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Abstract— The goal of this paper is to understand the impact
of learning on control synthesis from a Lyapunov function
perspective. In particular, rather than consider uncertainties in
the full system dynamics, we employ Control Lyapunov Func-
tions (CLFs) as low-dimensional projections. To understand
and characterize the uncertainty that these projected dynamics
introduce in the system, we introduce a new notion: Projection
to State Stability (PSS). PSS can be viewed as a variant of Input
to State Stability defined on projected dynamics, and enables
characterizing robustness of a CLF with respect to the data used
to learn system uncertainties. We use PSS to bound uncertainty
in affine control, and demonstrate that a practical episodic
learning approach can use PSS to characterize uncertainty in
the CLF for robust control synthesis.

I. INTRODUCTION

Properly characterizing uncertainty is a key aspect of
robust control [35]. With the increasing use of learning for
dynamics modelling and control synthesis [5], [10], [8], [11],
[31], [24], it is correspondingly important to develop new
tools to reason about the interplay between learning and
robust control.

In this paper, we focus on the interplay between learning
and robustness for control synthesis using Control Lyapunov
Functions (CLFs) [4], [18]. The use of CLFs has seen
multiple applications in recent years [19], [14], [23], and one
of their primary benefits is to enable control objectives to be
represented in a low-dimensional form that can be utilized
with optimization-based real-time controllers [3]. This low-
dimensional representation is also appealing from a learning
perspective, as learning is typically more tractable in lower-
dimensional spaces [32], [34], [31].

The practical implementation of CLFs remains challenging
due to gap between models and hardware. In many cases,
extensive tuning upon deployment is necessary [19], and
even with this tuning the system is often not able to track a
desired state or trajectory perfectly. Other approaches, such
as those based on adaptive control [17], reduce error in the
estimated CLF time derivative, but are restricted to learning
over specific classes of model uncertainty.

We thus build upon ideas in robust control in order
to guarantee performance in the presence of model mis-
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specification. The idea of robust CLFs is not new (cf. [12],
[13]), but existing analyses focus on the full-dimensional
state dynamics, which can be burdensome for learning.

In this paper, we make two main contributions. First, we
propose a novel characterization called Projection to State
Stability (PSS), which is a variant of the well-studied Input
to State Stability (ISS) property [25], [29], [28], [33], [27],
but defined on projected dynamics rather than the original
state dynamics. Like ISS, PSS provides a tool to characterize
tracking error in terms of the magnitude of the disturbance
or uncertainty. Unlike ISS, PSS can characterize dynamic
uncertainty directly in the derivative of a CLF, thus allowing
a low dimensional representation of the uncertainty. In our
second contribution, we demonstrate the practicality of PSS
by incorporating it into an episodic learning algorithm.

Our paper is organized as follows. Section II reviews CLFs
and ISS. Section III defines Projection to State Stability
(PSS), and how PSS enables constructing bounds on the
state of a system that depend on a projected disturbance.
Section IV defines a broad class of model uncertainty for
affine control systems, evaluates how this uncertainty impacts
the Lyapunov derivative, and demonstrates how to restrict
this uncertainty with data to determine if a system is PSS.
Section V discusses how episodic learning can be used to
improve PSS guarantees in practice, and presents simulation
results with an uncertain inverted pendulum model.

II. PRELIMINARIES

This section provides a review of Control Lyapunov
Functions (CLFs) and Input to State Stability (ISS). These
tools will be used in Section III to define Projection to
State Stability. This section concludes with a brief discussion
of how these definitions must be modified to hold over a
restriction of the domain.

Consider a state space X ⊆ Rn and a control input space
U ⊆ Rm. Assume that X is path-connected and that 0 ∈ X .
Consider a system governed by:

ẋ = f(x,u), (1)

for state x ∈ X and its derivative ẋ, control input u ∈ U ,
and dynamics f : X × U → Rn. The dynamics have an
affine dependence on control input if for all x ∈ X , the
map u 7→ f(x,u) is affine. In this paper we assume f is
locally Lipschitz continuous and that f(0,u0) = 0 for some
u0 ∈ U .

The following definitions, taken from [16], are useful in
analyzing stability of (1).



Definition 1 (Class K Function). A continuous function α :
[0, a)→ R+, with a > 0, is class K, denoted α ∈ K, if it is
monotonically (strictly) increasing and satisfies α(0) = 0. If
the domain of α is all of R+ and limr→∞ α(r) = ∞, then
α is termed radially unbounded and class K∞.

Definition 2 (Class KL Function). A continuous function
β : [0, a) × R+ → R+, with a > 0, is class KL, denoted
β ∈ KL, if the function r 7→ β(r, s) ∈ K for all s ∈ R+,
and the function s 7→ β(r, s) is monotonically non-increasing
with β(r, s)→ 0 as s→∞ for all r ∈ [0, a).

