarchical approach which merely
gives a subtask decomposition. Focusing on relevant parts
of the state space speeds up learning (improves sample ef-
ficiency), while omitting feedback on the already mastered
subtasks reduces expert effort (improves label efficiency).

We begin by formalizing the problem of hierarchical imi-
tation learning (Section 3) and carefully separate out cost
structures that naturally arise when the expert provides
feedback at multiple levels of abstraction. We first apply hi-
erarchical guidance to IL, derive hierarchically guided vari-
ants of behavior cloning and DAgger (Ross et al., 2011),
and theoretically analyze the benefits (Section 4). We next
apply hierarchical guidance to the hybrid setting with high-
level IL and low-level RL (Section 5). This architecture
is particularly suitable in settings where we have access to
high-level semantic knowledge, the subtask horizon is suf-
ficiently short, but the low-level expert is too costly or un-
available. We demonstrate the efficacy of our approaches
on a simple but extremely challenging maze domain, and
on Montezuma’s Revenge (Section 6). Our experiments
show that incorporating a modest amount of expert feed-
back can lead to dramatic improvements in performance
compared to pure hierarchical RL.1

2. Related Work
For brevity, we provide here a short overview of related
work, and defer to Appendix C for additional discussion.

1Code and experimental setups are available at https://
sites.google.com/view/hierarchical-il-rl

https://sites.google.com/view/hierarchical-il-rl
https://sites.google.com/view/hierarchical-il-rl
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Imitation Learning. One can broadly dichotomize IL into
passive collection of demonstrations (behavioral cloning)
versus active collection of demonstrations. The former set-
ting (Abbeel & Ng, 2004; Ziebart et al., 2008; Syed &
Schapire, 2008; Ho & Ermon, 2016) assumes that demon-
strations are collected a priori and the goal of IL is to find
a policy that mimics the demonstrations. The latter setting
(Daumé et al., 2009; Ross et al., 2011; Ross & Bagnell,
2014; Chang et al., 2015; Sun et al., 2017) assumes an in-
teractive expert that provides demonstrations in response to
actions taken by the current policy. We explore extension
of both approaches into hierarchical settings.

Hierarchical Reinforcement Learning. Several RL ap-
proaches to learning hierarchical policies have been ex-
plored, foremost among them the options framework (Sut-
ton et al., 1998; 1999; Fruit & Lazaric, 2017). It is of-
ten assumed that a useful set of options are fully defined a
priori, and (semi-Markov) planning and learning only oc-
curs at the higher level. In comparison, our agent does not
have direct access to policies that accomplish such subgoals
and has to learn them via expert or reinforcement feedback.
The closest hierarchical RL work to ours is that of Kulkarni
et al. (2016), which uses a similar hierarchical structure, but
no high-level expert and hence no hierarchical guidance.

Combining Reinforcement and Imitation Learning. The
idea of combining IL and RL is not new (Nair et al., 2017;
Hester et al., 2018). However, previous work focuses on
flat policy classes that use IL as a “pre-training” step (e.g.,
by pre-populating the replay buffer with demonstrations).
In contrast, we consider feedback at multiple levels for a
hierarchical policy class, with different levels potentially
receiving different types of feedback (i.e., imitation at one
level and reinforcement at the other). Somewhat related to
our hierarchical expert supervision is the approach of An-
dreas et al. (2017), which assumes access to symbolic de-
scriptions of subgoals, without knowing what those sym-
bols mean or how to execute them. Previous literature has
not focused much on comparisons of sample complexity
between IL and RL, with the exception of the recent work
of Sun et al. (2017).

3. Hierarchical Formalism
For simplicity, we consider environments with a natural
two-level hierarchy; the HI level corresponds to choosing
subtasks, and the LO level corresponds to executing those
subtasks. For instance, an agent’s overall goal may be to
leave a building. At the HI level, the agent may first choose
the subtask “go to the elevator,” then “take the elevator

down,” and finally “walk out.” Each of these subtasks
needs to be executed at the LO level by actually navigat-

ing the environment, pressing buttons on the elevator, etc.2

Subtasks, which we also call subgoals, are denoted as
g 2 G, and the primitive actions are denoted as a 2 A. An
agent (also referred to as learner) acts by iteratively choos-
ing a subgoal g, carrying it out by executing a sequence
of actions a until completion, and then picking a new sub-
goal. The agent’s choices can depend on an observed state
s 2 S .3 We assume that the horizon at the HI level is HHI,
i.e., a trajectory uses at most HHI subgoals, and the hori-
zon at the LO level is HLO, i.e., after at most HLO primitive
actions, the agent either accomplishes the subgoal or needs
to decide on a new subgoal. The total number of primitive
actions in a trajectory is thus at most HFULL := HHIHLO.

The hierarchical learning problem is to simultaneously
learn a HI-level policy µ : S ! G, called the meta-

controller, as well as the subgoal policies ⇡g : S ! A for
each g 2 G, called subpolicies. The aim of the learner
is to achieve a high reward when its meta-controller and
subpolicies are run together. For each subgoal g, we also
have a (possibly learned) termination function �g : S !
{True,False}, which terminates the execution of ⇡g . The
hierarchical agent behaves as follows:

1: for hHI = 1 . . . HHI do
2: observe state s and choose subgoal g  µ(s)
3: for hLO = 1 . . . HLO do
4: observe state s
5: if �g(s) then break
6: choose action a ⇡g(s)

The execution of each subpolicy ⇡g generates a LO-level

trajectory ⌧ = (s1, a1, . . . , sH , aH , sH+1) with H 
HLO.4 The overall behavior results in a hierarchical tra-

jectory � = (s1, g1, ⌧1, s2, g2, ⌧2, . . . ), where the last state
of each LO-level trajectory ⌧h coincides with the next state
sh+1 in � and the first state of the next LO-level trajec-
tory ⌧h+1. The subsequence of � which excludes the LO-
level trajectories ⌧h is called the HI-level trajectory, ⌧HI :=
(s1, g1, s2, g2, . . . ). Finally, the full trajectory, ⌧FULL, is the
concatenation of all the LO-level trajectories.

