
Smooth Imitation Learning for Online Sequence Prediction

Hoang M. Le HMLE@CALTECH.EDU
Andrew Kang AKANG@CALTECH.EDU
Yisong Yue YYUE@CALTECH.EDU

California Institute of Technology, Pasadena, CA, USA

Peter Carr PETER.CARR@DISNEYRESEARCH.COM

Disney Research, Pittsburgh, PA, USA

Abstract
We study the problem of smooth imitation learn-
ing for online sequence prediction, where the
goal is to train a policy that can smoothly imitate
demonstrated behavior in a dynamic and con-
tinuous environment in response to online, se-
quential context input. Since the mapping from
context to behavior is often complex, we take
a learning reduction approach to reduce smooth
imitation learning to a regression problem us-
ing complex function classes that are regular-
ized to ensure smoothness. We present a learn-
ing meta-algorithm that achieves fast and stable
convergence to a good policy. Our approach en-
joys several attractive properties, including be-
ing fully deterministic, employing an adaptive
learning rate that can provably yield larger policy
improvements compared to previous approaches,
and the ability to ensure stable convergence. Our
empirical results demonstrate significant perfor-
mance gains over previous approaches.

1. Introduction
In many complex planning and control tasks, it can be very
challenging to explicitly specify a good policy. For such
tasks, the use of machine learning to automatically learn
a good policy from observed expert behavior, also known
as imitation learning or learning from demonstrations, has
proven tremendously useful (Abbeel & Ng, 2004; Ratliff
et al., 2009; Argall et al., 2009; Ross & Bagnell, 2010; Ross
et al., 2011; Jain et al., 2013).

In this paper, we study the problem of imitation learning for
smooth online sequence prediction in a continuous regime.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Online sequence prediction is the problem of making on-
line decisions in response to exogenous input from the en-
vironment, and is a special case of reinforcement learning
(see Section 2). We are further interested in policies that
make smooth predictions in a continuous action space.

Our motivating example is the problem of learning smooth
policies for automated camera planning (Chen et al., 2016):
determining where a camera should look given environ-
ment information (e.g., noisy person detections) and cor-
responding demonstrations from a human expert.1 It is
widely accepted that a smoothly moving camera is essen-
tial for generating aesthetic video (Gaddam et al., 2015).
From a problem formulation standpoint, one key difference
between smooth imitation learning and conventional imita-
tion learning is the use of a “smooth” policy class (which
we formalize in Section 2), and the goal now is to mimic
expert demonstrations by choosing the best smooth policy.

The conventional supervised learning approach to imitation
learning is to train a classifier or regressor to predict the ex-
pert’s behavior given training data comprising input/output
pairs of contexts and actions taken by the expert. How-
ever, the learned policy’s prediction affects (the distribu-
tion of) future states during the policy’s actual execution,
and so violates the crucial i.i.d. assumption made by most
statistical learning approaches. To address this issue, nu-
merous learning reduction approaches have been proposed
(Daumé III et al., 2009; Ross & Bagnell, 2010; Ross et al.,
2011), which iteratively modify the training distribution in
various ways such that any supervised learning guarantees
provably lift to the sequential imitation setting (potentially
at the cost of statistical or computational efficiency).

We present a learning reduction approach to smooth im-
itation learning for online sequence prediction, which we
call SIMILE (Smooth IMItation LEarning). Building

1Access data at http://www.disneyresearch.com/
publication/smooth-imitation-learning/ and
code at http://github.com/hoangminhle/SIMILE.

http://www.disneyresearch.com/publication/smooth-imitation-learning/
http://www.disneyresearch.com/publication/smooth-imitation-learning/
http://github.com/hoangminhle/SIMILE

Smooth Imitation Learning for Online Sequence Prediction

upon learning reductions that employ policy aggregation
(Daumé III et al., 2009), we provably lift supervised learn-
ing guarantees to the smooth imitation setting and show
much faster convergence behavior compared to previous
work. Our contributions can be summarized as:
• We formalize the problem of smooth imitation learn-

ing for online sequence prediction, and introduce a
family of smooth policy classes that is amenable to
supervised learning reductions.

• We present a principled learning reduction approach,
which we call SIMILE. Our approach enjoys sev-
eral attractive practical properties, including learning
a fully deterministic stationary policy (as opposed to
SEARN (Daumé III et al., 2009)), and not requiring
data aggregation (as opposed to DAgger (Ross et al.,
2011)) which can lead to super-linear training time.

• We provide performance guarantees that lift the
the underlying supervised learning guarantees to the
smooth imitation setting. Our guarantees hold in
the agnostic setting, i.e., when the supervised learner
might not achieve perfect prediction.

• We show how to exploit a stability property of our
smooth policy class to enable adaptive learning rates
that yield provably much faster convergence com-
pared to SEARN (Daumé III et al., 2009).

• We empirically evaluate using the setting of smooth
camera planning (Chen et al., 2016), and demonstrate
the performance gains of our approach.

2. Problem Formulation
Let X “ tx1, . . . , xT u Ă X T denote a context sequence
from the environment X , and A “ ta1, . . . , aT u Ă AT de-
note an action sequence from some action space A. Con-
text sequence is exogenous, meaning at does not influ-
ence future context xt`k for k ě 1. Let Π denote a
policy class, where each π P Π generates an action se-
quence A in response to a context sequence X. Assume
X Ă Rm,A Ă Rk are continuous and infinite, with A
non-negative and bounded such that ~0 ĺ a ĺ R~1 @a P A.

Predicting actions at may depend on recent contexts
xt, . . . , xt´p and actions at´1, . . . , at´q . Without loss of
generality, we define a state space S as tst “ rxt, at´1su.2

Policies π can thus be viewed as mapping states S “ XˆA
to actions A. A roll-out of π given context sequence X “

tx1, . . . , xT u is the action sequence A “ ta1, . . . , aT u:
at “ πpstq “ πprxt, at´1sq,

st`1 “ rxt`1, ats @t P r1, . . . , T s .

Note that unlike the general reinforcement learning prob-
lem, we consider the setting where the state space splits
into external and internal components (by definition, at in-
fluences subsequent states st`k, but not xt`k). The use

2We can always concatenate consecutive contexts and actions.

of exogenous contexts txtu models settings where a policy
needs to take online, sequential actions based on external
environmental inputs, e.g. smooth self-driving vehicles for
obstacle avoidance, helicopter aerobatics in the presence of
turbulence, or smart grid management for external energy
demand. The technical motivation of this dichotomy is that
we will enforce smoothness only on the internal state.

Consider the example of autonomous camera planning for
broadcasting a sport event (Chen et al., 2016). X can cor-
respond to game information such as the locations of the
players, the ball, etc., and A can correspond to the pan-
tilt-zoom configuration of the broadcast camera. Manually
specifying a good camera policy can be very challenging
due to sheer complexity involved with mapping X to A.
It is much more natural to train π P Π to mimic observed
expert demonstrations. For instance, Π can be the space of
neural networks or tree-based ensembles (or both).

Following the basic setup from (Ross et al., 2011), for any
policy π P Π, let dπt denote the distribution of states at time
t if π is executed for the first t´1 time steps. Furthermore,
let dπ “ 1

T

řT
t“1 d

π
t be the average distribution of states if

we follow π for all T steps. The goal of imitation learning
is to find a policy π̂ P Π which minimizes the imitation loss
under its own induced distribution of states:
π̂ “ argmin

πPΠ
`πpπq “ argmin

πPΠ
Es„dπ r`pπpsqqs , (1)

where the (convex) imitation loss `pπpsqq captures how
well π imitates expert demonstrations for state s. One com-
mon ` is squared loss between the policy’s decision and the
expert demonstration: `pπpsqq “ }πpsq´π˚psq}2 for some
norm }.}. Note that computing ` typically requires hav-
ing access to a training set of expert demonstrations π˚ on
some set of context sequences. We also assume an agnos-
tic setting, where the minimizer of (1) does not necessarily
achieve 0 loss (i.e. it cannot perfectly imitate the expert).

2.1. Smooth Imitation Learning & Smooth Policy Class

In addition to accuracy, a key requirement of many con-
tinuous control and planning problems is smoothness (e.g.,
smooth camera trajectories). Generally, “smoothness” may
reflect domain knowledge about stability properties or ap-
proximate equilibria of a dynamical system. We thus for-
malize the problem of smooth imitation learning as mini-
mizing (1) over a smooth policy class Π.

Most previous work on learning smooth policies focused on
simple policy classes such as linear models (Abbeel & Ng,
2004), which can be overly restrictive. We instead define a
much more general smooth policy class Π as a regularized
space of complex models.

Definition 2.1 (Smooth policy class Π). Given a com-
plex model class F and a class of smooth regularizers
H, we define smooth policy class Π Ă FˆH as satisfying:

Smooth Imitation Learning for Online Sequence Prediction

Π fi tπ “ pf, hq,f P F , h P H | πpsq is close to

both fpx, aq and hpaq

@ induced state s “ rx, as P Su
where closeness is controlled by regularization.
For instance, F can be the space of neural networks or de-
cision trees and H be the space of smooth analytic func-
tions. Π can thus be viewed as policies that predict close to
some f P F but are regularized to be close to some h P H.
For sufficiently expressive F , we often have that Π Ă F .
Thus optimizing over Π can be viewed as constrained op-
timization over F (by H), which can be challenging. Our
SIMILE approach integrates alternating optimization (be-
tween F and H) into the learning reduction. We provide
two concrete examples of Π below.