We note that the strictly increasing nature of Class K
(K∞) functions permits an inverse Class K (K∞) function
α−1 : [0, α(a)) → R+. We also note that the composition
of Class K (K∞) functions is itself a Class K (K∞) func-
tion. Given these definitions, we define Control Lyapunov
Functions (CLFs) as in [4], [18].

Definition 3 (Control Lyapunov Function). A continuously
differentiable function V : X → R+ is a CLF for (1) on X
if there exist α, α, α ∈ K∞ such that:

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
inf
u∈U

V̇ (x,u) ≤ −α(‖x‖), (2)

for all x ∈ X .

Under the assumption of affine dependence of f on the
control input, the existence of a CLF for (1) implies the
existence of a continuous (away from x = 0) state-feedback
controller k : X → U , that renders 0 globally asymptotically
stable [4]. In particular, for all x ∈ X , k(x) satisfies
V̇ (x,k(x)) ≤ −α(‖x‖). Continuity at x = 0 can be
achieved if V satisfies the continuous control property:

Definition 4 (Continuous Control Property [4], [12]). Let
f(0,u0) = 0 for some u0 ∈ U . A CLF V is said to satisfy
the continuous control property if for every ε > 0, there
exists δ > 0 such that when ‖x‖ < δ, there exists a u1, with
‖u1−u0‖ < ε such that V̇ (x,u1) < 0. If u0 = 0, V is said
to satisfy the small control property [26].

Smoothness of k can be attained with assumptions on
smoothness of f and V [25]. We also note that α, α, α
only need to be Class K for this definition, in which case
asymptotic stability is achieved locally, but we extend them
to K∞ to simplify later analysis.

To accommodate disturbances or uncertainties, we con-
sider a disturbance space D ⊆ Rd, and a modified system:

ẋ = f(x,u,d), (3)

for disturbance d ∈ D and dynamics f : X × U ×D → Rn.
We again assume f is locally Lipschitz continuous and that
f(0,u0,0) = 0 for some u0 ∈ U . The disturbance may be
time-varying, state-dependent, and/or input-dependent. We
assume that the disturbance is bounded for almost all times
t ≥ 0 (essentially bounded in time). This leads to the
definition of ISS as in [29], [12] and ISS-CLFs as in [28]:

Definition 5 (Input to State Stability). Under a continuous
state-feedback controller k : X → U , the system governed
by (3) is Input to State Stable (ISS) if there exist β ∈ KL∞
and γ ∈ K∞ such that it satisfies:

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ

(
sup
τ≥0
‖d(τ)‖

)
, (4)

for all t ≥ 0.

Intuitively, an ISS system is asymptotically stable to a ball
with a radius that scales with the essential bound on the norm
of the disturbance.

Definition 6 (Input to State Stable Control Lyapunov Func-
tion). A continuously differentiable function V : X → R+

is an Input to State Stable Control Lyapunov Function (ISS-
CLF) for (3) on X if there exist α, α, α, ρ ∈ K∞ such that:

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
‖x‖ ≥ ρ(‖d‖) =⇒ inf

u∈U
V̇ (x,u,d) ≤ −α(‖x‖), (5)

for all x ∈ X and d ∈ D.

As with CLFs, under the assumption of affine dependence
of f on control inputs, an ISS-CLF for (3) satisyfing the
continuous control property implies the existence of a con-
tinuous state-feedback controller k : X → U that renders the
system ISS [28], [12]. Smoothness of this controller can be
achieved similarly to the CLF case [25]. If the disturbance
is input-dependent, it is additionally required that k induces
essentially bounded disturbances in time.

The condition on the Lyapunov function derivative in (2)
or (5) may not be satisfied on the entire state space X .
In particular it may only be satisfied on a subset C ⊆ X .
The system may leave C during its evolution, implying the
desired derivative condition may no longer be satisfiable. We
therefore consider the following definition and lemma.

Definition 7 (Forward Invariance). Consider the system
governed by (1). A subset F ⊆ X can be rendered forward
invariant if there exists a state-feedback controller k : X →
U such that the closed-loop map x 7→ f(x,k(x)) is Lipschitz
continuous and x(0) ∈ F implies x(t) ∈ F for all t ∈
I(x(0)) ⊆ R, the maximum interval of existence.

The interval I(x(0)) exists by Lipschitz continuity of the
closed-loop map, and the solution of the differential equation
is guaranteed to be unique. The definition of forward invari-
ance applies to systems governed by (3), with disturbances
appropriately restricted to subsets of D if the disturbances
are modeled as state-dependent and/or input-dependent. If
0 ∈ C, we may restrict Definitions 3 and 6 to a forward
invariant subset F ⊆ C with 0 ∈ F , provided such a subset
exists.