We assume access to an expert, endowed with a meta-
2An important real-world application is in goal-oriented di-

alogue systems. For instance, a chatbot assisting a user with
reservation and booking for flights and hotels (Peng et al., 2017;
El Asri et al., 2017) needs to navigate through multiple turns of
conversation. The chatbot developer designs the hierarchy of sub-
tasks, such as ask user goal, ask dates, offer flights, confirm, etc.
Each subtask consists of several turns of conversation. Typically
a global state tracker exists alongside the hierarchical dialogue
policy to ensure that cross-subtask constraints are satisfied.

3While we use the term state for simplicity, we do not require
the environment to be fully observable or Markovian.

4The trajectory might optionally include a reward signal after
each primitive action, which might either come from the environ-
ment, or be a pseudo-reward as we will see in Section 5.
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controller µ?, subpolicies ⇡?

g
, and termination functions �?

g
,

who can provide one or several types of supervision:

• HierDemo(s): hierarchical demonstration. The ex-
pert executes its hierarchical policy starting from s
and returns the resulting hierarchical trajectory �? =
(s?1, g

?

1 , ⌧
?

1 , s
?

2, g
?

2 , ⌧
?

2 , . . . ), where s?1 = s.

• LabelHI(⌧HI): HI-level labeling. The expert provides
a good next subgoal at each state of a given HI-level
trajectory ⌧HI = (s1, g1, s2, g2, . . . ), yielding a la-
beled data set {(s1, g?1), (s2, g?2), . . . }.

• LabelLO(⌧ ; g): LO-level labeling. The expert pro-
vides a good next primitive action towards a given
subgoal g at each state of a given LO-level trajectory
⌧ = (s1, a1, s2, a2, . . . ), yielding a labeled data set
{(s1, a?1), (s2, a?2), . . . }.

• InspectLO(⌧ ; g): LO-level inspection. Instead of
annotating every state of a trajectory with a good ac-
tion, the expert only verifies whether a subgoal g was
accomplished, returning either Pass or Fail.

• LabelFULL(⌧FULL): full labeling. The expert labels
the agent’s full trajectory ⌧FULL = (s1, a1, s2, a2, . . . ),
from start to finish, ignoring hierarchical structure,
yielding a labeled data set {(s1, a?1), (s2, a?2), . . . }.

• InspectFULL(⌧FULL): full inspection. The expert
verifies whether the agent’s overall goal was accom-
plished, returning either Pass or Fail.

When the agent learns not only the subpolicies ⇡g , but also
termination functions �g , then LabelLO also returns good
termination values !? 2 {True,False} for each state of
⌧ = (s1, a1 . . . ), yielding a data set {(s1, a?1,!?

1), . . . }.

Although HierDemo and Label can be both generated
by the expert’s hierarchical policy (µ?, {⇡?

g
}), they differ

in the mode of expert interaction. HierDemo returns a
hierarchical trajectory executed by the expert, as required
for passive IL, and enables a hierarchical version of be-
havioral cloning (Abbeel & Ng, 2004; Syed & Schapire,
2008). Label operations provide labels with respect to

the learning agent’s trajectories, as required for interactive
IL. LabelFULL is the standard query used in prior work on
learning flat policies (Daumé et al., 2009; Ross et al., 2011),
and LabelHI and LabelLO are its hierarchical extensions.

Inspect operations are newly introduced in this paper,
and form a cornerstone of our interactive hierarchical guid-
ance protocol that enables substantial savings in label effi-
ciency. They can be viewed as “lazy” versions of the cor-
responding Label operations, requiring less effort. Our
underlying assumption is that if the given hierarchical tra-
jectory � = {(sh, gh, ⌧h)} agrees with the expert on HI
level, i.e., gh = µ?(sh), and LO-level trajectories pass the

Algorithm 1 Hierarchical Behavioral Cloning (h-BC)
1: Initialize data buffers DHI  ; and Dg  ;, g 2 G
2: for t = 1, . . . , T do
3: Get a new environment instance with start state s
4: �?  HierDemo(s)
5: for all (s?h, g?h, ⌧?

h) 2 �? do
6: Append Dg?h

 Dg?h
[ ⌧?

h

7: Append DHI  DHI [ {(s?h, g?h)}
8: Train subpolicies ⇡g  Train(⇡g,Dg) for all g
9: Train meta-controller µ Train(µ,DHI)

inspection, i.e., InspectLO(⌧h; gh) = Pass, then the re-
sulting full trajectory must also pass the full inspection,
InspectFULL(⌧FULL) = Pass. This means that a hierarchi-
cal policy need not always agree with the expert’s execution
at LO level to succeed in the overall task.

