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Abstract—This paper focuses on robust location strategies for
a fleet of ambulances in cities in order to maximize service levels
under unexpected demand patterns. Our work is motivated by
the fact that when small parts of networks incur emergencies
according to a heavy-tailed distribution, the structure of the
network under resource constraints results in the entire system
behaving in a heavy-tailed manner. To address this, metrics other
than average-case need to be used. We achieve robust location
strategies by including risk metrics that account for tail behavior
and not average performance alone. Because of the exponentially
large solution space for locating K ambulances in N locations
on the network, our approach is based on an efficient algorithm
that allows for optimizing based on these risk metrics. We show
that optimizing based on risk measures can account for spatio-
temporal patterns and prevent the extent of delay cascades that
are typically seen in heavy-tailed arrival distributions. From our
computational results based on data from a large Asian city, we
show that planning with some robustness metrics as targets leads
to solutions that perform well in heavy-tailed demand scenarios.

I. INTRODUCTION

Emergency medical services (EMS) form a critical compo-
nent of a city’s infrastructure. These services typically use the
available transportation infrastructure of the city and as such
are integral components of the services that the transportation
infrastructure is meant to provide. Transportation infrastructure
and Emergency Medical Systems (EMS) are interdependent
in that EMS-type services are necessary for the users of
transportation services when emergencies or disasters occur;
and similarly, transportation infrastructure is necessary for
EMS services to reach their target population.

The important resource allocation question we deal with in
this paper is that of the location of ambulances in a city’s
network to improve service levels. This is an important ques-
tion because of the spatio-temporal nature of the emergencies
occurring in a system. Due to this spatio-temporal nature, the
resource constraints on ambulances and the network structure
of the city, there will be cascading effects of the calls causing
the service level of each call to be dependent on the previous
calls and the ambulances assigned to them. We discuss this in
detail the following section.

The cascading dependencies occurring in the system are
usually modeled making the assumption of spatio-temporal
Poisson arrivals, and focus on metrics of average service

levels, average survival rate and average throughput. Examples
of these studies include [1], [2], [3], [4]. As a result, most
practitioners focus on the overall service levels and not the
robustness of the allocations under uncertain conditions.

In this paper, we are interested specifically in highly
resource-constrained settings such as the ones occurring in
emerging economies, that lead to potentially more spatio-
temporal cascading behavior due to resource limitations. Ad-
ditionally, we focus on a balance between average and worst-
case metrics and show that these lead to more robust alloca-
tions as defined by risk metrics.

The contributions of our paper are as follows.
1) We present the first data-driven modeling and solution

approach that incorporates risk metrics in the objective
function.

2) Because most risk metrics do not satisfy clear properties
of consistency, we use the Conditional Value-at-Risk
(CVaR) that is used in the EMS context for the first time.
In particular, our objective function trades off the mean
and the CVaR values in its exploration of the solution.

3) Through computational experiments we demonstrate that
optimizing the ambulance allocation with objective func-
tions that include risk metrics generates solutions that are
more robust in their tail behavior than solutions optimized
using the average. This results in a better prevention of
cascading behavior over networks, particularly in the case
of heavy-tailed distributions.

II. LITERATURE

The study of vehicle allocation (or deployment) for Emer-
gency Medical Services (EMS) enjoys a rich history [5], [6],
[7]. Broadly speaking, the general problem setting can be
described simply as computing a location, redeployment or
dispatch strategy for a set of ambulances such that some
measure of ‘fitness’ that represents the service level of the
system is optimized. Two natural areas for resource allocation
are in allocation of ambulance to bases, and dispatching of
ambulance to requests. Our paper focuses on optimizing the
location of ambulances to bases, typically because it affords
the highest gains.