Lemma 1. A sublevel set Ω ⊆ X of an ISS-CLF V can be
rendered forward invariant, provided ‖x‖ ≥ ρ(‖d‖) for all
x ∈ ∂Ω and appropriately restricted d ∈ D.

Proof. The condition on the Lyapunov derivative in (5)
implies the existence of a state-feedback controller k :



X → U satisfying V̇ (x,k(x),d) < 0 for all x ∈ ∂Ω
and appropriately restricted d ∈ D. Let c = V (x) for any
x ∈ ∂Ω. If V (x(0)) ∈ [0, c], then V (x(t)) ∈ [0, c] for all
t > 0 by Nagumo’s Theorem [22], [1]. Thus, if x(0) ∈ Ω,
then x(t) ∈ Ω for all t ≥ 0.

III. PROJECTION TO STATE STABILITY

Input to State Stability (ISS) requires a bound on the
state in terms of the norm of the disturbance as it appears
in the state dynamics (see Definition 5 in Section II). This
requirement does not easily permit analysis of Input to State
behavior when the disturbance is more easily described by
its impact in a Lyapunov function derivative. This limitation
motivates Projection to State Stability (PSS), which instead
provides a bound on the state in terms of a projection of the
disturbance.

Definition 8 (Dynamic Projection). A continuously differ-
entiable function Π : X → Rk is a dynamic projection if
there exist σ, σ ∈ K∞ satisfying:

σ(‖x‖) ≤ ‖Π(x)‖ ≤ σ(‖x‖), (6)

for all x ∈ X .

Let Y = range(Π), and let y = Π(x) for all x ∈
X . Consider the system governed by (3). The associated
projected system is governed by the dynamics:

ẏ = DΠ(x)f(x,u,0) + DΠ(x)(f(x,u,d)− f(x,u,0))︸ ︷︷ ︸
δ

,

(7)
where DΠ : X → Rk×n denotes the Jacobian of Π, and
δ is implicitly a function of x, u, and d. For the following
results, we assume δ is essentially bounded in time.

We are now ready to state our main definition. The key
difference between PSS and ISS (Definition 5) is the use of
δ (7) rather than the native disturbance d.

Definition 9 (Projection to State Stability). Under a con-
tinuous state-feedback controller k : X → U , a system is
Projection to State Stable (PSS) with respect to the dynamic
projection Π if there exist β ∈ KL∞ and γ ∈ K∞ such that
the solution to (3) satisfies:

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ

(
sup
τ≥0
‖ δ(τ) ‖

)
, (8)

for all t ≥ 0, with δ as defined in (7).

Remark 1. If Π is an inclusion map with k = n, and the
system can be specified as:

f(x,u,d) = f(x,u,0) + d, (9)

then PSS is equivalent to ISS.

Theorem 1. Let the dynamics in (3) have an affine depen-
dence on the control input. This corresponding system can
be rendered PSS with respect to the dynamic projection Π
if the system governed by (7) has an ISS-CLF satisfying the
continuous control property.

Proof. By the assumption that (3) has an affine dependence
on the control input, the system governed by (7) also has an
affine dependence on the control input. Therefore, a choice
of continuous state-feedback controller exists such that the
system governed by (7) is ISS with δ viewed a disturbance.
This implies that there exist β ∈ KL∞ and γ ∈ K∞ such
that:

‖Π(x(t))‖ ≤ β(‖Π(x(0))‖ , t) + γ

(
sup
τ≥0
‖δ(τ)‖

)
, (10)

for all t ≥ 0. Since Π satisfies (6) we have:

‖x(t)‖ ≤ σ−1

(
β(σ(‖x(0)‖), t) + γ

(
sup
τ≥0
‖δ(τ)‖

))
.

(11)

Finally, define β′ ∈ KL∞ and γ′ ∈ K∞ as:

β′(r, s) = σ−1(2β(σ(r), s)) (12)

γ′(r) = σ−1(2γ(r)). (13)

From the weak form of the triangle inequality presented in
[25], [15], it follows that:

‖x(t)‖ ≤ β′(‖x(0)‖ , t) + γ′
(

sup
τ≥0
‖δ(τ)‖

)
. (14)

We next show that a CLF V for the undisturbed dynamics
of a system can be viewed as a projection, thus yielding a
ISS-CLF that certifies PSS with respect to V .

Corollary 1. Suppose V : X → R+ is a CLF satisfying
the continuous control property on X for the system ẋ =
f(x,u,0) and that f is affine in the control input. Then the
disturbed system governed by (3) is PSS with respect to the
projection V .