Besides algorithmic reasons, the motivation for separating
the types of feedback is that different expert queries will
typically require different amount of effort, which we refer
to as cost. We assume the costs of the Label operations
are CL

HI, CL

LO and CL

FULL, the costs of each Inspect op-
eration are C I

LO and C I

FULL. In many settings, LO-level in-
spection will require significantly less effort than LO-level
labeling, i.e., C I

LO ⌧ CL

LO. For instance, identifying if a
robot has successfully navigated to the elevator is presum-
ably much easier than labeling an entire path to the elevator.
One reasonable cost model, natural for the environments in
our experiments, is to assume that Inspect operations
take time O(1) and work by checking the final state of the
trajectory, whereas Label operations take time propor-
tional to the trajectory length, which is O(HHI), O(HLO)
and O(HHIHLO) for our three Label operations.

4. Hierarchically Guided Imitation Learning
Hierarchical guidance is an algorithmic design principle in
which the feedback from high-level expert guides the low-
level learner in two different ways: (i) the high-level expert
ensures that low-level expert is only queried when neces-
sary (when the subtasks have not been mastered yet), and
(ii) low-level learning is limited to the relevant parts of the
state space. We instantiate this framework first within pas-
sive learning from demonstrations, obtaining hierarchical

behavioral cloning (Algorithm 1), and then within inter-
active imitation learning, obtaining hierarchically guided

DAgger (Algorithm 2), our best-performing algorithm.

4.1. Hierarchical Behavioral Cloning (h-BC)

We consider a natural extension of behavioral cloning to
the hierarchical setting (Algorithm 1). The expert pro-
vides a set of hierarchical demonstrations �?, each con-
sisting of LO-level trajectories ⌧?

h
= {(s?

`
, a?

`
)}HLO

`=1 as well
as a HI-level trajectory ⌧?HI = {(s?

h
, g?

h
)}HHI

h=1. We then run
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Algorithm 2 Hierarchically Guided DAgger (hg-DAgger)
1: Initialize data buffers DHI  ; and Dg  ;, g 2 G
2: Run Hierarchical Behavioral Cloning (Algorithm 1)

up to t = Twarm-start
3: for t = Twarm-start + 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize �  ;
6: repeat
7: g  µ(s)
8: Execute ⇡g , obtain LO-level trajectory ⌧
9: Append (s, g, ⌧) to �

10: s the last state in ⌧
11: until end of episode
12: Extract ⌧FULL and ⌧HI from �
13: if InspectFULL(⌧FULL) = Fail then
14: D?  LabelHI(⌧HI)
15: Process (sh, gh, ⌧h) 2 � in sequence as long as

gh agrees with the expert’s choice g?h in D?:
16: if Inspect(⌧h; gh) = Fail then
17: Append Dgh  Dgh [ LabelLO(⌧h; gh)
18: break
19: Append DHI  DHI [ D?

20: Update subpolicies ⇡g  Train(⇡g,Dg) for all g
21: Update meta-controller µ Train(µ,DHI)

Train (lines 8–9) to find the subpolicies ⇡g that best pre-
dict a?

`
from s?

`
, and meta-controller µ that best predicts

g?
h

from s?
h

, respectively. Train can generally be any su-
pervised learning subroutine, such as stochastic optimiza-
tion for neural networks or some batch training procedure.
When termination functions �g need to be learned as part of
the hierarchical policy, the labels !?

g
will be provided by the

expert as part of ⌧?
h
= {(s?

`
, a?

`
,!?

`
)}.5 In this setting, hier-

archical guidance is automatic, because subpolicy demon-
strations only occur in relevant parts of the state space.

4.2. Hierarchically Guided DAgger (hg-DAgger)

Passive IL, e.g., behavioral cloning, suffers from the distri-
bution mismatch between the learning and execution distri-
butions. This mismatch is addressed by interactive IL algo-
rithms, such as SEARN (Daumé et al., 2009) and DAgger
(Ross et al., 2011), where the expert provides correct ac-
tions along the learner’s trajectories through the operation
LabelFULL. A naı̈ve hierarchical implementation would
provide correct labels along the entire hierarchical trajec-
tory via LabelHI and LabelLO. We next show how to use
hierarchical guidance to decrease LO-level expert costs.

We leverage two HI-level query types: InspectLO and
LabelHI. We use InspectLO to verify whether the sub-
tasks are successfully completed and LabelHI to check
whether we are staying in the relevant part of the state
space. The details are presented in Algorithm 2, which uses

5In our hierarchical imitation learning experiments, the termi-
nation functions are all learned. Formally, the termination signal
!g , can be viewed as part of an augmented action at LO level.

DAgger as the learner on both levels, but the scheme can be
adapted to other interactive imitation learners.

In each episode, the learner executes the hierarchical pol-
icy, including choosing a subgoal (line 7), executing the
LO-level trajectories, i.e., rolling out the subpolicy ⇡g for
the chosen subgoal, and terminating the execution accord-
ing to �g (line 8). Expert only provides feedback when
the agent fails to execute the entire task, as verified by
InspectFULL (line 13). When InspectFULL fails, the ex-
pert first labels the correct subgoals via LabelHI (line 14),
and only performs LO-level labeling as long as the learner’s
meta-controller chooses the correct subgoal gh (line 15),
but its subpolicy fails (i.e., when InspectLO on line 16
fails). Since all the preceding subgoals were chosen and
executed correctly, and the current subgoal is also correct,
LO-level learning is in the “relevant” part of the state space.
However, since the subpolicy execution failed, its learning
has not been mastered yet. We next analyze the savings in
expert cost that result from hierarchical guidance.

