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Motivation

•Active learning, experimental design
and protein engineering are instances
of combinatorial optimization.

•These problems are usually NP-hard.
•Greedy could be intractable and/or
highly suboptimal.

Our Approach

•ML framework that learns a greedy heuristic
based on the submodular-norm loss.

•The learned objective is permutation-invariant
and approximately submodular with strong
approximation guarantees.

•The model is easily integrated with ML pipelines.

Submodular Surrogates

Given: ground set V ; value function u : 2V → R;
budget k.
Goal: Policy π : 2V → V that maximizes u(Sπ,k)
by iteratively adding to the set:
Sπ,i = Sπ,i−1 ∪ {π(Sπ,i−1)}.
Approach: Design a surragate objective function
f : 2V → R which is
• Monotone: ∀ A ⊆ V and e ∈ V \ A,
f (A) ≤ f (A ∪ {e}).

• Submodular: ∀ A ⊆ B ⊆ V and e ∈ V \B,
f (A ∪ {e})− f (A) ≥ f (B ∪ {e})− f (B).

• Approximately equal to oracle u.

If we had a “good” submodular surrogate f :
•Let g(A, e) = f (A ∪ {e})− f (A) for A ⊂ V and
e ∈ V .

• g(A, e) ≈ gexp(A, e) = u(A ∪ {e})− u(A)
•π(S) = arg maxe∈V g(S, e) is near-optimal.
Problem: Hand-engineering f is hard; evaluating
gexp is expensive.

Learning with Submodular
Regularization (LeaSuRe)

We train NN g : 2V ×V → R to approximate gexp:
•DAgger [5] collects real labelled dataset
Dreal = {(〈A, x〉, gexp(A, x))}.

•For 〈A, x〉 ∈ Dreal we generate random superset
A′ and form an unlabelled synthetic dataset
Dsynth = {(〈A, x〉, 〈A′, x〉)|A � A′, 〈A, x〉 ∈ Dreal}

•We update g using submodular-norm loss:

Loss(g, gexp) =
∑

〈A,x〉∈Dreal

(gexp(A, x)− g(A, x))2

+ λ
∑

(〈A,x〉,〈A′,x〉)∈Dsynth

σ([g(A′, x)− g(A, x)])

+ γ
∑

〈A′,x〉∈Dsynth

ReLu(−g(A′, x)),

LeaSuRe encourages g to model the gain of a
monotone, submodular function approximating
the oracle u.

Architecture

Protein Engineering used UniRep [2, 1]; Set Cover
and Learning Active Learning used a two layer DNN.

Set Cover

Baselines: "no regularizer" - MSE loss; "mono-
tonicity regularizer" - MSE + ReLu loss; Deep Sub-
modular Functions [4].

Learning active learning on
Fashion MNIST

Baselines: "random" - random sampling; "uncer-
tainty" - uncertainty sampling; "no regularizer" -
DAgger + MSE loss; BADGE [3].

Protein Engineering

Comparison to baseline methods

Effect of scaling parameter λ for LeaSuRe

Given: A large set of unlabelled proteins.
Goal: Determine a subset of high-potency (low
KD) proteins.
Problem: The protein set is too large to test the
potency of all elements.
Baselines: "random" - random sampling; "greedy"
- hand-engineered surrogate g; "entropy" - a version
of uncertainty sampling.
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