[7] present a survey on static ambulance location and
dynamic redeployment of ambulances. Multiple types of ap-
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proaches are used - the primary ones being deterministic mod-
els, probabilistic models and heuristics. Deterministic models
are based on integer programming-type techniques, which do
not capture the stochastic considerations regarding ambulance
availability. Probabilistic models are typically queueing-based
models that capture more of the system dynamics [4], [8], [1].
The hypercube models in [9], [4] and [8] were some of the first
and seminal works to use these techniques applied to emer-
gency vehicle location and public systems. These approaches
are used to quickly identify, in the large solution space,
solutions that can produce good results. The solutions thus
identified are then evaluated in further detail using event-based
simulation techniques. [1] build on these approaches to capture
the dynamics of the system more accurately, and show that the
subset of solutions chosen by their approach can improve on
those identified by the original hypercube model proposed by
Larson. [10] use a version of the approx hypercube model
that allows capturing station-specific busy probabilities, and
allows multiple vehicles at a station. They provide a theoretical
convergence guarantee for a restricted special case. [11] embed
a hypercube model into a genetic algorithm for potentially
dispatching multiple ambulances to a call as needed, and
tailored for highways where only potentially the first nearest
and second nearest ambulances may be dispatched to a call.
[12] present models for ambulance allocation and districting
on highways; using a hypercube model embedded in a genetic
algorithm. Stochastic programming techniques that bridge
deterministic and probabilistic models have been used by [3]
to capture more of the system dynamics when ambulances are
assigned to calls and are hence absent.

While probabilistic models capture the system dynamics and
the impact of allocated ambulances through queueing-based
models, deterministic models using techniques like integer
programming-based model sometimes capture these by using
notions such as ‘coverage’ or ‘double coverage’ of a demand
point by an ambulance [13]. The measures and objective
functions used in these models are approximations to the
behavior of the system and not always related to the evaluation
metrics of interest.

Thus such mathematical programming approaches often
fail to characterize completely the dynamics of ambulance
dispatch and emergency response in general. To evaluate the
true metrics of interest, simulation-based evaluation is often
used. Almost all modeling approaches in the literature employ
simulations for final evaluation of a small selection of solutions
from optimization, queueing or heuristic models [1], [14], [15].

The first motivation for our simulation-optimization ap-
proach is due to this implicit preference for simulation-based
evaluation as the evaluation method of choice. Simulation as
a tool to help in optimization has been used in a few works,
such as [6], [16], [17]; however, theoretical guarantees on
performance are not provided except in [18].

The second motivation for our research arises from the fact
that the vast majority of the literature on emergency medical
system planning in cities has focused on optimizing for long-
term average metrics. Limited work, such as [19] and [20],

has used metrics that are related to risk or tail behavior of the
system. It is also well-known that clusters of emergencies can
take the shape of disasters that are characterized by heavy-
tailed distributions [21], and when a disaster or large casualty
occurs in even a small part of the service area, it is important
to evaluate its impact on the entire network.

III. MOTIVATION

Data from various sources have shown us that inter-arrival
times of emergencies follow light-tailed distributions, typically
modeled as Poisson arrival rates with exponential inter-arrival
times. Therefore, this is the distribution most used in the
literature. The patterns of calls, interacting with the placement
(locations) of ambulances and the geometry or configuration
of the city, causes cascading dependencies. Previous work [18]
has shown that effective placement of ambulances, as opposed
to naive location, can significantly reduce these dependencies
and improve overall service levels.

We illustrate our point considering the example of data from
a large Asian city. The city contains 83 sub-city districts.
While the city has required us to keep the data and source
confidential, we see that all sub-districts in the city of interest
have arrival rates that can be modeled as Poisson arrival rates.
When these are plotted temporally, the entire network’s call
stream remains a Poisson distribution. However, when as few
as six sub-districts begin to follow a heavy-tailed distribution
(of inter-arrival times), the entire call stream also follows a
heavy-tailed distribution (see Table I).

We now compare the performance of these allocations using
a data-driven discrete-event simulator, based upon the simula-
tor described in [18]. The procedure followed in the simulator
and the embedded dispatch process are described in Algorithm
2 and Algorithm 1 respectively. The simulator captures the
fact that calls are served on a first-come-first-serve basis, the
nearest free ambulance is dispatched to each call, and the
service level of each call as the consequence of the dispatched
ambulance. Ideally, every request should be assigned to its
highest priority ambulance. However, such ambulances may
not be available if they are still servicing previous requests.
This creates what we refer to as a dependency between two
requests.