Example 2.1 (Πλ). Let F be any complex supervised
model class, and define the simplest possibleH fi thpaq “
au. Given f P F , the prediction of a policy π can be viewed
as regularized optimization over the action space to ensure
closeness of π to both f and h:

πpx, aq “ argmin
a1PA

›

›fpx, aq ´ a1
›

›

2
` λ

›

›hpaq ´ a1
›

›

2

“
fpx, aq ` λhpaq

1` λ
“
fpx, aq ` λa

1` λ
, (2)

where regularization parameter λ trades-off closeness to f
and to previous action. For large λ, πpx, aq is encouraged
make predictions that stays close to previous action a.

Example 2.2 (Linear auto-regressor smooth regularizers).
Let F be any complex supervised model class, and define
H using linear auto-regressors,H fi thpaq “ θJau, which
model actions as a linear dynamical system (Wold, 1939).
We can define π analogously to (2).

In general, SIMILE requires that Π satisfies a smooth prop-
erty stated below. This property, which is exploited in our
theoretical analysis (see Section 5), is motivated by the
observation that given a (near) constant stream of context
sequence, a stable behavior policy should exhibit a corre-
sponding action sequence with low curvature. The two ex-
amples above satisfy this property for sufficiently large λ.

Definition 2.2 (H-state-smooth imitation policy). For
small constant 0 ă H ! 1, a policy πprx, asq is H-
state-smooth if it is H-smooth w.r.t. a, i.e. for fixed
x P X , @a, a1 P A, @i:

›

›∇πiprx, asq ´∇πiprx, a1sq
›

›

˚
ď

H }a´ a1} where πi indicates the ith component of
vector-valued function3 πpsq “

“

π1psq, . . . , πkpsq
‰

P Rk,
and }.} and }.}˚ are some norm and dual norm respectively.
For twice differentiable policy π, this is equivalent to hav-
ing the bound on the Hessian∇2πiprx, asq ĺ HIk @i.

3This emphasizes the possibility that π is a vector-valued func-
tion of a. The gradient and Hessian are viewed as arrays of k gra-
dient vectors and Hessian matrices of 1-d case, since we simply
treat action in Rk as an array of k standard functions.

3. Related Work
The most popular traditional approaches for learning from
expert demonstration focused on using approximate policy
iteration techniques in the MDP setting (Kakade & Lang-
ford, 2002; Bagnell et al., 2003). Most prior approaches
operate in discrete and finite action space (He et al., 2012;
Ratliff et al., 2009; Abbeel & Ng, 2004; Argall et al.,
2009). Some focus on continuous state space (Abbeel &
Ng, 2005), but requires a linear model for the system dy-
namics. In contrast, we focus on learning complex smooth
functions within continuous action and state spaces.
One natural approach to tackle the more general setting
is to reduce imitation learning to a standard supervised
learning problem (Syed & Schapire, 2010; Langford &
Zadrozny, 2005; Lagoudakis & Parr, 2003). However, stan-
dard supervised methods assume i.i.d. training and test ex-
amples, thus ignoring the distribution mismatch between
training and rolled-out trajectories directly applied to se-
quential learning problems (Kakade & Langford, 2002).
Thus a naive supervised learning approach normally leads
to unsatisfactory results (Ross & Bagnell, 2010).
Iterative Learning Reductions. State-of-the-art learning
reductions for imitation learning typically take an iterative
approach, where each training round uses standard super-
vised learning to learn a policy (Daumé III et al., 2009;
Ross et al., 2011). In each round n, the following happens:
• Given initial state s0 drawn from the starting distribu-

tion of states, the learner executes current policy πn,
resulting in a sequence of states sn1 , . . . , s

n
T .

• For each snt , a label pant (e.g., expert feedback) is col-
lected indicating what the expert would do given snt ,
resulting in a new dataset Dn “ tpst,pant qu.

• The learner integrates Dn to learn a policy π̂n. The
learner updates the current policy to πn`1 based on
π̂n and πn.

The main challenge is controlling for the cascading errors
caused by the changing dynamics of the system, i.e., the
distribution of states in each Dn „ dπn . A policy trained
using dπn induces a different distribution of states than dπn ,
and so is no longer being evaluated on the same distribution
as during training. A principled reduction should (approx-
imately) preserve the i.i.d. relationship between training
and test examples. Furthermore the state distribution dπ
should converge to a stationary distribution.

The arguably most notable learning reduction approaches
for imitation learning are SEARN (Daumé III et al., 2009)
and DAgger (Ross et al., 2011). At each round, SEARN
learns a new policy π̂n and returns a distribution (or mix-
ture) over previously learned policies: πn`1 “ βπ̂n`p1´
βqπn for β P p0, 1q. For appropriately small choices of
β, this stochastic mixing limits the “distribution drift” be-
tween πn and πn`1 and can provably guarantee that the

Smooth Imitation Learning for Online Sequence Prediction

performance of πn`1 does not degrage significantly rela-
tive to the expert demonstrations.4

DAgger, on the other hand, achieves stability by aggre-
gating a new dataset at each round to learn a new policy
from the combined data set D Ð D Y Dn. This aggre-
gation, however, significantly increases the computational
complexity and thus is not practical for large problems that
require many iterations of learning (since the training time
grows super-linearly w.r.t. the number of iterations).

Both SEARN and DAgger showed that only a polynomial
number of training rounds is required for convergence to a
good policy, but with a dependence on the length of hori-
zon T . In particular, to non-trivially bound the total vari-
ation distance }dπnew ´ dπold}1 of the state distributions
between old and new policies, a learning rate β ă 1

T is
required to hold (Lemma 1 of Daumé III, Langford, and
Marcu (2009) and Theorem 4.1 of Ross, Gordon, and Bag-
nell (2011)). As such, systems with very large time hori-
zons might suffer from very slow convergence.
Our Contributions. Within the context of previous work,
our SIMILE approach can be viewed as extending SEARN
to smooth policy classes with the following improvements:

• We provide a policy improvement bound that does not
depend on the time horizon T , and can thus converge
much faster. In addition, SIMILE has adaptive learn-
ing rate, which can further improve convergence.

• For the smooth policy class described in Section 2, we
show how to generate simulated or “virtual” expert
feedback in order to guarantee stable learning. This
alleviates the need to have continuous access to a dy-
namic oracle / expert that shows the learner what to do
when it is off-track. In this regard, the way SIMILE
integrates expert feedback subsumes the set-up from
SEARN and DAgger.

• Unlike SEARN, SIMILE returns fully deterministic
policies. Under the continuous setting, deterministic
policies are strictly better than stochastic policies as
(i) smoothness is critical and (ii) policy sampling re-
quires holding more data during training, which may
not be practical for infinite state and action spaces.

• Our theoretical analysis reveals a new sequential pre-
diction setting that yields provably fast convergence,
in particular for smooth policy classes on finite-
horizon problems. Existing settings that enjoy such
results are limited to Markovian dynamics with dis-
counted future rewards or linear model classes.

4. Smooth Imitation Learning Algorithm
Our learning algorithm, called SIMILE (Smooth IMItation
LEarning), is described in Algorithm 1. At a high level, the
process can be described as:

4A similar approach was adopted in Conservative Policy Iter-
ation for the MDP setting (Kakade & Langford, 2002).

Algorithm 1 SIMILE (Smooth IMItation LEarning)
Input: features X “ txtu, human trajectory A˚ “ ta˚t u,

base routine Train, smooth regularizers h P H
1: Initialize A0 Ð A˚,S0 Ð t

“

xt, a
˚
t´1

‰

u,

h0 “ argmin
hPH

T
ř

t“1

›

›a˚t ´ hpa
˚
t´1q

›

›

2: Initial policy π0 “ π̂0 Ð TrainpS0,A0| h0q

3: for n “ 1, . . . , N do
4: An “ ta

n
t u Ð πn´1pSn´1q //sequential roll-out

5: Sn Ð tsnt “
“

xt, a
n
t´1

‰

u //snt “ rxt:t´p, at´1:t´qs

6: pAn “ tpant u @snt P Sn // collect smooth feedback

7: hn “ argmin
hPH

T
ř

t“1

›

›

pant ´ hppa
n
t´1q

›

› //new regularizer

8: π̂n Ð TrainpSn, pAn| hnq // train policy
9: β Ð βp`pπ̂nq, `pπn´1qq //adaptively set β

10: πn “ βπ̂n ` p1´ βqπn´1 // update policy
11: end for
output Last policy πN

1. Start with some initial policy π̂0 (Line 2).
2. At iteration n, use πn´1 to build a new state distribu-

tion Sn and dataset Dn “ tpsnt ,pant qu (Lines 4-6).
3. Train π̂n “ argminπPΠ Es„Sn r`npπpsqqs, where `n

is the imitation loss (Lines 7-8). Note that `n needs
not be the original `, but simply needs to converge to
it.

4. Interpolate π̂n and πn´1 to generate a new determin-
istic policy πn (Lines 9-10). Repeat from Step 2 with
nÐ n` 1 until some termination condition is met.

Supervised Learning Reduction. The actual reduction is
in Lines 7-8, where we follow a two-step procedure of first
updating the smooth regularize hn, and then training π̂n via
supervised learning. In other words, Train finds the best
f P F possible for a fixed hn. We discuss how to set the
training targets pant below.
Policy Update. The new policy πn is a deterministic inter-
polation between the previous πn´1 and the newly learned
π̂n (Line 10). In contrast, for SEARN, πn is a stochastic in-
terploation (Daumé III et al., 2009). Lemma 5.2 and Corol-
lary 5.3 show that deterministic interpolation converges at
least as fast as stochastic for smooth policy classes.