Proof. With the projection V we have that:

δ = ∇V (x)>(f(x,u,d)− f(x,u,0)). (15)

where ∇V : X → Rn is the gradient of the Lyapunov
function. The projected system is governed by:

V̇ (x,u, δ) = ∇V (x)>f(x,u,0) + δ, (16)

Since V is a CLF satisfying the continuous control property,
there exists a continuous state-feedback controller k : X →
U satisfying:

V̇ (x,k(x), 0) ≤ −(1− ζ)α(‖x‖), (17)

for all x ∈ X and ζ ∈ (0, 1). Fix ζ and let αp, αq ∈ K∞
satisfy αp + αq = (1− ζ)α. Then:

V̇ (x,k(x), δ) ≤ −(1− ζ)α(‖x‖) + δ

≤ −αp(‖x‖)− αq(‖x‖) + |δ|. (18)

Therefore:

‖x‖ ≥ α−1
q (|δ|) =⇒ V̇ (x,k(x), δ) ≤ −αp(‖x‖). (19)

Since α is monotonic, the left-hand side inequality of (19)
is equivalent to α(‖x‖) ≥ α ◦ α−1

q (|δ|), which is satisfied



whenever V (x) ≥ α◦α−1
q (|δ|) since V is a CLF. By further

weakening the implication in (19), we obtain:

V (x) ≥ α ◦ α−1
q (|δ|)

=⇒ inf
u∈U

V̇ (x,u, δ) ≤ −αp ◦ α−1(V (x)), (20)

noting that α◦α−1
q and αp◦α−1 are class K∞. It follows that

the identity map on R+ can be used as an ISS-CLF satisfying
the continuous control property for the projected dynamics
in (16). Therefore, the system (3) is PSS with respect to the
projection V by Theorem 1.

IV. UNCERTAINTY MODELING & ANALYSIS

In this section we consider a structured form of uncertainty
present in affine control systems. We analyze the impact of
this uncertainty on a Lyapunov function derivative, and on
the PSS behavior of the system.

A. Uncertain Affine Systems

We consider affine control systems of the form:

ẋ = f(x) + g(x)u, (21)

with drift dynamics f : X → Rn and actuation matrix g :
X → Rn×m. If f and g are unknown, we may consider a
nominal model of the system:

ẋ = f̂(x) + ĝ(x)u, (22)

where f̂ : X → Rn and ĝ : X → Rn×m are nominal
estimates of f and g, respectively. In this case, (21) can be
expressed as:

ẋ = f̂(x) + ĝ(x)u +

d︷ ︸︸ ︷
(g(x)− ĝ(x)︸ ︷︷ ︸

A(x)

)u + f(x)− f̂(x)︸ ︷︷ ︸
b(x)

, (23)

obtaining a representation of the dynamics as in (9). Note that
the disturbance d = A(x)u+b(x) is explicitly characterized
as time-invariant, state-dependent, and input-dependent, with
potentially unknown A(x) and b(x) for all x ∈ X .

As discussed in [2], [31], CLFs may be constructively
formed for affine systems under proper assumptions regard-
ing relative degree and unbounded control. Furthermore, if
the true system satisfies the relative degree properties of
the estimated model, then the CLF found for the estimated
system can be used for the true system.

Assume f , g, f̂ , and ĝ are Lipschitz continuous (implying
A and b are Lipschitz continuous). Additionally, assume
there exist u0, û0 ∈ U such that f(0) + g(0)u0 = 0 and
f̂(0)+ ĝ(0)û0 = 0. Let V be a CLF candidate for (22). The
time derivative of V is given by:

V̇ (x,u,d) =

ˆ̇V (x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇V (x)

+ (A(x)>∇V (x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇V (x)︸ ︷︷ ︸
b(x)

, (24)

for all x ∈ X and u ∈ U . As proposed in [31], we may
wish to reduce the estimation error |V̇ − ˆ̇V | by improving

ˆ̇V with estimates of a and b. Given continuous estimators
â : X → Rm and b̂ : X → R, (24) may be reformulated as:

V̇ (x,u,d) =

ˆ̇V (x,u)︷ ︸︸ ︷
(f̂(x) + ĝ(x)u)>∇V (x) + â(x)>u + b̂(x)

+ (A(x)>∇V (x)− â(x)︸ ︷︷ ︸
a(x)

)>u + b(x)>∇V (x)− b̂(x)︸ ︷︷ ︸
b(x)

,

(25)

for all x ∈ X and u ∈ U .
Both formulations decompose V̇ into an estimated com-

ponent, ˆ̇V , and a residual component. In (24) the residual
terms a and b capture the effect of the unmodeled dynamics
on the Lyapunov function derivative. In (25) the residual
terms reflect the error in estimating this effect. Additionally,
viewing V as a projection results in δ = a(x)>u + b(x).