We first define some notation. Let R = {r1, . . . , rN} be a
request log with a sequence of requests, A be the allocation
vector of ambulances to bases, and DISPATCH be the nearest-
free-ambulance dispatch policy described in Algorithm 1. Also
let yr be the base of ambulance dispatched to service request
r (⊥ if no ambulance was dispatched), r(yr) denote the active
call r to which ambulance yr is dispatched, and t̄r(yr) be the
completion time of request r. Then, informally, we say that
request r depends on request r′ if the assignment of yr′ to
r′ causes r to be assigned yr such that yr′ �pr yr [18]. The
formal definitions follow.

Definition 1: There exists an active dependency γr,r′,yr′
from request r to request r′ with label yr′ if

1) tr′ < tr (r′ arrives before r)
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TABLE I
COMPARING CALL STREAMS FROM LIGHT-TAILED AND HEAVY-TAILED DISTRIBUTIONS

Call Log 1 Call Log 2
SUB-CITY DISTRICTS (LIGHT-TAILED) 83 77
SUB-CITY DISTRICTS (HEAVY-TAILED) 6 0

DISTRIBUTION Poisson Weibull
PARAMETERS Rate = 0.28 Shape = 0.97, Scale = 3.9

Algorithm 1 First-come First-served Dispatch Policy
1: input: current request r, Available ambulances W
2: for a ∈ r.q in decreasing preference order do
3: if a ∈W then
4: return: a
5: end if
6: end for
7: return: ⊥

2) t̄r′(yr′) > tr (r′ completes after r arrives – this
indicates that the two requests “overlap” in time)

3) yr′ �pr yr (r′ is assigned an ambulance from a higher
priority base, w.r.t. r’s priority queue, than the ambulance
ultimately assigned to r)

The dependency structure in the network is dependent on
the call logs, the ambulance allocation and the dispatch policy.
A ‘good’ allocation will reduce the cascading nature of the
dependencies among the calls, allowing more calls to be served
by a ‘closer’ ambulance with a better service level [18].

Because cascading dependency behavior is seen even in
Poisson arrivals (exponential inter-arrival times), these depen-
dencies are exacerbated even more when arrivals follow a
(even partial) heavy-tailed distribution. We consider the naive
allocation that the operator uses and evaluate the two call logs
(see Table II).

Therefore it becomes more important to have an allocation
that optimizes based on not only overall system performance
but also the performance at the tail of the distribution.

IV. MODELING APPROACH

Our approach focuses on optimizing allocations on the
network using a combination of expected value metrics and
risk metrics. In particular, as a risk metric, we consider
the metric of Conditional-Value-at-Risk (CVaR) due to its
properties of coherence [22], [23]. For a general loss function
described by random variable X and 0 < α < 1, CV aR is
defined as CV aRα = 1

α

∫ 1

1−α V aRα(X)dα where V aRα is
the Value-at-risk (VaR). This can be equivalently written as:

CV aRα = − 1

α

(
E[X 1{X≥xα}] + xα(α− P [X ≥ xα])

)
(1)

where xα = sup{x ∈ R : P (X ≥ x) ≥ α} is the upper α-

quantile and 1A(x) =

{
1 if x ∈ A
0 else

is the indicator function.

Studies that capture risk in ambulance allocation, such as
[19] and [20] typically use chance-constraints ( [24], [25])

Algorithm 2 SIMULATOR: Data-driven Simulator Method
1: input: (R,A, π, td), DISPATCH
2: W ← A //keeps track of which ambulances are free
3: R̂← ∅ //keeps track of active requests
4: initialize Y = {yr}r∈R such that yr ← ⊥
5: initialize events E ← R sorted in arrival order
6: insert redeployment events spaced every td minutes to E .
7: while |E| > 0 do
8: remove next arriving event e from E
9: if e = new request r then

10: yr ← DISPATCH(r,W,R) //dispatch policy
11: if yr 6= ⊥ then
12: R̂← R̂+ r(yr) //updating active requests
13: W ←W − yr //updating free ambulances
14: insert job completion event at time t̄r(yr) into E
15: end if
16: else if e = job completion event t̄r(yr) then
17: R̂← R̂− r(yr) //updating active requests
18: W ←W + yr //updating free ambulances
19: else if e = redeployment event then
20: W ← π(W, R̂) //redeploying free ambulances
21: end if
22: end while
23: return: Processed assignments of ambulances to requests Y

to capture risk. Chance-constraints are typically satisficing
constraints that are similar in properties to the Value-at-risk
measure. However, VaR is not a coherent measure of risk, as
is discussed in [22]. Therefore we resort to optimizing the
Conditional-Value-at-Risk, which is a coherent risk measure.
In particular, we want to minimize the expected value of
the upper α-th quantile of the loss function of interest, or
maximize the expected value of the lower α-th quantile of the
corresponding gain function.