This interpolation step plays two key roles. First, it is
a form of myopic or greedy online learning. Intuitively,
rolling out πn leads to incidental exploration on the mis-
takes of πn, and so each round of training is focused on
refining πn. Second, the interpolation in Line 10 ensures
a slow drift in the distribution of states from round to
round, which preserves an approximate i.i.d. property for
the supervised regression subroutine and guarantees con-
vergence.

However this model interpolation creates an inherent ten-
sion between maintaining approximate i.i.d. for valid su-

Smooth Imitation Learning for Online Sequence Prediction

pervised learning and more aggressive exploration (and
thus faster convergence). For example, SEARN’s guaran-
tees only apply for small β ă 1{T . SIMILE circumvents
much of this tension via a policy improvement bound that
allows β to adaptively increase depending on the quality of
π̂n (see Theorem 5.6), which thus guarantees a valid learn-
ing reduction while substantially speeding up convergence.
Feedback Generation. We can generate training targets
pant using “virtual” feedback from simulating expert demon-
strations, which has two benefits. First, we need not query
the expert π˚ at every iteration (as done in DAgger (Ross
et al., 2011)). Continuously acquiring expert demonstra-
tions at every round can be seen as a special case and a
more expensive strategy. Second, virtual feedback ensures
stable learning, i.e., every π̂n is a feasible smooth policy.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X 7! Y which
describes the ideal camera work that should occur at the

1

Figure 1.

Consider Figure 1, where our pol-
icy πn (blue/red) made a mistake
at location A, and where we have
only a single expert demonstra-
tion from π˚ (black). Depending
on the smoothness requirements of
the policy class, we can simulate
virtual expert feedback as via ei-
ther the red line (more smooth) or blue (less smooth) as
a tradeoff between squared imitation loss and smoothness.

When the roll-out of πn´1 (i.e. An) differs substantially
from A˚, especially during early iterations, using smoother
feedback (red instead of blue) can result in more stable
learning. We formalize this notion for Πλ in Proposi-
tion 5.8. Intuitively, whenever πn´1 makes a mistake, re-
sulting in a “bad” state snt , the feedback should recom-
mend a smooth correction pant w.r.t. An to make training
“easier” for the learner.5 The virtual feedback pant should
converge to the expert’s action a˚t . In practice, we use
pant “ σant ` p1´ σqa

˚
t with σ Ñ 0 as n increases (which

satisfies Proposition 5.8).

5. Theoretical Results
All proofs are deferred to the supplementary material.

5.1. Stability Conditions

One natural smoothness condition is that πprx, asq should
be stable w.r.t. a if x is fixed. Consider the camera planning
setting: the expert policy π˚ should have very small curva-
ture, since constant inputs should correspond to constant
actions. This motivates Definition 2.2, which requires that
Π has low curvature given fixed context. We also show that
smooth policies per Definition 2.2 lead to stable actions,
in the sense that “nearby” states are mapped to “nearby”
actions. The following helper lemma is useful:

5A similar idea was proposed (He et al., 2012) for DAgger-
type algorithm, albeit only for linear model classes.

Lemma 5.1. For a fixed x, define πprx, asq fi ϕpaq. If ϕ is
non-negative and H-smooth w.r.t. a., then:

@a, a1 :
`

ϕpaq ´ ϕpa1q
˘2
ď 6H

`

ϕpaq ` ϕpa1q
˘
›

›a´ a1
›

›

2
.

Writing π as πprx, asq fi
“

π1prx, asq, . . . , πkprx, asq
‰

with each πiprx, asq H-smooth, Lemma 5.1 implies
}pπprx, asq ´ πprx, a1sqq} ď

?
12HR }a´ a1} for R up-

per bounding A. Bounded action space means that a suffi-
ciently small H leads to the following stability conditions:

Condition 1 (Stability Condition 1). Π satisfies the Sta-
bility Condition 1 if for a fixed input feature x, the ac-
tions of π in states s “ rx, as and s1 “ rx, a1s satisfy
}πpsq ´ πps1q} ď }a´ a1} for all a, a1 P A.

Condition 2 (Stability Condition 2). Π satisfies Stability
Condition 2 if each π is γ-Lipschitz continuous in the ac-
tion component a with γ ă 1. That is, for a fixed x the
actions of π in states s “ rx, as and s1 “ rx, a1s satisfy
}πpsq ´ πps1q} ď γ }a´ a1} for all a, a1 P A.

These two conditions directly follow from Lemma 5.1 and
assuming sufficiently small H . Condition 2 is mildly
stronger than Condition 1, and enables proving much
stronger policy improvement compared to previous work.

5.2. Deterministic versus Stochastic
Given two policies π and π̂, and interpolation parameter
β P p0, 1q, consider two ways to combine policies:

1. stochastic: πstopsq “ π̂psq with probability β, and
πstopsq “ πpsq with probability 1´ β

2. deterministic: πdetpsq “ βπ̂psq ` p1´ βqπpsq

Previous learning reduction approaches only use stochastic
interpolation (Daumé III et al., 2009; Ross et al., 2011),
whereas SIMILE uses deterministic. The following result
shows that deterministic and stochastic interpolation yield
the same expected behavior for smooth policy classes.

Lemma 5.2. Given any starting state s0, sequentially ex-
ecute πdet and πsto to obtain two separate trajectories
A “ tatuTt“1 and Ã “ tãtuTt“1 such that at “ πdetpstq and
ãt “ πstops̃tq, where st “ rxt, at´1s and s̃t “ rxt, ãt´1s.
Assuming the policies are stable as per Condition 1, we
have EÃrãts “ at @t “ 1, . . . , T , where the expectation is
taken over all random roll-outs of πsto.

Lemma 5.2 shows that deterministic policy combination
(SIMILE) yields unbiased trajectory roll-outs of stochas-
tic policy combination (as done in SEARN & CPI). This
represents a major advantage of SIMILE, since the num-
ber of stochastic roll-outs of πsto to average to the deter-
ministic trajectory of πdet is polynomial in the time hori-
zon T , leading to much higher computational complexity.
Furthermore, for convex imitation loss `πpπq, Lemma 5.2
and Jensen’s inequality yield the following corollary, which
states that under convex loss, deterministic policy performs
at least no worse than stochastic policy in expectation:

Smooth Imitation Learning for Online Sequence Prediction

Corollary 5.3 (Deterministic Policies Perform Better). For
deterministic πdet and stochastic πsto interpolations of two
policies π and π̂, and convex loss `, we have:

`πdetpπdetq “ `πstopErπstosq
ď E r`πstopπstoqs

where the expectation is over all roll-outs of πsto.

Remark. We construct a simple example to show that Con-
dition 1 may be necessary for iterative learning reductions
to converge. Consider the case where contexts X Ă R
are either constant or vary neglibly. Expert demonstrations
should be constant π˚prxn, a˚sq “ a˚ for all n. Consider
an unstable policy π such that πpsq “ πprx, asq “ ka
for fixed k ą 1. The rolled-out trajectory of π diverges
π˚ at an exponential rate. Assume optimistically that π̂
learns the correct expert behavior, which is simply π̂psq “
π̂prx, asq “ a. For any β P p0, 1q, the updated policy
π1 “ βπ̂`p1´βqπ becomes π1prx, asq “ βa`p1´βqka.
Thus the sequential roll-out of the new policy π1 will also
yield an exponential gap from the correct policy. By induc-
tion, the same will be true in all future iterations.

5.3. Policy Improvement
Our policy improvement guarantee builds upon the analysis
from SEARN (Daumé III et al., 2009), which we extend to
using adaptive learning rates β. We first restate the main
policy improvement result from Daumé III et al. (2009).

Lemma 5.4 (SEARN’s policy nondegradation - Lemma 1
from Daumé III et al. (2009)). Let `max “ supπ,s `pπpsqq,
π1 is defined as πsto in lemma 5.2. Then for β P p0, 1{T q:

`π1pπ1q ´ `πpπq ď βTEs„dπ r`pπ̂psqqs `
1

2
β2T 2`max.

SEARN guarantees that the new policy π1 does not degrade
from the expert π˚ by much only if β ă 1{T . Analy-
ses of SEARN and other previous iterative reduction meth-
ods (Ross et al., 2011; Kakade & Langford, 2002; Bagnell
et al., 2003; Syed & Schapire, 2010) rely on bounding the
variation distance between dπ and dπ1 . Three drawbacks of
this approach are: (i) non-trivial variation distance bound
typically requires β to be inversely proportional to time
horizon T , causing slow convergence; (ii) not easily appli-
cable to the continuous regime; and (iii) except under MDP
framework with discounted infinite horizon, previous vari-
ation distance bounds do not guarantee monotonic policy
improvements (i.e. `π1pπ1q ă `πpπq).

We provide two levels of guarantees taking advantage of
Stability Conditions 1 and 2 to circumvent these draw-
backs. Assuming the Condition 1 and convexity of `, our
first result yields a guarantee comparable with SEARN.

