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Abstract
Machine Learning today offers a broad repertoire of meth-
ods for classification and regression. But what if we need 
to predict complex objects like trees, orderings, or align-
ments? Such problems arise naturally in natural language 
processing, search engines, and bioinformatics. The follow-
ing explores a generalization of Support Vector Machines 
(SVMs) for such complex prediction problems.

1. INTRODUCTION
Consider the problem of natural language parsing illus-
trated in Figure 1 (left). A parser takes as input a natural 
language sentence, and the desired output is the parse tree 
decomposing the sentence into its constituents. While 
modern machine learning methods like Boosting, Bagging, 
and Support Vector Machines (SVMs) (see e.g., Hastie et 
al.9) have become the methods of choice for other problems 
in natural language processing (NLP) (e.g. word-sense dis-
ambiguation), parsing does not fit into the conventional 
framework of classification and regression. In parsing, the 
prediction is not a single yes/no, but a labeled tree. And 
breaking the tree down into a collection of yes/no predic-
tions is far from straightforward, since it would require 
modeling a host of interdependencies between individual 
predictions. So, how can we take, say, an SVM and learn a 
rule for predicting trees?

Obviously, this question arises not only for learning to pre-
dict trees, but similarly for a variety of other structured and 
complex outputs. Structured output prediction is the name for 
such learning tasks, where one aims at learning a function  
h: X → Y mapping inputs x Î X to complex and structured 
outputs y Î Y. In NLP, structured output prediction tasks 
range from predicting an equivalence relation in noun-phrase 
co-reference resolution (see Figure 1, right), to predicting an 
accurate and well-formed translation in machine translation. 
But problems of this type are also plentiful beyond NLP. For 
example, consider the problem of image segmentation (i.e., 
predicting an equivalence relation y over a matrix of pixels x), 
the problem of protein structure prediction (which we will 
phrase as an alignment problem in Section 3.2), or the prob-
lem of web search (i.e., predicting a diversified document 
ranking y given a query x as explored in Section 3.1). We will 
see in Section 3.3 that even binary classification becomes a 
structured prediction task when aiming to optimize multivar-
iate performance measures like the F1-Score or Precision@k.

In this paper we describe a generalization of SVMs, called 
Structural SVMs,14, 26, 27 that can be used to address a large 
range of structured output prediction tasks. On the one 
hand, structural SVMs inherit the attractive properties of 

regular SVMs, namely a convex training problem, flexibility 
in the choice of loss function, and the opportunity to learn 
nonlinear rules via kernels. On the other hand, structural 
SVMs inherit the expressive power of generative models (e.g., 
Probabilistic Context-Free Grammars [PCFG] or Markov 
Random Fields [MRF]). Most importantly, however, struc-
tural SVMs are a discriminative learning method that does 
not require the independence assumptions made by conven-
tional generative methods. Similar to the increase in predic-
tion accuracy one typically sees when switching from a naive 
Bayes classifier to a classification SVM (e.g., Joachims11), 
structural SVMs promise such benefits also for structured 
prediction tasks (e.g., training PCFGs for parsing).

Structural SVMs follow and build upon a line of research 
on discriminative training for structured output predic-
tion, including generalizations of Neural Nets,17 Logistic 
Regression16, and other conditional likelihood methods (e.g., 
McCallum et al.18). A particularly eye-opening paper is Lafferty 
et al.16 showing that global training for structured prediction 
can be formulated as a convex optimization problem. Our 
work follows this track. More closely, however, we build upon 
structural Perceptrons5 as well as methods for protein thread-
ing19 and extend these to a large-margin formulation with an 
efficient training algorithm. Independent of our work, Taskar 
et al.25 arrived at a similar formulation, but with more restric-
tive conditions on the form of the learning task.

In the following, we explain how structural SVMs work 
and highlight three applications in search engine ranking, 
protein structure prediction, and binary classification under 
nonstandard performance measures.