As seen in [26], CVaR can be represented as the maximum
of submodular functions that are parameterized by a smooth
parameter. In combination with the observation made in [18]
that the loss function represented the ambulance allocation
is approximately submodular, a linear combination of these
functions is likely to be well-solved by algorithms that are
built for optimizing submodular functions. We discuss this in
detail below.

More formally, let A denote an allocation of ambulances
to a set of bases A (there can be more than one ambulance
at a base). We represent A as a multiset of elements in A.
Let M(A) denote the multi-powerset of A and L(A) as the
cost of allocation A. Correspondingly, the gain is defined as
L(∅) - L(A) by comparing to the null allocation. L(A) can
incorporate any loss metric corresponding to the way calls are
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TABLE II
NAIVE ALLOCATION PERFORMANCE ON LIGHT-TAILED AND HEAVY-TAILED CALL LOGS

Call Log 1 Call Log 2
MEAN OF NUMBER OF CALLS NOT SERVED 8.87% 10.23%

90TH QUANTILE OF CALLS NOT SERVED 10.11% 12.58%

serviced by the positioning of ambulances A [18]. Examples
include: (a) the fraction of requests not served, (b) the fraction
of requests whose service time is above some target threshold,
or (c) the fraction of requests served at each service level.

Our goal is to maximize the weighted sum of expected gain
and CVaR of gain, over some distribution of requests (assumed
to follow probability distribution P(R), and as represented by
the sampled request logs). That is, we want to find A that
maximizes F (A) = (β ∗ (E(L(∅))− E(L(A))) + (1 − β) ∗
(CV aRαL(∅)− CV aRαL(A)).

We define L using the outcomes of simulated requests over
several request logs. Using the simulator in Algorithm 2,
we measure the expected metrics of interest over the set of
training request logs. Let YR = {yr}r∈R denote the output of
Algorithm 2 for request log R. Then we write the expected
value of the loss function over the request logs as

EL(A) = ER∼P(R)

[∑
r∈R

Lr(yr)

]
, (2)

where Lr(y) is the penalty of assigning request r with yr
(e.g., whether or not assigning ambulance yr to r results in a
service time above a target threshold). Similarly the CVaR at
the αth protection level can be written as

CV aRL(A) =

ER∼P(R)

[(∑
r∈R

Lr(yr)|
∑
r∈R

Lr(yr) > V aRαL(A)

)]
, (3)

In practice, we resort to optimizing over a collection of

request logs R =
{
{Rmn}Mm=1

}N
n=1

, where each request
log Rm ∈ R is sampled i.i.d according to P(R). In our
experiments, we use Sample Average Approximation [27] to
bound the difference between our sample average objective
and the optimal expected performance, by approximating the
expectation with the sampled average and the CVaR with the
CVaR over the set of sampled request logs.

Let δF (a|A) denote the gain of adding a to A, defined as

δE(L)(a|A) = L(A)− L(A ∪ a); (4)
δCV aRα(L) = CV aRα(L(A))− CV aRα(L(A ∪ a)); (5)
δF (a|A) = β ∗ δE(L)(a|A) + (1− β)δCV aRα(L). (6)

δE(L)(A) corresponds to the expected value of the depen-
dency chains broken by the allocation A compared to the
null allocation, and δCV aRα(L) corresponds to the conditional-
value-at-risk of the dependency costs, that is their expected
loss greater than the αth quantile.

Algorithm 3 Greedy Ambulance Allocation
1: input: F , K
2: A← ∅
3: for ` = 1, . . . ,K do
4: â← argmaxa δF (a|A) //see (6)
5: A← A+ â
6: end for
7: return: A

Given a budget of K ambulances, the static allocation goal
then is to select the ambulance allocation A (with |A| ≤ K)
such that the utility F (A) is maximized. More formally, we
can write our optimization problem as

argmax
A∈M(A):|A|≤K

F (A). (7)

We employ the greedy algorithm presented in [18], because
the properties of approximate submodularity still hold as dis-
cussed above. The greedy algorithm is described in Algorithm
3. The algorithm iteratively selects the ambulance a that has
maximal incremental gain to the current solution until K
ambulances have been allocated. Note that each evaluation of
δ(a|A) requires running the simulator to evaluate F (A+ a).