B. Projection to State Stability via Uncertainty Functions

If knowledge (e.g., from learning) on what values a and b
can assume is available, the impact on the Lyapunov deriva-
tive can be constrained in a manner permitting PSS analysis
of a system. Therefore, we define a function characterizing
the possible uncertainties at a given state.

Definition 10 (Uncertainty Function). Let P(Rm × R)
denote the set of all subsets of Rm × R. An uncertainty
function for (24) or (25) is a function ∆ : X → P(Rm×R)
with ∆(x) bounded and satisfying (a(x), b(x)) ∈ ∆(x) for
all x ∈ X .

For a given x ∈ X , we refer to ∆(x) as an uncertainty
set. Suppose there exists a valid uncertainty function ∆ for
(24) or (25). Then V satisfies:

V̇ (x,u, δ) ≤ ˆ̇V (x,u) + sup
(a,b)∈∆(x)

(a>u + b), (26)

for all x ∈ X and u ∈ U . From this point forward we limit
our attention to a subset of the state space and make a critical
assumption on the estimate ˆ̇V for a CLF V :

Assumption 1. Let V be a CLF satisfying the continuous
control property for the system governed by (22) on a subset
C ⊆ X with 0 ∈ C. We assume that:

inf
u∈U

ˆ̇V (x,u) ≤ −α(‖x‖). (27)

for all x ∈ C. If ˆ̇V is specified as in (24), then this assumption
is satisfied by definition. If ˆ̇V is specified as in (25), then
this assumption states that the addition of the estimators â
and b̂ does not make it impossible to choose a control input
such that (27) is satisfied.

If the nominal and true system satisfy the same relative
degree property, then this assumption amounts to the addition
of estimates â and b̂ not violating the relative degree property.

Assumption 2. Let A and b be defined as in (23), and let
C be defined as in Assumption 1. We assume A and b are
bounded on C.



If C is compact, this assumption is automatically satisfied
since A and b are assumed continuous. Under Assumption
1, the set of admissible control inputs U(x):

U(x) = {u ∈ U : ˆ̇V (x,u) ≤ −α(‖x‖)}, (28)

is non-empty, for all x ∈ C. Then the CLF V satisfies:

α(‖x‖) ≤ V (x) ≤ α(‖x‖)
inf

u∈U(x)
V̇ (x,u, δ)− sup

(a,b)∈∆(x)

(a>u + b) ≤ −α(‖x‖),

(29)

for all x ∈ C. We now develop sufficient conditions on the
uncertainty function that certifies (23) as PSS with respect
to the CLF V (with V interpreted as a projection).

Theorem 2 (Sufficient Conditions for PSS in Affine Control
Systems). Consider the system in (23), and a CLF V for (22)
with estimated time-derivative ˆ̇V as defined in (24) or (25),
satisfying Assumption 1. Let ∆ be an uncertainty function
and let k : X → U be a continuous state-feedback controller
satisfying k(x) ∈ U(x) for all x ∈ C, with U(x) and α
related as in (28). Suppose there exists αp, αq ∈ K∞ with
αp + αq = α and a sublevel set Ω ⊆ C of V satisfying:

‖x‖ ≥ sup
(a,b)∈∆(x)

α−1
q (a>k(x) + b), (30)

for all x ∈ ∂Ω. Then the system governed by (23) is PSS
with respect to the projection V on Ω.

Proof. First, note that:

V̇ (x,k(x), δ)− sup
(a,b)∈∆(x)

(a>k(x) + b) ≤ −α(‖x‖)

= −αp(‖x‖)− αq(‖x‖), (31)

for all x ∈ C. Since (30) holds for all x ∈ ∂Ω and αq is
monotonically increasing, we have:

αq(‖x‖) ≥ sup
(a,b)∈∆(x)

(a>k(x) + b), (32)

for all x ∈ ∂Ω. It follows that:

V̇ (x,k(x), δ) ≤ −αp(‖x‖), (33)

for all x ∈ ∂Ω. This means Ω is forward invariant, with a
proof similar to that of Lemma 1. Since Ω is compact and δ
is a continuous function of the state in closed-loop, we have
that δ is essentially bounded. Thus, since V is a CLF for
(22), Corollary 1 can be restricted to Ω; that is, the system
is PSS with respect to the projection V on Ω.

We may want to study a particular set of interest E over
which the impact of the uncertainty can be bounded. For
r > 0, let Br be the open ball around 0 of radius r.