Theorem 5.5 (T-dependent Improvement). Assume ` is
convex and L-Lipschitz, and Condition 1 holds. Let ε “
max
s„dπ

}π̂psq ´ πpsq}. Then:

`π1pπ1q ´ `πpπq ď βεLT ` β p`πpπ̂q ´ `πpπqq . (3)

In particular, choosing β P p0, 1{T q yields:
`π1pπ1q ´ `πpπq ď εL` β p`πpπ̂q ´ `πpπqq . (4)

Similar to SEARN, Theorem 5.5 also requires β P p0, 1{T q
to ensure the RHS of (4) stays small. However, note that the
reduction term βp`πpπ̂q ´ `πpπqq allows the bound to be
strictly negative if the policy π̂ trained on dπ significantly
improves on `πpπq (i.e., guaranteed policy improvement).
We observe empirically that this often happens, especially
in early iterations of training.

Under the mildly stronger Condition 2, we remove the de-
pendency on the time horizon T , which represents a much
stronger guarantee compared to previous work.
Theorem 5.6 (Policy Improvement). Assume ` is convex
and L-Lipschitz-continuous, and Condition 2 holds. Let
ε “ max

s„dπ
}π̂psq ´ πpsq}. Then for β P p0, 1q:

`π1pπ1q ´ `πpπq ď
βγεL

p1´ βqp1´ γq
` βp`πpπ̂q ´ `πpπqq.

(5)
Corollary 5.7 (Monotonic Improvement). Following the
notation from Theorem 5.6, let ∆ “ `πpπq ´ `πpπ̂q and
δ “ γεL

1´γ . Then choosing step size β “ ∆´δ
2∆ , we have:

`π1pπ1q ´ `πpπq ď ´
p∆´ δq2

2p∆` δq
. (6)

The terms ε and `πpπ̂q ´ `πpπq on the RHS of (4) and (5)
come from the learning reduction, as they measure the “dis-
tance” between π̂ and π on the state distribution induced
by π (which forms the dataset to train π̂). In practice, both
terms can be empirically estimated from the training round,
thus allowing an estimate of β to minimize the bound.

Theorem 5.6 justifies using an adaptive and more aggres-
sive interpolation parameter β to update policies. In the
worst case, setting β close to 0 will ensure the bound from
(5) to be close to 0, which is consistent with SEARN’s
result. More generally, monotonic policy improvement
can be guaranteed for appropriate choice of β, as seen
from Corollary 5.7. This strict policy improvement was
not possible under previous iterative learning reduction ap-
proaches such as SEARN and DAgger, and is enabled in
our setting due to exploiting the smoothness conditions.

5.4. Smooth Feedback Analysis
Smooth Feedback Does Not Hurt: Recall from Section
4 that one way to simulate “virtual” feedback for training
a new π̂ is to set the target ât “ σat ` p1 ´ σqa˚t for
σ P p0, 1q, where smooth feedback corresponds to σ Ñ 1.
To see that simulating smooth “virtual” feedback target
does not hurt the training progress, we alternatively view
SIMILE as performing gradient descent in a smooth func-
tion space (Mason et al., 1999). Define the cost functional
C : Π Ñ R over policy space to be the average imitation
loss over S as Cpπq “

ş

S
}πpsq ´ π˚psq}

2
dP psq. The gra-

Smooth Imitation Learning for Online Sequence Prediction

dient (Gâteaux derivative) of Cpπq w.r.t. π is:

∇Cpπqpsq “ BCpπ ` αδsq

Bα

ˇ

ˇ

ˇ

α“0
“ 2pπpsq ´ π˚psqq,

where δs is Dirac delta function centered at s. By first order
approximationCpπ1q “ Cpβπ̂`p1´βqπq “ Cpπ`βpπ̂´
πqq « Cpπq` βx∇Cpπq, π̂´ πy. Like traditional gradient
descent, we want to choose π̂ such that the update moves
the functional along the direction of negative gradient. In
other words, we want to learn π̂ P Π such that x∇Cpπq, π̂´
πy ! 0. We can evaluate this inner product along the states
induced by π. We thus have the estimate:

x∇Cpπq, π̂ ´ πy « 2

T

T
ÿ

t“1

pπpstq ´ π
˚pstqqpπ̂pstq ´ πpstqq

“
2

T

T
ÿ

t“1

pat ´ a
˚
t qpπ̂prxt, at´1sq ´ atq.

Since we want x∇Cpπq, π̂ ´ πy ă 0, this motivates the
construction of new data set D with states trxt, at´1su

T
t“1

and labels tpatuTt“1 to train a new policy π̂, where we want
pat´a

˚
t qppat´atq ă 0. A sufficient solution is to set target

pat “ σat ` p1 ´ σqa˚t (Section 4), as this will point the
gradient in negative direction, allowing the learner to make
progress.

Smooth Feedback is Sometimes Necessary: When the
current policy performs poorly, smooth virtual feedback
may be required to ensure stable learning, i.e. producing
a feasible smooth policy at each training round. We for-
malize this notion of feasibility by considering the smooth
policy class Πλ in Example 2.1. Recall that smooth reg-
ularization of Πλ via H encourages the next action to be
close to the previous action. Thus a natural way to mea-
sure smoothness of π P Πλ is via the average first order
difference of consecutive actions 1

T

řT
t“1 }at ´ at´1}. In

particular, we want to explicitly constrain this difference
relative to the expert trajectory 1

T

řT
t“1 }at ´ at´1} ď η at

each iteration, where η9 1
T

řT
t“1

›

›a˚t ´ a
˚
t´1

›

›.

When π performs poorly, i.e. the ”average gap” between
current trajectory tatu and ta˚t u is large, the training target
for π̂ should be lowered to ensure learning a smooth policy
is feasible, as inferred from the following proposition. In
practice, we typically employ smooth virtual feedback in
early iterations when policies tend to perform worse.

Proposition 5.8. Let ω be the average supervised train-
ing error from F , i.e. ω “ min

fPF
Ex„X r}fprx, 0sq ´ a

˚}s.

Let the rolled-out trajectory of current policy π be tatu.
If the average gap between π and π˚ is such that
Et„Uniformr1:T s r}a

˚
t ´ at´1}s ě 3ω ` ηp1 ` λq, then us-

ing ta˚t u as feedback will cause the trained policy π̂ to be
non-smooth, i.e.:

Et„Uniformr1:T s r}ât ´ ât´1}s ě η, (7)
for tâtu the rolled-out trajectory of π̂.

Figure 2. Expert (blue) and predicted (red) camera pan angles.
Left: SIMILE with ă10 iterations. Right: non-smooth policy.

Figure 3. Adaptive versus fixed interpolation parameter β.

6. Experiments
Automated Camera Planning. We evaluate SIMILE in a
case study of automated camera planning for sport broad-
casting (Chen & Carr, 2015; Chen et al., 2016). Given
noisy tracking of players as raw input data txtuTt“1, and
demonstrated pan camera angles from professional human
operator as ta˚t u

T
t“1, the goal is to learn a policy π that pro-

duces trajectory tatuTt“1 that is both smooth and accurate
relative to ta˚t u

T
t“1. Smoothness is critical in camera con-

trol: fluid movements which maintain adequate framing are
preferable to jittery motions which constantly pursue per-
fect tracking (Gaddam et al., 2015). In this setting, time
horizon T is the duration of the event multiplied by rate of
sampling. Thus T tends to be very large.
Smooth Policy Class. We use a smooth policy class fol-
lowing Example 2.2: regression tree ensembles F regular-
ized by a class of linear autoregressor functions H (Chen
et al., 2016). See Appendix B for more details.
Summary of Results.
• Using our smooth policy class leads to dramatically

smoother trajectories than not regularizing usingH.
• Using our adaptive learning rate leads to much faster

convergence compared to conservative learning rates
from SEARN (Daumé III et al., 2009).

• Using smooth feedback ensures stable learning of
smooth policies at each iteration.

• Deterministic policy interpolation performs better
than stochastic interpolation used in SEARN.

Smooth versus Non-Smooth Policy Classes. Figure 2
shows a comparison of using a smooth policy class ver-
sus a non-smooth one (e.g., not using H). We see that our

Smooth Imitation Learning for Online Sequence Prediction

Figure 4. Comparing different values of σ.

approach can reliably learn to predict trajectories that are
both smooth and accurate.
Adaptive vs. Fixed β: One can, in principle, train using
SEARN, which requires a very conservative β in order to
guarantee convergence. In contrast, SIMILE adaptively se-
lects β based on relative empirical loss of π and π̂ (Line 9
of Algorithm 1). Let errorpπ̂q and errorpπq denote the
mean-squared errors of rolled-out trajectories tâtu, tatu,
respectively, w.r.t. ground truth ta˚t u. We can set β as:

β̂ “
errorpπq

errorpπ̂q ` errorpπq
, (8)

which encourages the learner to disregard bad policies
when interpolating, thus allowing fast convergence to a
good policy (see Theorem 5.6). Figure 3 compares the
convergence rate of SIMILE using adaptive β versus con-
servative fixed values of β commonly used in SEARN
(Daumé III et al., 2009). We see that adaptively choosing
β enjoys substantially faster convergence. Note that very
large fixed β may overshoot and worsen the combined pol-
icy after a few initial improvements.
Smooth Feedback Generation: We set the target labels
to ânt “ σant ` p1 ´ σqa˚t for 0 ă σ ă 1 (Line 6 of
Algorithm 1). Larger σ corresponds to smoother (ânt is
closer to ant´1) but less accurate target (further from a˚t),
as seen in Figure 4. Figure 5 shows the trade-off between

Figure 5.

smoothness loss (blue
line, measured by first
order difference in
Proposition 5.8) and
imitation loss (red line,
measured by mean
squared distance) for
varying σ. We navigate
this trade-off by setting
σ closer to 1 in early iterations, and have σ Ñ 0 as n
increases. This “gradual increase” produces more stable
policies, especially during early iterations where the
learning policy tends to perform poorly (as formalized
in Proposition 5.8). In Figure 4, when the initial policy
(green trajectory) has poor performance, setting smooth

Figure 6. Performance after different number of iterations.

targets (Figure 4b) allows learning a smooth policy in
the subsequent round, in contrast to more accurate but
less stable performance of “difficult” targets with low σ
(Figure 4c-d). Figure 6 visualizes the behavior of the the
intermediate policies learned by SIMILE, where we can
see that each intermediate policy is a smooth policy.
Deterministic vs. Stochastic Interpolation: Finally, we
evaluate the benefits of using deterministic policy averag-
ing intead of stochastically combine different policies, as
done in SEARN. To control for other factors, we set β to
a fixed value of 0.5, and keep the new training dataset Dn
the same for each iteration n. The average imitation loss of
stochastic policy sampling are evaluated after 50 stochastic
roll-outs at each iterations. This average stochastic policy
error tends to be higher compared to the empirical error
of the deterministic trajectory, as seen from Figure 7, and
confirms our finding from Corollary 5.3.