Theoretical Analysis. We analyze the cost of hg-DAgger
in comparison with flat DAgger under somewhat stylized
assumptions. We assume that the learner aims to learn the
meta-controller µ from some policy class M, and subpoli-
cies ⇡g from some class ⇧LO. The classes M and ⇧LO are
finite (but possibly exponentially large) and the task is real-
izable, i.e., the expert’s policies can be found in the corre-
sponding classes: µ? 2M, and ⇡?

g
2 ⇧LO, g 2 G. This al-

lows us to use the halving algorithm (Shalev-Shwartz et al.,
2012) as the online learner on both levels. (The implemen-
tation of our algorithm does not require these assumptions.)

The halving algorithm maintains a version space over poli-
cies, acts by a majority decision, and when it makes a mis-
take, it removes all the erring policies from the version
space. In the hierarchical setting, it therefore makes at most
log |M| mistakes on the HI level, and at most log |⇧LO| mis-
takes when learning each ⇡g . The mistake bounds can be
further used to upper bound the total expert cost in both
hg-DAgger and flat DAgger. To enable an apples-to-apples
comparison, we assume that the flat DAgger learns over the
policy class ⇧FULL = {(µ, {⇡g}g2G) : µ 2M,⇡g 2 ⇧LO},
but is otherwise oblivious to the hierarchical task structure.
The bounds depend on the cost of performing different
types of operations, as defined at the end of Section 3. We
consider a modified version of flat DAgger that first calls
InspectFULL, and only requests labels (LabelFULL) if the
inspection fails. The proofs are deferred to Appendix A.

Theorem 1. Given finite classes M and ⇧LO and realiz-

able expert policies, the total cost incurred by the expert in

hg-DAgger by round T is bounded by

TC I

FULL +
�
log2 |M|+ |Gopt| log2 |⇧LO|

�
(CL

HI +HHIC
I

LO)

+
�
|Gopt| log2 |⇧LO|

�
CL

LO, (1)
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where Gopt ✓ G is the set of the subgoals actually used by

the expert, Gopt := µ?(S).
Theorem 2. Given the full policy class ⇧FULL =
{(µ, {⇡g}g2G) : µ 2M,⇡g 2 ⇧LO} and a realizable ex-

pert policy, the total cost incurred by the expert in flat DAg-

ger by round T is bounded by

TC I

FULL +
�
log2 |M|+ |G| log2 |⇧LO|

�
CL

FULL. (2)

Both bounds have the same leading term, TC I

FULL, the cost
of full inspection, which is incurred every round and can
be viewed as the “cost of monitoring.” In contrast, the re-
maining terms can be viewed as the “cost of learning” in the
two settings, and include terms coming from their respec-
tive mistake bounds. The ratio of the cost of hierarchically
guided learning to the flat learning is then bounded as

Eq. (1)� TC I

FULL

Eq. (2)� TC I
FULL

 CL

HI +HHIC I

LO + CL

LO

CL
FULL

, (3)

where we applied the upper bound |Gopt|  |G|. The sav-
ings thanks to hierarchical guidance depend on the specific
costs. Typically, we expect the inspection costs to be O(1),
if it suffices to check the final state, whereas labeling costs
scale linearly with the length of the trajectory. The cost ra-
tio is then / HHI+HLO

HHIHLO
. Thus, we realize most significant

savings if the horizons on each individual level are sub-
stantially shorter than the overall horizon. In particular, if
HHI = HLO =

p
HFULL, the hierarchically guided approach

reduces the overall labeling cost by a factor of
p
HFULL.

More generally, whenever HFULL is large, we reduce the
costs of learning be at least a constant factor—a significant
gain if this is a saving in the effort of a domain expert.

5. Hierarchically Guided IL / RL
Hierarchical guidance also applies in the hybrid setting
with interactive IL on the HI level and RL on the LO level.
The HI-level expert provides the hierarchical decomposi-
tion, including the pseudo-reward function for each sub-
goal,6 and is also able to pick a correct subgoal at each
step. Similar to hg-DAgger, the labels from HI-level expert
are used not only to train the meta-controller µ, but also to
limit the LO-level learning to the relevant part of the state
space. In Algorithm 3 we provide the details, with DAgger
on HI level and Q-learning on LO level. The scheme can be
adapted to other interactive IL and RL algorithms.

The learning agent proceeds by rolling in with its meta-
controller (line 7). For each selected subgoal g, the sub-
policy ⇡g selects and executes primitive actions via the

6This is consistent with many hierarchical RL approaches, in-
cluding options (Sutton et al., 1999), MAXQ (Dietterich, 2000),
UVFA (Schaul et al., 2015a) and h-DQN (Kulkarni et al., 2016).

Algorithm 3 Hierarchically Guided DAgger /Q-learning
(hg-DAgger/Q)

input Function pseudo(s; g) providing the pseudo-reward
input Predicate terminal(s; g) indicating the termination of g
input Annealed exploration probabilities ✏g > 0, g 2 G
1: Initialize data buffers DHI  ; and Dg  ;, g 2 G
2: Initialize subgoal Q-functions Qg , g 2 G
3: for t = 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize �  ;
6: repeat
7: sHI  s, g  µ(s) and initialize ⌧  ;
8: repeat
9: a ✏g-greedy(Qg, s)

10: Execute a, next state s̃, r̃  pseudo(s̃; g)
11: Update Qg: a (stochastic) gradient descent step

on a minibatch from Dg

12: Append (s, a, r̃, s̃) to ⌧ and update s s̃
13: until terminal(s; g)
14: Append (sHI, g, ⌧) to �
15: until end of episode
16: Extract ⌧FULL and ⌧HI from �
17: if InspectFULL(⌧FULL) = Fail then
18: D?  LabelHI(⌧HI)
19: Process (sh, gh, ⌧h) 2 � in sequence as long as

gh agrees with the expert’s choice g?h in D?:
20: Append Dgh  Dgh [ ⌧h

Append DHI  DHI [ D?