Corollary 2. Suppose there is a set E and µ ≥ 0 satisfying:

sup
(a,b)∈∆(x)

(a>k(x) + b) ≤ µ, (34)

for all x ∈ E . If there exists a sublevel set Ω of V such that:

Bα−1
q (µ) ⊆ Ω ⊆ C ∩ E , (35)

then the system is PSS with respect to the (CLF) projection V
on Ω, and the smallest sublevel set of V containing Bα−1

q (µ)

is asymptotically stable.

Proof. First, note that:

‖x‖ ≥ α−1
q (µ) ≥ sup

(a,b)∈∆(x)

α−1
q (a>k(x) + b), (36)

for all x ∈ ∂Ω, and the system is PSS on Ω by Theorem 2.
Asymptotic stability is achieved as:

‖x‖ ≥ α−1
q (µ) ≥ =⇒ V̇ (x,k(x), δ) ≤ −αp(‖x‖). (37)

Improving the uncertainty set (e.g., reducing uncertainty
using learning) directly leads to larger sets for a given bound,
or tighter bounds on a given set. We state this formally in
the next result.

Corollary 3 (Uncertainty Function Improvement). Consider
uncertainty functions ∆ and ∆′, as well as E and µ as
defined in Corollary 2.
• Fix µ > 0 and let Eµ be defined as:

Eµ = {x ∈ X : sup
(a,b)∈∆(x)

(a>k(x) + b) ≤ µ}. (38)

• Fix E ⊆ X and let µE be defined as:

µE = sup
x∈E

sup
(a,b)∈∆(x)

(a>k(x) + b). (39)

Suppose ∆′(x) ⊆ ∆(x) for all x ∈ X . Then the associated
set E ′µ and scalar µ′E satisfy Eµ ⊆ E ′µ and µ′E ≤ µE .

Proof.

sup
(a,b)∈∆′(x)

(a>k(x) + b) ≤ sup
(a,b)∈∆(x)

(a>k(x) + b). (40)

C. Uncertainty Function Construction

We now provide a constructive method for creating an
uncertainty function from a dataset of state and control
values generated by a system. Assume A and b are Lip-
schitz continuous with constants LA and Lb, respectively.
Additionally, assume that A and b are bounded on C by
constants ‖A‖∞ and ‖b‖∞, respectively. Consider a dataset
D ⊆ (X × U) × R consisting of data-measurement pairs
((x,u), V̇ (x,u, δ)). Such measurements of V̇ can be ob-
tained through numerical differentiation of computed values
of V . For notational convenience, let D0 = {(x,u) :
((x,u), V̇ (x,u, δ)) ∈ D}.

Proposition 1. Given a dataset D, an uncertainty function
∆ can be constructed as:

∆(x) = {(a, b) ∈ Rm × R : ±(a>u′ + b) ≤ ε(x,x′,u′)
for all (x′,u′) ∈ D0}, (41)

for all x ∈ X , where ε : X × X × U → R+ is continuous.

Remark 2. For all x ∈ X , ∆(x) is a closed, symmetric
polyhedron and is bounded given sufficiently diverse control



inputs in the dataset. In this case, ∆(x) is a compact, convex
set. The supremum present in Theorem 2 and Corollary 2
becomes a linear program (LP) and can be efficiently solved.

Proof of Proposition 1. Define observed error as:

`(x,u) =
∣∣∣V̇ (x,u, δ)− ˆ̇V (x,u)

∣∣∣ , (42)

for all (x,u) ∈ D0. Consider a test point (x,u) ∈ X × U
and a data point (x′,u′) ∈ D0. Note that `(x′,u′) satisfies:

`(x′,u′) = |a(x′)>u′ + b(x′)|
= |a(x)>u′ + b(x) + (a(x′)− a(x))>u′

+ b(x′)− b(x)|
≥ |a(x)>u′ + b(x)|

− ‖a(x′)− a(x)‖2‖u′‖2 − |b(x′)− b(x)|,
(43)

where the inequality follows from the reverse triangle in-
equality, triangle inequality, and Cauchy-Schwarz inequality.