Figure 7. Deterministic policy error vs. average stochastic policy
error for β “ 0.5 and 50 roll-outs of the stochastic policies.

7. Conclusion
We formalized the problem of smooth imitation learning
for online sequence prediction, which is a variant of imita-
tion learning that uses a notion of a smooth policy class. We
proposed SIMILE (Smooth IMItation LEarning), which is
an iterative learning reduction approach to learning smooth
policies from expert demonstrations in a continuous and
dynamic environment. SIMILE utilizes an adaptive learn-
ing rate that provably allows much faster convergence com-
pared to previous learning reduction approaches, and also
enjoys better sample complexity than previous work by be-
ing fully deterministic and allowing for virtual simulation
of training labels. We validated the efficiency and practical-
ity of our approach on a setting of online camera planning.

Smooth Imitation Learning for Online Sequence Prediction

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learn-

ing via inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2004.

Abbeel, Pieter and Ng, Andrew Y. Exploration and appren-
ticeship learning in reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), 2005.

Argall, Brenna D, Chernova, Sonia, Veloso, Manuela, and
Browning, Brett. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

Bagnell, J Andrew, Kakade, Sham M, Schneider, Jeff G,
and Ng, Andrew Y. Policy search by dynamic program-
ming. In Neural Information Processing Systems (NIPS),
2003.

Caruana, Rich and Niculescu-Mizil, Alexandru. An em-
pirical comparison of supervised learning algorithms. In
International Conference on Machine Learning (ICML),
2006.

Chen, Jianhui and Carr, Peter. Mimicking human camera
operators. In IEEE Winter Conference Applications of
Computer Vision (WACV), 2015.

Chen, Jianhui, Le, Hoang M., Carr, Peter, Yue, Yisong,
and Little, James J. Learning online smooth predictors
for real-time camera planning using recurrent decision
trees. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016.

Criminisi, Antonio, Shotton, Jamie, and Konukoglu, En-
der. Decision forests: A unified framework for classifi-
cation, regression, density estimation, manifold learning
and semi-supervised learning. Foundations and Trends
in Computer Graphics and Vision, 7(2–3):81–227, 2012.

Daumé III, Hal, Langford, John, and Marcu, Daniel.
Search-based structured prediction. Machine learning,
75(3):297–325, 2009.

Gaddam, Vamsidhar Reddy, Eg, Ragnhild, Langseth, Rag-
nar, Griwodz, Carsten, and Halvorsen, Pål. The camera-
man operating my virtual camera is artificial: Can the
machine be as good as a human&quest. ACM Transac-
tions on Multimedia Computing, Communications, and
Applications (TOMM), 11(4):56, 2015.

He, He, Eisner, Jason, and Daume, Hal. Imitation learning
by coaching. In Neural Information Processing Systems
(NIPS), 2012.

Jain, Ashesh, Wojcik, Brian, Joachims, Thorsten, and Sax-
ena, Ashutosh. Learning trajectory preferences for ma-
nipulators via iterative improvement. In Neural Informa-
tion Processing Systems (NIPS), 2013.

Kakade, Sham and Langford, John. Approximately op-
timal approximate reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), 2002.

Lagoudakis, Michail and Parr, Ronald. Reinforcement
learning as classification: Leveraging modern classi-
fiers. In International Conference on Machine Learning
(ICML), 2003.

Langford, John and Zadrozny, Bianca. Relating rein-
forcement learning performance to classification perfor-
mance. In International Conference on Machine Learn-
ing (ICML), 2005.

Mason, Llew, Baxter, Jonathan, Bartlett, Peter L, and
Frean, Marcus. Functional gradient techniques for com-
bining hypotheses. In Neural Information Processing
Systems (NIPS), 1999.

Ratliff, Nathan, Silver, David, and Bagnell, J. Andrew.
Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25–53,
2009.

Ross, Stéphane and Bagnell, Drew. Efficient reductions for
imitation learning. In Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2010.

Ross, Stephane, Gordon, Geoff, and Bagnell, J. Andrew. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

Srebro, Nathan, Sridharan, Karthik, and Tewari, Ambuj.
Smoothness, low noise and fast rates. In Neural Infor-
mation Processing Systems (NIPS), 2010.

Syed, Umar and Schapire, Robert E. A reduction from ap-
prenticeship learning to classification. In Neural Infor-
mation Processing Systems (NIPS), 2010.

Wold, Herman. A study in the analysis of stationary time
series, 1939.

Supplementary Materials for
Smooth Imitation Learning for Online Sequence Prediction

A. Detailed Theoretical Analysis and Proofs
A.1. Proof of lemma 5.1

Lemma Statement. (Lemma 5.1) For a fixed x, define
πprx, asq fi ϕpaq. If ϕ is non-negative and H-smooth w.r.t.
a., then:

@a, a1 :
`

ϕpaq ´ ϕpa1q
˘2
ď 6H

`

ϕpaq ` ϕpa1q
˘
›

›a´ a1
›

›

2
.

The proof of Lemma 5.1 rests on 2 properties of H-smooth
functions (differentiable) in R1, as stated below

Lemma A.1 (Self-bounding property of Lipschitz-smooth
functions). Let φ : R Ñ R be an H-smooth non-negative
function. Then for all a P R: |∇φpaq| ď

a

4Hφpaq

Proof. By mean value theorem, for any a, a1 we have D η P
pa, a1q (or pa1, aq) such that φpa1q “ φpaq`∇φpηqpa1´aq.
Since φ is non-negative,

0 ď φpa1q “ φpaq `∇φpaqpa1 ´ aq
` p∇φpηq ´∇φpaqqpa1 ´ aq

ď φpaq `∇φpaqpa1 ´ aq `H|η ´ a||a1 ´ a|
ď φpaq `∇φpaqpa1 ´ aq `H|a1 ´ a|2

Choosing a1 “ a´ ∇φpaq
2H proves the lemma.

Lemma A.2 (1-d Case (Srebro et al., 2010)). Let φ : RÑ
R be an H-smooth non-negative function. Then for all
a, a1 P R:

`

φpaq ´ φpa1q
˘2
ď 6H

`

φpaq ` φpa1q
˘ `

a´ a1
˘2

Proof. As before, Dη P pa, a1q such that φpa1q ´ φpaq “
∇φpηqpa1 ´ aq. By assumption of φ, we have |∇φpηq ´
∇φpaq| ď H|η ´ a| ď H|a1 ´ a|. Thus we have:

|∇φpηq| ď |∇φpaq|`H|a´ a1| (9)

Consider two cases:

Case 1: If |a ´ a1| ď |∇φpaq|
5H , then by equation 9 we have

|∇φpηq| ď 6{5|∇φpaq|. Thus
`

φpaq ´ φpa1q
˘2
“ p∇φpηqq2

`

a´ a1
˘2

ď
36

25
p∇φpaqq2

`

a´ a1
˘2

ď
144

25
Hφpaq

`

a´ a1
˘2

by lemma A.1. Therefore, pφpaq ´ φpa1qq
2

ď

6Hφpaq pa´ a1q
2
ď 6H pφpaq ` φpa1qq pa´ a1q

2

Case 2: If |a ´ a1| ą |∇φpaq|
5H , then equation 9 gives

|∇φpηq| ď 6H|a´ a1|. Once again
`

φpaq ´ φpa1q
˘2
“
`

φpaq ´ φpa1q
˘

∇φpηq
`

a´ a1
˘

ď |
`

φpaq ´ φpa1q
˘

||∇φpηq||
`

a´ a1
˘

|
ď |

`

φpaq ´ φpa1q
˘

|
´

6H
`

a´ a1
˘2
¯

ď 6H
`

φpaq ` φpa1q
˘ `

a´ a1
˘2

Proof of Lemma 5.1. The extension to the multi-
dimensional case is straightforward. For any a, a1 P Rk,
consider the function φ : R Ñ R such that φptq “
ϕpp1 ´ tqa ` ta1q, then φ is a differentiable, non-negative
function and ∇tpφptqq “ x∇ϕpa ` tpa1 ´ aqq, a1 ´ ay.
Thus:

|φ1pt1q ´ φ1pt2q| “ |x∇ϕpa` t1pa1 ´ aqq´
∇ϕpa` t2pa1 ´ aqq, a1 ´ ay|

ď
›

›∇ϕpa` t1pa1 ´ aqq ´∇ϕpa` t2pa1 ´ aqq
›

›

˚

›

›a1 ´ a
›

›

ď H|t1 ´ t2|
›

›a´ a1
›

›

2

Therefore φ is an H }a´ a1}2-smooth function in R. Ap-
ply lemma A.2 to φ, we have:

pφp1q ´ φp0qq
2
ď 6H

›

›a´ a1
›

›

2
pφp1q ` φp0qq p1´ 0q2

which is the same as pϕpaq ´ ϕpa1qq2 ď 6Hpϕpaq `

ϕpa1qq }a´ a1}
2

A.2. Proof of lemma 5.2

Lemma Statement. (Lemma 5.2) Given any starting state
s0, sequentially execute πdet and πsto to obtain two sepa-
rate trajectories A “ tatu

T
t“1 and Ã “ tãtu

T
t“1 such that

at “ πdetpstq and ãt “ πstops̃tq, where st “ rxt, at´1s

and s̃t “ rxt, ãt´1s. Assuming the policies are stable as
per Condition 1, we have EÃrãts “ at @t “ 1, . . . , T ,
where the expectation is taken over all random roll-outs of
πsto.