21: else
22: Append Dgh  Dgh [ ⌧h for all (sh, gh, ⌧h) 2 �
23: Update meta-controller µ Train(µ,DHI)

✏-greedy rule (lines 9–10), until some termination condi-
tion is met. The agent receives some pseudo-reward, also
known as intrinsic reward (Kulkarni et al., 2016) (line 10).
Upon termination of the subgoal, agent’s meta-controller
µ chooses another subgoal and the process continues until
the end of the episode, where the involvement of the expert
begins. As in hg-DAgger, the expert inspects the overall
execution of the learner (line 17), and if it is not successful,
the expert provides HI-level labels, which are accumulated
for training the meta-controller.

Hierarchical guidance impacts how the LO-level learners
accumulate experience. As long as the meta-controller’s
subgoal g agrees with the expert’s, the agent’s experience
of executing subgoal g is added to the experience replay
buffer Dg . If the meta-controller selects a “bad” subgoal,
the accumulation of experience in the current episode is
terminated. This ensures that experience buffers contain
only the data from the relevant part of the state space.

Algorithm 3 assumes access to a real-valued function
pseudo(s; g), providing the pseudo-reward in state s
when executing g, and a predicate terminal(s; g), indi-
cating the termination (not necessarily successful) of sub-
goal g. This setup is similar to prior work on hierar-
chical RL (Kulkarni et al., 2016). One natural defini-
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tion of pseudo-rewards, based on an additional predicate
success(s; g) indicating a successful completion of sub-
goal g, is as follows:

8
><

>:

1 if success(s; g)
�1 if ¬success(s; g) and terminal(s; g)
� otherwise,

where  > 0 is a small penalty to encourage short trajec-
tories. The predicates success and terminal are pro-
vided by an expert or learnt from supervised or reinforce-
ment feedback. In our experiments, we explicitly provide
these predicates to both hg-DAgger/Q as well as the hierar-
chical RL, giving them advantage over hg-DAgger, which
needs to learn when to terminate subpolicies.

6. Experiments
We evaluate the performance of our algorithms on two sep-
arate domains: (i) a simple but challenging maze naviga-
tion domain and (ii) the Atari game Montezuma’s Revenge.

6.1. Maze Navigation Domain

Task Overview. Figure 1 (left) displays a snapshot of the
maze navigation domain. In each episode, the agent en-
counters a new instance of the maze from a large collec-
tion of different layouts. Each maze consists of 16 rooms
arranged in a 4-by-4 grid, but the openings between the
rooms vary from instance to instance as does the initial po-
sition of the agent and the target. The agent (white dot)
needs to navigate from one corner of the maze to the tar-
get marked in yellow. Red cells are obstacles (lava), which
the agent needs to avoid for survival. The contextual in-
formation the agent receives is the pixel representation of
a bird’s-eye view of the environment, including the partial
trail (marked in green) indicating the visited locations.

Due to a large number of random environment instances,
this domain is not solvable with tabular algorithms. Note
that rooms are not always connected, and the locations of
the hallways are not always in the middle of the wall. Prim-
itive actions include going one step up, down, left or right.
In addition, each instance of the environment is designed
to ensure that there is a path from initial location to target,
and the shortest path takes at least 45 steps (HFULL = 100).
The agent is penalized with reward �1 if it runs into lava,
which also terminates the episode. The agent only receives
positive reward upon stepping on the yellow block.

A hierarchical decomposition of the environment corre-
sponds to four possible subgoals of going to the room im-
mediately to the north, south, west, east, and the fifth pos-
sible subgoal go to target (valid only in the room con-
taining the target). In this setup, HLO ⇡ 5 steps, and
HHI ⇡ 10–12 steps. The episode terminates after 100 prim-

itive steps if the agent is unsuccessful. The subpolicies
and meta-controller use similar neural network architec-
tures and only differ in the number of action outputs. (De-
tails of network architecture are provided in Appendix B.)

Hierarchically Guided IL. We first compare our hierar-
chical IL algorithms with their flat versions. The algorithm
performance is measured by success rate, defined as the
average rate of successful task completion over the previ-
ous 100 test episodes, on random environment instances
not used for training. The cost of each Label operation
equals the length of the labeled trajectory, and the cost of
each Inspect operation equals 1.

Both h-BC and hg-DAgger outperform flat imitation learn-
ers (Figure 2, left). hg-DAgger, in particular, achieves
consistently the highest success rate, approaching 100%
in fewer than 1000 episodes. Figure 2 (left) displays the
median as well as the range from minimum to maximum
success rate over 5 random executions of the algorithms.

Expert cost varies significantly between the two hierarchi-
cal algorithms. Figure 2 (middle) displays the same suc-
cess rate, but as a function of the expert cost. hg-DAgger
achieves significant savings in expert cost compared to
other imitation learning algorithms thanks to a more effi-
cient use of the LO-level expert through hierarchical guid-
ance. Figure 1 (middle) shows that hg-DAgger requires
most of its LO-level labels early in the training and requests
primarily HI-level labels after the subgoals have been mas-
tered. As a result, hg-DAgger requires only a fraction of
LO-level labels compared to flat DAgger (Figure 2, right).