V. COMPUTATIONAL RESULTS

In this section, we present our computational results on data
from the large Asian city described in Section III. The usage
data contains approximately ten thousand logged emergency
requests over the course of one month. Each record in the
request log contains the type and location of the request,
the ambulance (if any) that was dispatched, and the various
travel times (e.g., base to scene, scene to hospital, etc). The
request arrival rates fit typically into Poisson distributions
(and inter-arrival times into exponential distributions) per sub-
city-district and service times fit into lognormal distributions,
respectively. Request arrivals and service times all appear sta-
tistically independent. However, certain sub-city-districts also
have inter-arrival distributions that might also be fit to heavy-
tailed distributions (specifically the Weibull distribution) in
a statistically significant manner. We will therefore examine
if the difference in the assumptions behind the distributions
(which makes the sampling consistent with real-world data)
results in solutions that are robust to heavy tailed arrival rates.

In particular, we run our optimization model described in 3
with training call logs following the Poisson distribution, and
test call logs sampled according to the following cases:
• Poisson call arrivals (perfect information about distribu-

tions)
• Weibull call arrivals in sub-city-districts that can be fit to

Weibull (call arrivals are heavy-tailed)
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Fig. 1. Performance of risk-optimized allocation on light-tailed request logs

• Poisson call arrivals with hotspots in some sub-city-
districts (chosen such that high arrival areas are simul-
taneously stressed)

• Weibull call arrivals with hotspots in some sub-city-
districts (chosen such that high arrival areas are simul-
taneously stressed)

Using the parameters of the fitted Poisson distributions,
we built a generative Poisson process model for sampling
emergency requests. Our action space contains 58 bases and
58 ambulances. We evaluate our methods over a period of
one week. 500 training call logs and 500 test call logs, each
spanning one day, and independent of each other, are used.

We consider the following cost function in our experiments.

Lr(y) =

{
1 if service time ≥ 30min

0 otherwise.
(8)

Our metrics are the various quantiles of non-service metrics
over the test request logs (in order to evaluate the tail probabil-
ities of failure/non-service), as well as the mean performance.
We use β = 0.7 and solve for varying values of α (tail CVaR
values).

Figures 1 and 2 present the improvement in the tail metrics
(calls not served) for varying values of protection levels α
when the test call logs are Poisson and Weibull respectively.
Figures 3 and 4 present the improvement in the tail metrics
(calls not served) for varying values of protection levels α
when the test call logs are Poisson and Weibull respectively,
and hotspots in call arrivals occur, causing system stress.

Our results show that optimizing with risk-metrics provides
improved results on tail-related metrics such as service failure
probabilities, as compared to optimizing using expected value-
based metrics (such as mean) alone. Particularly in the case
of imperfect information, such as training with a distribution
that is different from the test distribution, or with hotspots
occurring in the test cases but not in the training cases
used for optimization, we found that the results improved
upon optimizing using expected-value-based metrics alone.
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Fig. 2. Performance of risk-optimized allocation on heavy-tailed request logs
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We also observed showed better improvements in the case of
heavy-tailed distributions, indicating the need for optimizing
explicitly for such systems using risk measures.

As a caveat, we find that while choosing the right protection
level α for the tail probabilities is not obvious, further research
can be conducted to optimize the choice of α. Additionally, the
risk-based objective function suggested in this paper should be
studied for its theoretical properties and bounds similar to [18]
can be proposed.

VI. CONCLUSION

We have presented an efficient and effective approach to
ambulance fleet allocation that is data-driven and balances
expected value-based and risk-based metrics. In simulation
experiments based on a real EMS system in Asia, this approach
improved upon tail performance metrics measured using a
data-driven discrete-event simulator. This showed better im-
provements in the case of heavy-tailed distributions, indicating
the need for optimizing explicitly for such systems. Further
research will need to be conducted to examine the theoretical
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properties of the objective function as well as to bound
the performance of this algorithm under various risk metrics
including worst-case-based and tail-protection-based metrics.
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