Proof. Given a starting state s0, we prove by induction that
EÃrãts “ at.

It is easily seen that the claim is true for t “ 1.

Smooth Imitation Learning for Online Sequence Prediction

Now assuming that EÃrãt´1s “ at´1. We have

EÃrãts “ EÃrErãt|s̃tss
“ EÃrβπ̂ps̃tq ` p1´ βqπps̃tqs

“ βEÃrπ̂ps̃tqs ` p1´ βqEÃrπps̃tqs

Thus:
›

›EÃrãts ´ at
›

› “
›

›EÃrãts ´ βπ̂pstq ´ p1´ βqπpstq
›

›

“ }βEÃrπ̂ps̃tqs ` p1´ βqEÃrπps̃tqs

´ βπ̂pstq ´ p1´ βqπpstq}

ď β
›

›EÃrπ̂ps̃tqs ´ π̂pstq
›

›

` p1´ βq
›

›EÃrπps̃tqs ´ πpstq
›

›

ď β
›

›EÃrãt´1s ´ at´1

›

›

` p1´ βq
›

›EÃrãt´1s ´ at´1

›

›

“ 0

per inductive hypothesis. Therefore we conclude that
EÃrãts “ at @t “ 1, . . . , T

A.3. Proof of theorem 5.6 and corollary 5.7 - Main
policy improvement results

In this section, we provide the proof to theorem 5.6 and
corollary 5.7.

Theorem Statement. (theorem 5.6) Assume ` is convex and
L-Lipschitz-continuous, and Condition 2 holds. Let ε “
max
s„dπ

}π̂psq ´ πpsq}. Then for β P p0, 1q:

`π1pπ1q ´ `πpπq ď
βγεL

p1´ βqp1´ γq
` βp`πpπ̂q ´ `πpπqq.

Proof. First let’s review the notations: let T be the trajec-
tory horizon. For a policy π in the deterministic policy
class Π, given a starting state s0, we roll out the full tra-
jectory s0

π
ÝÑ s1

π
ÝÑ . . .

π
ÝÑ sT , where st “ rxt, πpst´1qs,

with xt encodes the featurized input at current time t, and
πpst´1q encodes the dependency on previous predictions.
Let `pπpsqq be the loss of taking action πpsq at state s, we
can define the trajectory loss of policy π from starting state
s0 as

`pπ|s0q “
1

T

T
ÿ

t“1

`pπpstqq

For a starting state distribution µ, we define policy loss
of π as the expected loss along trajectories induced by π:
`πpπq “ Es0„µr`pπ|s0qs. Policy loss `πpπq can be under-
stood as

`πpπq “

ż

s0„µ

E
xt„X

1

T

«

T
ÿ

t“1

`pπpstqq

ff

dµps0q

To prove policy improvement, we skip the subscript of al-
gorithm 1 to consider general policy update rule within

each iteration:

π1 “ πnew “ βπ̂ ` p1´ βqπ (10)

where π “ πold is the current policy (combined up until
the previous iteration), π̂ is the trained model from calling
the base regression routine TrainpS, pA|hq. Learning rate
(step-size) β may be adaptively chosen in each iteration.
Recall that this update rule reflects deterministic interpola-
tion of two policies.

We are interested in quantifying the policy improvement
when updating π to π1. Specifically, we want to bound

Γ “ `π1pπ1q ´ `πpπq

where `πpπq (respectively `π1pπ1q) denotes the trajectory
loss of π (respectively π1) on the state distribution induced
by π (resp. π1)

We will bound the loss difference of old and new policies
conditioned on a common starting state s0. Based on up-
date rule (10), consider rolling out π1 and π from the same
starting state s0 to obtain two separate sequences π1 ÞÝÑ
ts0 Ñ s11 . . . Ñ s1T u and π ÞÝÑ ts0 Ñ s1 . . . Ñ sT u
corresponding to the same stream of inputs x1, . . . , xT .

Γps0q “
1

T

T
ÿ

t“1

`pπ1ps1tqq ´ `pπpstqq

“
1

T

T
ÿ

t“1

`pπ1ps1tqq ´ `pπ
1pstqq ` `pπ

1pstqq ´ `pπpstqq

(11)

Assume convexity of ` (e.g. sum of square losses):

`pπ1pstqq “ `pβπ̂pstq ` p1´ βqπpstqq

ď β`pπ̂pstqq ` p1´ βq`pπpstqq

Thus we can begin to bound individual components of
Γps0q as

`pπ1ps1tqq ´ `pπpstqq ď `pπ1ps1tqqq ´ `pπ
1pstqq

` β r`pπ̂pstqq ´ `pπpstqqs

Since ` is L-Lipschitz continuous, we have

`pπ1ps1tqq ´ `pπ
1pstqq ď L

›

›π1ps1tq ´ π
1pstq

›

›

ď Lγ
›

›s1t ´ st
›

› (12)

where (12) is due to the smoothness condition [2] of policy
class Π. Given a policy class Π with γ ă 1, the following
claim can be proved by induction:
Claim: }s1t ´ st} ď

βε
p1´βqp1´γq

Proof. For the base case, given the same start-
ing state s0, we have s11 “ rx1, π

1ps0qs

and s1 “ rx1, πps0qs. Thus }s11 ´ s1} “

}π1ps0q ´ πps0q} “ }βπ̂ps0q ` p1´ βqπps0q ´ πps0q} “

β }π̂ps0q ´ πps0q} ď βε ď βε
p1´βqp1´γq .

In the inductive case, assume we have
›

›s1t´1 ´ st´1

›

› ď

Smooth Imitation Learning for Online Sequence Prediction

βε
p1´βqp1´γq . Then similar to before, the definition of s1t and
st leads to
›

›s1t ´ st
›

› “
›

›

“

xt, π
1ps1t´1q

‰

´ rxt, πpst´1qs
›

›

“
›

›π1ps1t´1q ´ πpst´1q
›

›

ď
›

›π1ps1t´1q ´ π
1pst´1q

›

›`
›

›π1pst´1q ´ πpst´1q
›

›

ď γ
›

›s1t´1 ´ st´1

›

›` β }π̂pst´1q ´ πpst´1q}

ď γ
βε

p1´ βqp1´ γq
` βε

ď
βε

p1´ βqp1´ γq

Applying the claim to equation (12), we have

`pπ1ps1tqq ´ `pπ
1pstqq ď

βγεL

p1´ βqp1´ γq

which leads to

`pπ1ps1tq ´ `pπpstqqq ď
βγεL

p1´ βqp1´ γq

` βp`pπ̂pstqq ´ `pπpstqqq (13)

Integrating (13) over the starting state s0 „ µ and input
trajectories txtuTt“1, we arrive at the policy improvement
bound:

`π1pπ1q ´ `πpπq ď
βγεL

p1´ βqp1´ γq
` βp`πpπ̂q ´ `πpπqq

where `πpπ̂q is the expected loss of the trained policy π̂ on
the state distribution induced by policy π (reduction term,
analogous to policy advantage in the traditional MDP ter-
minologies (Kakade & Langford, 2002))

This means in the worst case, as we choose β Ñ 0, we
have r`π1pπ1q ´ `πpπqs Ñ 0, meaning the new policy does
not degrade much for a small choice of β. However if
`πpπ̂q ´ `πpπq ! 0, we can choose β to enforce mono-
tonic improvement of the policy by adaptively choosing β
that minimizes the right-hand side. In particular, let the re-
duction term be ∆ “ `πpπq ´ `πpπ̂q ą 0 and let δ “ γεL

1´γ ,
then for β “ ∆´δ

2∆ we have the following monotonic policy
improvement:

`π1pπ1q ´ `πpπq ď ´
p∆´ δq2

2p∆` δq

A.4. Proof of theorem 5.5 - T -dependent improvement

Theorem Statement. (theorem 5.5) Assume ` is con-
vex and L-Lipschitz, and Condition 1 holds. Let ε “
max
s„dπ

}π̂psq ´ πpsq}. Then:

`π1pπ1q ´ `πpπq ď βεLT ` β p`πpπ̂q ´ `πpπqq .

In particular, choosing β P p0, 1{T q yields:

`π1pπ1q ´ `πpπq ď εL` β p`πpπ̂q ´ `πpπqq .