Hierarchically Guided IL / RL. We evaluate hg-
DAgger/Q with deep double Q-learning (DDQN, Van Has-
selt et al., 2016) and prioritized experience replay (Schaul
et al., 2015b) as the underlying RL procedure. Each
subpolicy learner receives a pseudo-reward of 1 for each
successful execution, corresponding to stepping through
the correct door (e.g., door to the north if the subgoal
is north) and negative reward for stepping into lava or
through other doors.

Figure 1 (right) shows the learning progression of hg-
DAgger/Q, implying two main observations. First, the
number of HI-level labels rapidly increases initially and
then flattens out after the learner becomes more success-
ful, thanks to the availability of InspectFULL operation.
As the hybrid algorithm makes progress and the learning
agent passes the InspectFULL operation increasingly of-
ten, the algorithm starts saving significantly on expert feed-
back. Second, the number of HI-level labels is higher than
for both hg-DAgger and h-BC. InspectFULL returns Fail

often, especially during the early parts of training. This is
primarily due to the slower learning speed of Q-learning
at the LO level, requiring more expert feedback at the HI
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Figure 1. Maze navigation. (Left) One sampled environment instance; the agent needs to navigate from bottom right to bottom left.
(Middle) Expert cost over time for hg-DAgger; the cost of Label operations equals the length of labeled trajectory, the cost of Inspect
operations is 1. (Right) Success rate of hg-DAgger/Q and the HI-level label cost as a function of the number of LO-level RL samples.
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Figure 2. Maze navigation: hierarchical versus flat imitation learning. Each episode is followed by a round of training and a round of
testing. The success rate is measured over previous 100 test episodes; the expert cost is as in Figure 1. (Left) Success rate per episode.
(Middle) Success rate versus the expert cost. (Right) Success rate versus the LO-level expert cost.

level. This means that the hybrid algorithm is suited for
settings where LO-level expert labels are either not avail-
able or more expensive than the HI-level labels. This is
exactly the setting we analyze in the next section.

In Appendix B.1, we compare hg-DAgger/Q with hierar-
chical RL (h-DQN, Kulkarni et al., 2016), concluding that
h-DQN, even with significantly more LO-level samples,
fails to reach success rate comparable to hg-DAgger/Q. Flat
Q-learning also fails in this setting, due to a long planning
horizon and sparse rewards (Mnih et al., 2015).

6.2. Hierarchically Guided IL / RL vs Hierarchical RL:
Comparison on Montezuma’s Revenge

Task Overview. Montezuma’s Revenge is among the most
difficult Atari games for existing deep RL algorithms, and
is a natural candidate for hierarchical approach due to the
sequential order of subtasks. Figure 3 (left) displays the
environment and an annotated sequence of subgoals. The
four designated subgoals are: go to bottom of the right stair,
get the key, reverse path to go back to the right stair, then
go to open the door (while avoiding obstacles throughout).

The agent is given a pseudo-reward of 1 for each subgoal

completion and -1 upon loss of life. We enforce that the
agent can only have a single life per episode, preventing
the agent from taking a shortcut after collecting the key (by
taking its own life and re-initializing with a new life at the
starting position, effectively collapsing the task horizon).
Note that for this setting, the actual game environment is
equipped with two positive external rewards corresponding
to picking up the key (subgoal 2, reward of 100) and us-
ing the key to open the door (subgoal 4, reward of 300).
Optimal execution of this sequence of subgoals requires
more than 200 primitive actions. Unsurprisingly, flat RL
algorithms often achieve a score of 0 on this domain (Mnih
et al., 2015; 2016; Wang et al., 2016).

hg-DAgger/Q versus h-DQN. Similar to the maze domain,
we use DDQN with prioritized experience replay at the LO
level of hg-DAgger/Q. We compare its performance with h-
DQN using the same neural network architecture as Kulka-
rni et al. (2016). Figure 3 (middle) shows the learning
progression of our hybrid algorithm. The HI-level horizon
HHI = 4, so meta-controller is learnt from fairly few sam-
ples. Each episode roughly corresponds to one LabelHI

query. Subpolicies are learnt in the order of subgoal execu-
tion as prescribed by the expert.
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Figure 3. Montezuma’s revenge: hg-DAgger/Q versus h-DQN. (Left) Screenshot of Montezuma’s Revenge in black-and-white with
color-coded subgoals. (Middle) Learning progression of hg-DAgger/Q in solving the first room of Montezuma’s Revenge for a typical
successful trial. Subgoal colors match the left pane; success rate is the fraction of times the LO-level RL learner achieves its subgoal
over the previous 100 attempts. (Right) Learning performance of hg-DAgger/Q versus h-DQN (median and inter-quartile range).

We introduce a simple modification to Q-learning on the
LO level to speed up learning: the accumulation of expe-
rience replay buffer does not begin until the first time the
agent encounters positive pseudo-reward. During this pe-
riod, in effect, only the meta-controller is being trained.
This modification ensures the reinforcement learner en-
counters at least some positive pseudo-rewards, which
boosts learning in the long horizon settings and should nat-
urally work with any off-policy learning scheme (DQN,
DDQN, Dueling-DQN). For a fair comparison, we intro-
duce the same modification to the h-DQN learner (other-
wise, h-DQN failed to achieve any reward).

To mitigate the instability of DQN (see, for example, learn-
ing progression of subgoal 2 and 4 in Figure 3, middle),
we introduce one additional modification. We terminate
training of subpolicies when the success rate exceeds 90%,
at which point the subgoal is considered learned. Subgoal
success rate is defined as the percentage of successful sub-
goal completions over the previous 100 attempts.