For simplicity we proceed with the construction assuming
the estimated Lyapunov function derivative is specified as
in (24). The resulting bound will be modified to include
estimators as in (25). Note that:

‖a(x′)− a(x)‖2 = ‖A(x′)>∇V (x′)−A(x)>∇V (x)‖2
= ‖(A(x′)−A(x))>∇V (x′)

+ A(x)>(∇V (x′)−∇V (x))‖2
≤ LA‖x′ − x‖2‖∇V (x′)‖2

+ ‖A‖∞‖∇V (x′)−∇V (x)‖2,
(44)

where the inequality follows from the triangle inequal-
ity, submultiplicativity of matrix norms, and Lipschitz and
bounded assumptions for A. Since it is also true that:

‖a(x′)− a(x)‖2 = ‖A(x′)>(∇V (x′)−∇V (x))

+ (A(x′)−A(x))>∇V (x)‖2, (45)

then the following bound holds:

‖a(x′)− a(x)‖2 ≤ LA‖x′ − x‖2‖∇V (x)‖2
+ ‖A‖∞‖∇V (x′)−∇V (x)‖2. (46)

Let εL(x,x′) = ‖x− x′‖min {‖∇V (x)‖2 , ‖∇V (x′)‖2},
and let ε∞(x,x′) = ‖∇V (x)−∇V (x′)‖2. Observe that εL
and ε∞ are continuous functions. Next, note that:

‖a(x′)− a(x)‖2 ≤ εL(x,x′)LA + ε∞(x,x′) ‖A‖∞ . (47)

Similarly,

|b(x′)− b(x)|2 ≤ εL(x,x′)Lb + ε∞(x,x′) ‖b‖∞ . (48)

Therefore,

|a(x)>u′ + b(x)| ≤ `(x′,u′) + εL(x,x′)(LA ‖u′‖2 + Lb)

+ ε∞(x,x′)(‖A‖∞ ‖u
′‖+ ‖b‖∞).

(49)

While εL and ε∞ decrease as the test point approaches
data points, without estimators as in (25), the observed loss

term ` can remain large. By including such estimators, the
observed loss term may be reduced, but the bound must be
modified with the following additional continuous function:

εH(x,x′,u′) = |(â(x)− â(x′))>u′ + b̂(x)− b̂(x′)|, (50)

which accounts for potential error in the estimation at the
test point. ε is then specified as the total upper bound.

Corollary 4. The uncertainty set ∆ as specified in (41) is
continuous with respect to the Hausdorff metric.

Proof. Note that the inequality constraints in (41) can be
rewritten as:

∆(x) =

{
(a, b) ∈ Rm × R : Ξ

[
a
b

]
� ξ(x)

}
, (51)

where Ξ ∈ R2|D|×(m+1), ξ : X → R2|D| and � denotes
elementwise inequality. The function ξ is continuous since ε
is continuous; therefore, the results established in [7] show
that the point-to-set map ∆ is continuous.

V. INTEGRATION WITH LEARNING

We now explore the practical interplay between learning
and systematic improvement of PSS properties, in particular
by decreasing the upper bound in (49). By decreasing this
bound, the uncertainty set in (41) can be made smaller,
which in turn can increase the state space region over
which PSS properties can be certified and/or achieve reduced
degradation (see Corollary 3). As discussed previously, using
PSS rather than ISS enables lower-dimensional learning ob-
jectives and upper bounds which can be efficiently evaluated
during and after learning.

Learning also offers direct ways to decrease the upper
bound in (49). As discussed in Section IV, estimators can
be used to reduce the observed loss in (42), which appears
directly in the upper bound. We can use supervised learning
to train such estimators. One complication is that, using
baseline controllers, it may not be possible to collect data in
regions we wish to certify PSS properties. As the distances
between a point of interest and previously collected data
grow, εL and ε∞ can grow larger, weakening uncertainty
bounds at the point of interest. By refining the baseline con-
troller using learned models, the system may be controlled
towards these regions of interest.

A. Episodic Learning Framework

We demonstrate the practicality of PSS by incorporating it
into an episodic learning framework based on learning CLF
time derivatives [31]. Controller improvement is achieved
by alternating between executing a controller to gather
data and refining estimates of residual uncertainty. As data
collection and learning progresses, the size of uncertainty
sets decreases, enabling stronger PSS certifications for the
system.

We briefly describe the DaCLyF (Dataset Aggregation for
Control Lyapunov Functions) learning approach from [31].



Algorithm 1 Dataset Aggregation for Control Lyapunov
Functions (DaCLyF) [31]
Require: Lyapunov function V , Lyapunov function deriva-

tive estimate ˆ̇V0, model classes Ha and Hb, loss function
L, set of initial conditions X0, nominal state-feedback
controller u0, number of experiments T , sequence of trust
coefficients 0 ≤ w1 ≤ · · · ≤ wT ≤ 1

D = ∅ . Initialize dataset
for k = 1, . . . , T do

x0 ← sample(X0) . Sample initial condition
Dk ← experiment(x0,uk−1) . Execute experiment
D ← D ∪Dk . Aggregate dataset
â, b̂← ERM(Ha,Hb,L, D, ˆ̇V0) . Fit estimators
ˆ̇Vk ← ˆ̇V0 + â>u + b̂ . Update derivative estimator
uk ← u0 + wk · augment(u0,