Proof. The proof of theorem 5.5 largely follows the struc-
tute of theorem 5.6, except that we are using the slighty
weaker Condition 1 which leads to weaker bound on the
policy improvement that depends on the trajectory horizon
T . For any state s0 taken from the starting state distribu-
tion µ, sequentially roll-out policies π1 and π to receive
two separate trajectories π1 : s0 Ñ s11 Ñ . . . Ñ s1T and
π1 : s0 Ñ s1 Ñ . . . Ñ sT . Consider a pair of states
s1t “ rxt, π

1ps1t´1qs and st “ rxt, πpst´1qs corresponding
to the same input feature xt, as before we can decompose
`pπ1ps1tqq´ `pπpstqq “ `pπ1ps1tqq´ `pπ

1pstqq` `pπ
1pstqq´

`pπpstqq ď L }π1ps1tq ´ π
1pstq} ` βp`pπ̂pstqq ´ `pπpstqqq

due to convexity and L-Lipschitz continuity of `.

Condition 1 further yields: `pπ1ps1tqq ´ `pπpstqq ď

L }s1t ´ st} ` βp`pπ̂pstqq ´ `pπpstqqq. By the construction
of the states, note that
›

›s1t ´ st
›

› “
›

›π1ps1t´1q ´ πpst´1q
›

›

ď
›

›π1ps1t´1q ´ π
1pst´1q

›

›`
›

›π1pst´1q ´ πpst´1q
›

›

ď
›

›s1t´1 ´ st´1

›

›` βp}π̂pst´1q ´ πpst´1q}q

ď
›

›s1t´1 ´ st´1

›

›` βε

(by condition 1 and definition of ε).

From here, one can use this recursive relation to easily
show that }s1t ´ st} ď βεt for all t P r1, T s.

Averaging over the T time steps and integrating over the
starting state distribution, we have:

`π1pπ1q ´ `πpπq ď βεLpT ` 1q{2` βp`πpπ̂q ´ `πpπqq

ď βεLT ` βp`πpπ̂q ´ `πpπqq

In particular, β P p0, 1{T q yields `π1pπ1q ´ `πpπq ď εL `
βp`πpπ̂q ´ `πpπqq.

A.5. Proof of proposition 5.8 - smooth expert
proposition

Proposition Statement. (Proposition 5.8) Let ω be the
average supervised training error from F , i.e. ω “

min
fPF

Ex„X r}fprx, 0sq ´ a
˚}s. Let the rolled-out trajectory

of current policy π be tatu. If the average gap between π
and π˚ is such that Et„Uniformr1:T s r}a

˚
t ´ at´1}s ě 3ω `

ηp1`λq, then using ta˚t u as feedback will cause the trained
policy π̂ to be non-smooth, i.e.:

Et„Uniformr1:T s r}ât ´ ât´1}s ě η,

for tâtu the rolled-out trajectory of π̂.

Proof. Recall that Πλ is formed by regularizing a class of
supervised learners F with the singleton class of smooth
function H fi thpaq “ au, via a hyper-parameter λ

Smooth Imitation Learning for Online Sequence Prediction

that controls the trade-off between being close to the two
classes.

Minimizing over Πλ can be seen as a regularized optimiza-
tion problem:

π̂px, aq “ argmin
πPΠ

`pπprx, asqq

“ argmin
fPF,hPH

pfpx, aq ´ a˚q2 ` λpfpx, aq ´ hpaqq2

“ argmin
fPF

pfpx, aq ´ a˚q2 ` λpfpx, aq ´ aq2

(14)

where hyper-parameter λ trades-off the distance of fpx, aq
relative to a (smoothness) and a˚ (imitation accuracy), and
a P R1.

Such a policy π, at execution time, corresponds to the reg-
ularized minimizer of:

at “ πprx, at´1sq

“ argmin
a

}a´ fprxt, at´1sq}
2
` λ }a´ at´1}

2

“
fprxt, at´1sq ` λat´1

1` λ
(15)

where f P F is the minimizer of equation 14

Thus we enforce smoothness of learning policy from Πλ

by encouraging low first order difference of consecu-
tive actions of the executed trajectory tatu. In prac-
tice, we may contrain this first order difference relative
to the human trajectory 1

T

řT
t“1 }at ´ at´1} ď η, where

η9 1
T

řT
t“1

›

›a˚t ´ a
˚
t´1

›

›.

Consider any given iteration with the following set-up: we
execute old policy π “ πold to get rolled-out trajectory
tatu

T
t“1. Form the new data set as D “ tpst, a˚t quTt“1 with

predictors st “ rxt, at´1s and feedback labels simply the
human actions a˚t . Use this data set to train a policy π̂ by
learning a supervised f̂ P F from D. Similar to π, the
execution of π̂ corresponds to ât where:

ât “ π̂prxt, ât´1sq

“ argmin
a

›

›

›
a´ f̂prxt, ât´1sq

›

›

›

2

` λ }a´ ât´1}
2

“
f̂prxt, ât´1sq ` λât´1

1` λ
(16)

Denote by f0 the ”naive” supervised learner from F . In

other words, f0 “ argmin
fPF

T
ř

t“1
}fprxt, 0sq ´ a

˚
t }

2. Let ω be

the average gap between human trajectory and the rolled-
out trajectory of f0, i.e.

ω “
1

T

T
ÿ

t“1

}f0prxt, 0sq ´ a
˚
t }

Note that it is reasonable to assume that the average errors

of f and f̂ are no worse than f0, since in the worst case we
can simply discard the extra features at´1 (resp. ât´1) of
f (resp. f̂) to recover the performance of the naive learner
f0:

1

T

T
ÿ

t“1

}fprxt, at´1sq ´ a
˚
t } ď ω

1

T

T
ÿ

t“1

›

›

›
f̂prxt, ât´1sq ´ a

˚
t

›

›

›
ď ω

Assume that the old policy π “ πold is ”bad” in the sense
that the rolled-out trajectory tatuTt“1 differs substantially
from human trajectory ta˚t u

T
t“1. Specifically, denote the

gap:

1

T

T
ÿ

t“1

}a˚t ´ at´1} “ Ω " ω

This means the feedback correction a˚t to st “ rxt, at´1s

is not smooth. We will show that the trained policy π̂ from
D will not be smooth.

From the definition of at and ât from equations 15 and 16,
we have for each t:

at´ât “
λ

1` λ
pat´1´ât´1q`

fprxt, at´1sq ´ f̂prxt, ât´1sq

1` λ

Applying triangle inequality and summing up over t, we
have:

1

T

T
ÿ

t“1

}at ´ ât} ď 2ω

From here we can provide a lower bound on the smooth-
ness of the new trajectory ât, as defined by the first order
difference 1

T

řT
t“1 }ât ´ ât´1}. By definition of ât:

}ât ´ ât´1} “

›

›

›

›

›

f̂prxt, ât´1sq ´ ât´1

1` λ

›

›

›

›

›

“

›

›

›

›

›

f̂prxt, ât´1sq ´ a
˚
t ` a

˚
t ´ at´1 ` at´1 ´ ât´1

1` λ

›

›

›

›

›

ě

}a˚t ´ at´1} ´

›

›

›
f̂prxt, ât´1sq ´ a

˚
t

›

›

›
´ }at´1 ´ ât´1}

1` λ

Again summing up over t and taking the average, we ob-
tain:

1

T

T
ÿ

t“1

}ât ´ ât´1} ě
Ω´ 3ω

1` λ

Hence for Ω " ω, meaning the old trajectory is suffi-
ciently far away from the ideal human trajectory, setting
the learning target to be the ideal human actions will cause
the learned trajectory to be non-smooth.

Smooth Imitation Learning for Online Sequence Prediction

B. Imitation Learning for Online Sequence
Prediction With Smooth Regression
Forests

B.1. Variant of SIMILE Using Smooth Regression
Forest Policy Class

We provide a specific instantiation of algorithm 1 that
we used for our experiment, based on a policy class Π
as a smooth regularized version of the space of tree-
based ensembles. In particular, F is the space of ran-
dom forests and H is the space of linear auto-regressors
H fi thpat´1:t´τ q “

řτ
i“1 ciat´iu. In combination, F

andH form a complex tree-based predictor that can predict
smooth sequential actions.

Empirically, decision tree-based ensembles are among
the best performing supervised machine learning method
(Caruana & Niculescu-Mizil, 2006; Criminisi et al., 2012).
Due to the piece-wise constant nature of decision tree-
based prediction, the results are inevitably non-smooth. We
propose a recurrent extension based on H, where the pre-
diction at the leaf node is not necessarily a constant, but
rather is a smooth function of both static leaf node predic-
tion and its previous predictions. By merging the power-
ful tree-based policy class with a linear auto-regressor, we
provide a novel approach to train complex models that can
accommodate smooth sequential prediction using model-
based smooth regularizer, at the same time leveraging the
expressiveness of complex model-free function class (one
can similarly apply the framework to the space of neural
networks). Algorithm 2, which is based on SIMILE, de-
scribes in more details our training procedure used for the
automated camera planning experiment. We first describe
the role of the linear autoregressor class H, before dis-
cussing how to incorporate H into decision tree training
to make smooth prediction (see the next section).

The autoregresor hπpa´1, . . . , a´τ q is typically selected
from a class of autoregressors H. In our experiments, we
use regularized linear autoregressors asH.