Figure 3 (right) shows the median and the inter-quartile
range over 100 runs of hg-DAgger/Q and hg-DQN.7 The
LO-level sample sizes are not directly comparable with the
middle panel, which displays the learning progression for a
random successful run, rather than an aggregate over mul-
tiple runs. In all of our experiments, the performance of
the imitation learning component is stable across many dif-
ferent trials, whereas the performance of the reinforcement
learning component varies substantially. Subgoal 4 (door)
is the most difficult to learn due to its long horizon whereas
subgoals 1–3 are mastered very quickly, especially com-
pared to h-DQN. Our algorithm benefits from hierarchi-
cal guidance and accumulates experience for each subgoal
only within the relevant part of the state space, where the
subgoal is part of an optimal trajectory. In contrast, h-DQN

7In Appendix B, we present additional plots, including 10 best
runs of each algorithm, subgoal completion rate over 100 trials,
and versions of Figure 3 (middle) for additional random instances.

may pick bad subgoals and the resulting LO-level samples
then “corrupt” the subgoal experience replay buffers and
substantially slow down convergence.8

The number of HI-level labels in Figure 3 (middle) can be
further reduced by using a more efficient RL procedure
than DDQN at the LO level. In the specific example of
Montezuma’s Revenge, the actual human effort is in fact
much smaller, since the human expert needs to provide a
sequence of subgoals only once (together with simple sub-
goal detectors), and then HI-level labeling can be done au-
tomatically. The human expert only needs to understand
the high level semantics, and does not need to be able to
play the game.

7. Conclusion
We have presented hierarchical guidance framework and
shown how it can be used to speed up learning and reduce
the cost of expert feedback in hierarchical imitation learn-
ing and hybrid imitation–reinforcement learning.

Our approach can be extended in several ways. For in-
stance, one can consider weaker feedback such as pref-
erence or gradient-style feedback (Fürnkranz et al., 2012;
Loftin et al., 2016; Christiano et al., 2017), or a weaker
form of imitation feedback, only saying whether the agent
action is correct or incorrect, corresponding to bandit vari-
ant of imitation learning (Ross et al., 2011).

Our hybrid IL / RL approach relied on the availability of
a subgoal termination predicate indicating when the sub-
goal is achieved. While in many settings such a termina-
tion predicate is relatively easy to specify, in other settings
this predicate needs to be learned. We leave the question
of learning the termination predicate, while learning to act
from reinforcement feedback, open for future research.

8In fact, we further reduced the number of subgoals of h-DQN
to only two initial subgoals, but the agent still largely failed to
learn even the second subgoal (see the appendix for details).
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A. Proofs
Proof of Theorem 2. The first term TC I

FULL should be ob-
vious as the expert inspects the agent’s overall behavior
in each episode. Whenever something goes wrong in an
episode, the expert labels the whole trajectory, incurring
CL

FULL each time. The remaining work is to bound the
number of episodes where agent makes one or more mis-
takes. This quantity is bounded by the number of total mis-
takes made by the halving algorithm, which is at most the
logarithm of the number of candidate functions (policies),
log |⇧FULL| = log

�
|M||⇧LO||G|

�
= log |M|+|G| log |⇧LO|.

This completes the proof.

Proof of Theorem 1. Similar to the proof of Theorem 2, the
first term TC I

FULL is obvious. The second term corresponds
to the situation where InspectFULL finds issues. Accord-
ing to Algorithm 2, the expert then labels the subgoals and
also inspects whether each subgoal is accomplished suc-
cessfully, which incurs CL

HI +HHIC I

LO cost each time. The
number of times that this situation happens is bounded by
(a) the number of times that a wrong subgoal is chosen,
plus (b) the number of times that all subgoals are good but
at least one of the subpolicies fails to accomplish the sub-
goal. Situation (a) occurs at most log |M| times. In sit-
uation (b), the subgoals chosen in the episode must come
from Gopt, and for each of these subgoals the halving algo-
rithm makes at most log |⇧LO| mistakes. The last term cor-
responds to cost of LabelLO operations. This only occurs
when the meta-controller chooses a correct subgoal but the
corresponding subpolicy fails. Similar to previous analy-
sis, this situation occurs at most log |⇧LO| for each “good”
subgoal (g 2 Gopt). This completes the proof.

B. Additional Experimental Details
In our experiments, success rate and external rewards are
reported as the trailing average over previous 100 episodes
of training. For hierarchical imitation learning experiments
in maze navigation domain, the success rate is only mea-
sured on separate test environments not used for training.

In addition to experimental results, in this section we de-
scribe our mechanism for subgoal detection / terminal pred-
icate for Montezuma’s Revenge and how the Maze Naviga-
tion environments are created. Network architectures from
our experiments are in Tables 1 and 2.

B.1. Maze Navigation Domain

We compare hg-DAgger/Q with the hierarchical reinforce-
ment learning baseline (h-DQN, Kulkarni et al., 2016) with
the same network architecture for the meta-controller and
subpolicies as hg-DAgger/Q and similarly enhanced Q-
learning procedure.

0K 50K 100K 150K 200K 250K 300K 350K 400K
RL samples at LO-level

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger/Q vs. h-DQN
(Maze Navigation)

0K

50K

100K

150K

200K

250K

300K

350K

400K

H
I-
le

ve
l
co

st
(R

L
or

IL
)

hg-DAgger/Q
success rate
hg-DAgger/Q
HI-level IL cost
h-DQN
success rate
h-DQN
HI-level RL samples

Figure 4. Maze navigation: hybrid IL-RL (full task) versus h-

DQN (with 50% head-start).