ˆ̇Vk) . Update controller
end for
return D, ˆ̇VT ,uT

Let Ha and Hb be nonlinear estimator classes, and let H be
the class of estimators of the form:

ˆ̇W (x,u) = ˆ̇V (x,u) + â(x)>u + b̂(x), (52)

for all x ∈ X , given estimators â ∈ Ha and b̂ ∈ Hb.
Equipped with a loss function L : R × R → R+ and a
dataset D = {((xi,ui), V̇i)} obtained from experiments with
a baseline controller, we approximately solve the Empirical
Risk Minimization (ERM) problem over the class H to
update the estimate of the Lyapunov function derivative.
Then, the controller is updated with an augmenting controller
of the form:

u′(x) = arg min
u′∈Rm

1

2

[
u(x)
u′

]>
P

[
u(x)
u′

]
+ q>

[
u(x)
u′

]
+ r

s.t ˆ̇V (x,u(x) + u′) ≤ −α(‖x‖)
u(x) + u′ ∈ U , (53)

for all x ∈ C, with P ∈ S2m
+ , q ∈ R2m, r > 0, and

ˆ̇V denoting the updated estimator. Here S2m
+ denotes the

set of positive semidefinite matrices of size 2m × 2m.
The augmenting controller, weighted by a trust factor, is
additively incorporated with the baseline controller. As more
data is collected, the trust factor is increased. This entire
procedure is outlined in Algorithm 1.

The estimator class H can include a wide variety of
nonlinear functions. Should Ha and Hb be classes of Lip-
schitz continuous estimators, the upper bound (50) can be
weakened further using the associated Lipschitz constants to
permit further analysis of the uncertainty function specified
in (41). Importantly, this motivates the use of spectrally
normalized deep neural networks [20], [6] for this estimation
problem.

B. Simulation Results
In this section we apply Algorithm 1 to an inverted

pendulum model with parametric uncertainty. The pendulum

is modeled as a massless rod with torque input at a fixed
base. The true mass and the length are perturbed by up to
30% of their nominal values. The baseline controller is a
linear proportional derivative (PD) controller to track angle
and angle rate trajectories. The estimators are chosen from
the class of two layer neural networks with 200 hidden units
and ReLU nonlinearities, mapping concatenated state and
Lyapunov function gradients to Rm and R. The trust factors
are chosen in a sigmoid fashion. Naive exploratory control
is introduced as in [31], with perturbations chosen uniformly
at random, independently in each coordinate, and scaled by
25% of the norm of the current control input.

A comparison of the baseline controller and final aug-
mented controller demonstrating improved tracking perfor-
mance is shown in Fig. 1. A comparison of PSS bounds
for the model-based QP controller and the final augmented
controller is shown in Fig. 2, with observed trajectories
superimposed. The QP controller is unable to keep the
system in regions in which the bound is shown to be small.
On the other hand, the augmented controller keeps the system
close to the desired trajectory, consistently near training
data. The bounds are small along the observed trajectory,
in comparison.

Fig. 1. Comparison of tracking performance for PD controller and final
augmented controller. The final augmented controller tracks the desired
angle trajectory more effectively.

VI. CONCLUSION

We presented a novel low-dimensional view of stability for
uncertain systems and a method of evaluating PSS behavior
using experimental data. This method constructs a bound
on disturbances to a CLF derivative, and can be integrated
with a machine learning framework to improve PSS behavior.
Finally, we validate this procedure on a simulated system.

Future work includes incorporating the upper bounds into
online learning settings and developing optimal exploration
strategies. Quantifying the impact of learning on PSS pro-
vides an objective for deciding how to collect data, also
known as the exploration problem in learning literature
[21], [5], [9], [8], [30]. In particular, reductions of the
uncertainty bound may be used to formulate regret in online
learning settings or reward in imitation and reinforcement
learning settings. Additional future work includes extending
the notion of PSS to Control Safety and Barrier Functions,



Fig. 2. Comparison of disturbance upper bounds with model based QP controller (left) and final augmented controller (right). The disturbance upper
bound is computed from the maximum over uncertainty sets in (41) for both controllers, and observed trajectories are displayed with dashed lines. The
augmenting controller keeps the system in regions with lower disturbance bounds while the system leaves the region around the training data under the
QP controller. The maps were generated by sampling states randomly about training data points and evaluating the upper bound for each sampled state.
The results were then discretized for ease of visualization. Each bin is colored by the maximum disturbance observed in the bin.

more thoroughly studying the benefits of learning low-
dimensional representations of the dynamics versus the full-
order dynamics, and utilizing PSS to augment controller
synthesis for complex real-world robotic systems.
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