
Learning to Make Decisions via Submodular Regularization
Ayya Alieva3, Aiden Aceves1, Jialin Song1, Stephen Mayo1, Yisong Yue1, Yuxin Chen2

1Caltech, 2University of Chicago, 3Stanford University

Motivation

•Active learning, experimental design
and protein engineering are instances
of combinatorial optimization.

•These problems are usually NP-hard.
•Greedy could be intractable and/or
highly suboptimal.

Our Approach

•ML framework that learns a greedy heuristic
based on the submodular-norm loss.

•The learned objective is permutation-invariant
and approximately submodular with strong
approximation guarantees.

•The model is easily integrated with ML pipelines.

Submodular Surrogates

Given: ground set V ; value function u : 2V → R;
budget k.
Goal: Policy π : 2V → V that maximizes u(Sπ,k)
by iteratively adding to the set:
Sπ,i = Sπ,i−1 ∪ {π(Sπ,i−1)}.
Approach: Design a surragate objective function
f : 2V → R which is
• Monotone: ∀ A ⊆ V and e ∈ V \ A,
f (A) ≤ f (A ∪ {e}).

• Submodular: ∀ A ⊆ B ⊆ V and e ∈ V \B,
f (A ∪ {e})− f (A) ≥ f (B ∪ {e})− f (B).

• Approximately equal to oracle u.

If we had a “good” submodular surrogate f :
•Let g(A, e) = f (A ∪ {e})− f (A) for A ⊂ V and
e ∈ V .

• g(A, e) ≈ gexp(A, e) = u(A ∪ {e})− u(A)
•π(S) = arg maxe∈V g(S, e) is near-optimal.
Problem: Hand-engineering f is hard; evaluating
gexp is expensive.

Learning with Submodular
Regularization (LeaSuRe)

We train NN g : 2V ×V → R to approximate gexp:
•DAgger [5] collects real labelled dataset
Dreal = {(〈A, x〉, gexp(A, x))}.

•For 〈A, x〉 ∈ Dreal we generate random superset
A′ and form an unlabelled synthetic dataset
Dsynth = {(〈A, x〉, 〈A′, x〉)|A � A′, 〈A, x〉 ∈ Dreal}

•We update g using submodular-norm loss:

Loss(g, gexp) =
∑

〈A,x〉∈Dreal

(gexp(A, x)− g(A, x))2

+ λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)])

+ γ
∑

〈A′,x〉∈Dsynth

ReLu(−g(A′, x)),

LeaSuRe encourages g to model the gain of a
monotone, submodular function approximating
the oracle u.

Architecture

Protein Engineering used UniRep [2, 1]; Set Cover
and Learning Active Learning used a two layer DNN.

Set Cover

Baselines: "no regularizer" - MSE loss; "mono-
tonicity regularizer" - MSE + ReLu loss; Deep Sub-
modular Functions [4].

Learning active learning on
Fashion MNIST

Baselines: "random" - random sampling; "uncer-
tainty" - uncertainty sampling; "no regularizer" -
DAgger + MSE loss; BADGE [3].

Protein Engineering

Comparison to baseline methods

Effect of scaling parameter λ for LeaSuRe

Given: A large set of unlabelled proteins.
Goal: Determine a subset of high-potency (low
KD) proteins.
Problem: The protein set is too large to test the
potency of all elements.
Baselines: "random" - random sampling; "greedy"
- hand-engineered surrogate g; "entropy" - a version
of uncertainty sampling.

References

[1] Aceves, A. (2021). Our code. https://gitlab.com/
ajaceves/alilpe.

[2] Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., and
Church, G. M. (2019).

[3] Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. (2020).

[4] Dolhansky, B. W. and Bilmes, J. A. (2016).
[5] Ross, S., Gordon, G., and Bagnell, D. (2011).

https://gitlab.com/ajaceves/alilpe
https://gitlab.com/ajaceves/alilpe