Similar to the Montezuma’s Revenge domain, h-DQN does
not work well for the maze domain. At the HI level, the
planning horizon of 10–12 with 4–5 possible subgoals in
each step is prohibitively difficult for the HI-level reinforce-
ment learner and we were not able to achieve non-zero re-
wards within in any of our experiments. To make the com-
parison, we attempted to provide additional advantage to
the h-DQN algorithm by giving it some head-start, so we
ran h-DQN with 50% reduction in the horizon, by giving
the hierarchical learner the optimal execution of the first
half of the trajectory. The resulting success rate is in Fig-
ure 4. Note that the hybrid IL-RL does not get the 50%
advantage, but it still quickly outperforms h-DQN, which
flattens out at 30% success rate.

B.1.1. CREATING MAZE NAVIGATION ENVIRONMENTS

We create 2000 maze navigation environments, 1000 of
which are used for training and 1000 maps are used for
testing. The comparison results for maze navigation (e.g.,
Figure 2) are all based on randomly selected environments
among 1000 test maps. See Figure 5 for additional exam-
ples of the environments created. For each map (environ-
ment instance), we start with a 17⇥17 grid, which are di-
vided into 4⇥4 room structure. Initially, no door exists in
between rooms. To create an instance of the maze naviga-
tion environment, the goal block (yellow) and the starting
position are randomly selected (accepted as long as they
are not the same). Next, we randomly select a wall sepa-
rating two different room and replace a random red block
(lava) along this wall with a door (black cell). This process
continues until two conditions are satisfied:

• There is a feasible path between the starting location
and the goal block (yellow)

• The minimum distance between start to goal is at least
40 steps. The optimal path can be constructed using
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Figure 5. Maze navigation. Sample random instances of the maze domain (different from main text). The 17 ⇥ 17 pixel representation
of the maze is used as input for neural network policies.

graph search

Each of the 2000 environments create must satisfy both
conditions. The expert labels for each environment come
from optimal policy computed via value iteration (which
is fast based on tabular representation of the given grid
world).

B.1.2. HYPERPARAMETERS FOR MAZE NAVIGATION

The network architecture used for maze navigation is de-
scribed in Table 1. The only difference between subgoal
policy networks and metacontroller network is the number
of output class (4 actions versus 5 subgoals). For our hi-
erarchical imitation learning algorithms, we also maintain
a small network along each subgoal policy for subgoal ter-
mination classification (one can also view the subgoal ter-
mination classifier as an extra head of the subgoal policy
network).

The contextual input (state) to the policy networks consists
of 3-channel pixel representation of the maze environment.
We assign different (fixed) values to goal block, agent lo-
cation, agent’s trail and lava blocks. In our hierarchical
imitation learning implementations, the base policy learner
(DAgger and behavior cloning) update the policies every
100 steps using stochastic optimization. We use Adam op-
timizer and learning rate of 0.0005.

Table 1. Network Architecture—Maze Domain

1: Convolutional Layer 32 filters, kernel size 3, stride 1
2: Convolutional Layer 32 filters, kernel size 3, stride 1
3: Max Pooling Layer pool size 2

4: Convolutional Layer 64 filters, kernel size 3, stride 1
5: Convolutional Layer 64 filters, kernel size 3, stride 1
6: Max Pooling Layer pool size 2

7: Fully Connected Layer 256 nodes, relu activation
8: Output Layer softmax activation

(dimension 4 for subpolicy,
dimension 5 for meta-controller)

B.2. Montezuma’s Revenge

Although the imitation learning component tends to be sta-
ble and consistent, the samples required by the reinforce-
ment learners can vary between experiments with identical
hyperparameters. In this section, we report additional re-
sults of our hybrid algorithm for the Montezuma’s Revenge
domain.

For the implementation of our hybrid algorithm on the
game Montezuma’s Revenge, we decided to limit the com-
putation to 4 million frames for the LO-level reinforcement
learners (in aggregate across all 4 subpolicies). Out of 100
experiments, 81 out of 100 successfully learn the first 3
subpolicies, 89 out of 100 successfully learn the first 2 sub-
policies. The last subgoal (going from the bottom of the
stairs to open the door) proved to be the most difficult and
almost half of our experiments did not manage to finish
learning the fourth subpolicy within the 4 million frame
limit (see Figure 7 middle pane). The reason mainly has to
do with the longer horizon of subgoal 4 compared to other
three subgoals. Of course, this is a function of the design
of subgoals and one can always try to shorten the horizon
by introducing intermediate subgoals.

However, it is worth pointing out that even as we limit the
h-DQN baseline to only 2 subgoals (up to getting the key),
the h-DQN baseline generally tends to underperform our
proposed hybrid algorithm by a large margin. Even with
the given advantage we confer to our implementation of h-
DQN, all of the h-DQN experiments failed to successfully
master the second subgoal (getting the key). It is instructive
to also examine the sample complexity associated with get-
ting the key (the first positive external reward, see Figure 7
right pane). Here the horizon is sufficiently short to appre-
ciate the difference between having expert feedback at the
HI level versus relying only on reinforcement learning to
train the meta-controller.

The stark difference in learning performance (see Figure 7
right) comes from the fact that the HI-level expert advice ef-
fectively prevents the LO-level reinforcement learners from