Consider a generic learning policy π with a rolled-out tra-
jectory A “ tatu

T
t“1 corresponding to the input sequence

X “ txtu
T
t“1. We form the state sequence S “ tstu

T
t“1 “

trxt, . . . , xt´τ , at´1, . . . , at´τ su
T
t“1, where τ indicates the

past horizon that is adequate to approximately capture the
full state information. We approximate the smoothness of
the trajectory A by a linear autoregressor

hπ ” hπpstq ”
τ
ÿ

i“1

ciat´i

for a (learned) set of coefficients tciuτi“1 such that at «
hπ pstq. Given feedback target pA “ tâtu, the joint loss

Algorithm 2 Imitation Learning for Online Sequence Pre-
diction with Smooth Regression Forest
Input: Input features X “ txtu

T
t“1, expert demonstration

A˚ “ ta˚t uTt“1, base routine Forest, past horizon τ ,
sequence of σ P p0, 1q

1: Initialize A0 Ð A˚,S0 Ð t
“

xt:t´τ , a
˚
t´1:t´τ

‰

u,

h0 “ argmin
c1,...,cτ

T
ř

t“1

`

a˚t ´
řτ
i“1 cia

˚
t´i

˘2

2: Initial policy π0 “ π̂0 ÐForestpS0,A0| h0q

3: for n “ 1, . . . , N do
4: An “ ta

n
t u Ð tπn´1p

“

xt:t´τ , a
n´1
t´1:t´τ

‰

qu

//sequential roll-out old policy
5: Sn Ð tsnt “

“

xt:t´τ , a
n
t´1:t´τ

‰

u //Form states
in 1d case

6: pAn “ tpant “ σant ` p1´ σqa
˚
t u @s

n
t P Sn

// collect smooth 1-step feedback

7: hn “ argmin
c1,...,cτ

T
ř

t“1

`

ânt ´
řτ
i“1 ciâ

n
t´i

˘2
//update ci

via regularized least square
8: π̂n ÐForestpSn, pAn| hnq // train with smooth

decision forests. See section B.2
9: β Ð errorpπq

errorpπ̂q`errorpπq //set β to weighted
empirical errors

10: πn “ βπ̂n ` p1´ βqπn´1 // update policy
11: end for
output Last policy πN

function thus becomes

`pa, âtq “ `dpa, âtq ` λ`Rpa, stq

“ pa´ âtq
2 ` λpa´

τ
ÿ

i“1

ciat´iq
2

Here λ trades off between smoothness versus absolute im-
itation accuracy. The autoregressor hπ acts as a smooth
linear regularizer, the parameters of which can be updated
at each iteration based on feedback target pA according to

hπ “ argmin
hPH

›

›

›

pA´ hppAq
›

›

›

2

“ argmin
c1,...,cτ

p

T
ÿ

t“1

pât ´
τ
ÿ

i“1

ciât´iq
2q, (17)

In practice we use a regularized version of equation (17)
to learn a new set of coefficients tciuτi“1. The Forest
procedure (Line 8 of algorithm 2) would use this updated
hπ to train a new policy that optimizes the trade-off be-
tween at « ât (feedback) versus smoothness as dictated
by at «

řτ
i“1 ciat´i.

B.1.1. SMOOTH REGULARIZATION WITH LINEAR
AUTOREGRESSORS

Our application of Algorithm 1 to realtime camera planning
proceeds as follows: At each iteration, we form a state se-

Smooth Imitation Learning for Online Sequence Prediction

quence S based on the rolled-out trajectory A and tracking
input data X such that st “ rxt, . . . , xt´τ , at´1, . . . , at´τ s
for appropriate τ that captures the history of the sequential
decisions. We generate feedback targets pA based on each
st P S following ât “ σat ` p1´ σqa˚t using a parameter
σ P p0, 1q depending on the Euclidean distance between A
and A˚. Typically, σ gradually decreases to 0 as the rolled-
out trajectory improves on the training set. After gener-
ating the targets, a new linear autoregressor hπ (new set
of coefficients tciuτi“1) is learned based on pA using regu-
larized least squares (as described in the previous section).
We then train a new model π̂ based on S, pA, and the up-
dated coefficients tciu, using Forest - our recurrent de-
cision tree framework that is capable of generating smooth
predictions using autoregressor hπ as a smooth regularizer
(see the following section for how to train smooth decision
trees). Note that typically this creates a ”chicken-and-egg”
problem. As the newly learned policy π̂ is greedily trained
with respect to pA, the rolled-out trajectory of π̂ may have a
state distribution that is different from what the previously
learned hπ would predict. Our approach offers two reme-
dies to this circular problem. First, by allowing feedback
signals to vary smoothly relative to the current rolled-out
trajectory A, the new policy π̂ should induce a new au-
toregresor that is similar to previously learned hπ . Second,
by interpolating distributions (Line 10 of Algorithm 2) and
having pA eventually converge to the original human trajec-
tory A˚, we will have a stable and converging state distri-
bution, leading to a stable and converging hπ .

Throughout iterations, the linear autoregressor hπ and reg-
ularization parameter λ enforces smoothness of the rolled-
out trajectory, while the recurrent decision tree framework
Forest learns increasingly accurate imitation policy. We
generally achieve a satisfactory policy after 5-10 iterations
in our sport broadcasting data sets. In the following sec-
tion, we describe the mechanics of our recurrent decision
tree training.

B.2. Smooth Regression Tree Training

Given states s as input, a decision tree specifies a parti-
tioning of the input state space. Let D “ tpsm, âmqu

M
m“1

denote a training set of state/target pairs. Conventional re-
gression tree learning aims to learn a partitioning such that
each leaf node, node, makes a constant prediction via min-
imizing the squared loss function:

ānode “ argmin
a

ÿ

ps,âqPDnode

`dpa, âq

“ argmin
a

ÿ

ps,âqPDnode

pâ´ aq2, (18)

whereDnode denotes the training data fromD that has par-
titioned into the leaf node. For squared loss, we have:

ānode “ mean tâ |ps, âq P Dnode u . (19)

In the recurrent extension to Forest, we allow the deci-
sion tree to branch on the input state s, which includes the
previous predictions a´1, . . . , a´τ . To enforce more ex-
plicit smoothness requirements, let hπpa´1, . . . , a´τ q de-
note an autoregressor that captures the temporal dynamics
of π over the distribution of input sequences dx, while ig-
noring the inputs x. At time step t, hπ predicts the behavior
at “ πpstq given only at´1, . . . , at´τ .

Our policy class Π of recurrent decision trees π makes
smoothed predictions by regularizing the predictions to be
close to its autoregressor hπ . The new loss function in-
corporates both the squared distance loss `d, as well as a
smooth regularization loss such that:

LDpaq “
ÿ

ps,âqPD

`dpa, âq ` λ`Rpa, sq

“
ÿ

ps,âqPD

pa´ âq2 ` λpy ´ hπpsqq
2

where λ is a hyper-parameter that controls how much we
care about smoothness versus absolute distance loss.

Making prediction: For any any tree/policy π, each leaf
node is associated with the terminal leaf node value ānode
such that prediction ã given input state s is:

ãpsq ” πpsq “ argmin
a

pa´ ānodepsqq
2 ` λpa´ hπpsqq

2,

(20)

“
ānodepsq ` λhπpsq

1` λ
. (21)

where nodepsq denotes the leaf node of the decision tree
that s branches to.

Setting terminal node value: Given a fixed hπ and deci-
sion tree structure, navigating through consecutive binary
queries eventually yields a terminal leaf node with associ-
ated training data Dnode Ă D.

One option is to set the terminal node value ānode to satisfy:

ānode “ argmin
a

ÿ

ps,âqPDnode

`dpãps|aq, âq

“ argmin
a

ÿ

ps,âqPDnode

pãps|aq ´ âq2 (22)

“ argmin
a

ÿ

ps,âqPDnode

ˆ

a` λhπpsq

1` λ
´ â

˙2

for ãps|aq defined as in (21) with a ” ānodepsq. Similar to
(19), we can write the closed-form solution of (22) as:

ānode “ mean tp1` λqâ´ λhπpsq |ps, âq P Dnode u . (23)

When λ “ 0, (23) reduces to (19).

Smooth Imitation Learning for Online Sequence Prediction

Note that (22) only looks at imitation loss `d, but not
smoothness loss `R. Alternatively in the case of joint imi-
tation and smoothness loss, the terminal leaf node is set to
minimize the joint loss function:

ānode “ argmin
a
LDnodepãps|aqq

“ argmin
a

ÿ

ps,âqPDnode

`dpãps|aq, âq ` λ`Rpãps|aq, sq

“ argmin
a

ÿ

ps,âqPDnode

pãps|aq ´ âq2 ` λpãps|aq ´ hπpsqq
2

(24)

“ argmin
a

ÿ

ps,âqPDnode

ˆ

a` λhπpsq

1` λ
´ â

˙2

` λ

ˆ

a` λhπpsq

1` λ
´ hπpsq

˙2

“ mean tâ |ps, âq P Dnode u , (25)

Node splitting mechanism: For a node representing a sub-
set Dnode of the training data, the node impurity is defined
as:

Inode “ LDnodepānodeq

“
ÿ

ps,âqPDnode

`dpānode, âq ` λ`Rpānode, sq

“
ÿ

ps,âqPDnode

pānode ´ âq
2 ` λpānode ´ hπpsqq

2

where ānode is set according to equation (23) or (25) over
ps, âq’s in Dnode. At each possible splitting point where
Dnode is partitioned into Dleft and Dright, the impu-
rity of the left and right child of the node is defined simi-
larly. As with normal decision trees, the best splitting point
is chosen as one that maximizes the impurity reduction:
Inode ´

|Dleft|
|Dnode|Ileft ´

|Dright|
|Dnode| Iright