2. STRUCTURAL SVMs
How can one approach structured output prediction? On 
an abstract level, a structured prediction task is much like a 
multiclass learning task. Each possible structure y Î Y (e.g., 
parse tree) corresponds to one class (see Figure 2), and clas-
sifying a new example x amounts to predicting its correct 
“class.” While the following derivation of structural SVMs 
starts from multiclass SVMs,6 there are four key problems 
that need to be overcome. All of these problems arise from 
the huge number |Y | of classes. In parsing, for example, the 
number of possible parse trees is exponential in the length 
of the sentence. And the situation is similar for most other 
structured output prediction problems.

A previous version of this paper—“Large Margin Methods 
for Structured and Interdependent Output Variables” by  
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun 
—was published in J. Mach. Learn. Res. (Sept. 2005).
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the modeled compatibility between inputs x and classes y. 
To classify x, the prediction rule h(x) then simply chooses the 
highest-scoring class

	 h(x) ≡ argmax  f (x, y)� (1)
y ∈ Y

as the predicted output. This will result in the correct predic-
tion y for input x provided the weights w = (w1, …, wk) have 
been chosen such that the inequalities f (x, y–) < f (x, y) hold for 
all incorrect outputs y– ¹ y.

For a given training sample (x1, y1), …, (xn, yn), this leads 
directly to a (hard-) margin formulation of the learning prob-
lem by requiring a fixed margin (= 1) separation of all train-
ing examples, while using the norm of w as a regularizer:

	 mi
w

n 
1_
2

 ||w||2, s.t.  f (xi, yi) - f (xi, y
–) ≥ 1  ("i, y– ¹ yi)� (2)

For a k-class problem, the optimization problem has a 
total of n(k − 1) inequalities that are all linear in w, since one 
can expand f (xi, yi) - f (xi, y

–) = (wyi 

- wy–) × F(xi). Hence, it is a 
convex quadratic program.

The first challenge in using (2) for structured outputs is 
that, while there is generalization across inputs x, there is 
no generalization across outputs. This is due to having a sep-
arate weight vector wy for each class y. Furthermore, since 
the number of possible outputs can become very large (or 
infinite), naively reducing structured output prediction to 
multiclass classification leads to an undesirable blowup in 
the overall number of parameters.

The key idea in overcoming these problems is to extract 
features from input–output pairs using a so-called joint fea-
ture map Y(x, y) instead of F(x). This yields compatibility 
functions with contributions from combined properties of 
inputs and outputs. These joint features will allow us to gen-
eralize across outputs and to define meaningful scores even 
for outputs that were never actually observed in the training 
data. At the same time, since we will define compatibility 
functions via f (x, y) º w × Y(x, y), the number of parameters 
will simply equal the number of features extracted via Y, 
which may not depend on |Y |. One can then use the formu-
lation in (2) with the more flexible definition of f via Y to 
arrive at the following (hard-margin) optimization problem 
for structural SVMs.

The first problem is related to finding a compact repre-
sentation for large output spaces. If we allowed even just 
one parameter for each class, we would already have more 
parameters than we could ever hope to have enough training 
data for. Second, just making a single prediction on a new 
example is a computationally challenging problem, since 
sequentially enumerating all possible classes may be infea-
sible. Third, we need a more refined notion of what consti-
tutes a prediction error. Clearly, predicting a parse tree that 
is almost correct should be treated differently from predict-
ing a tree that is completely wrong. And, last but not least, 
we need efficient training algorithms that have a run-time 
complexity sublinear in the number of classes.

In the following, we will tackle these problems one by 
one, starting with the formulation of the structural SVM 
method.

2.1. Problem 1: Structural SVM formulation
As mentioned above, we start the derivation of the structural 
SVM from the multiclass SVM.6 These multiclass SVMs use 
one weight vector wy for each class y. Each input x now has 
a score for each class y via f (x, y) º wy × F(x). Here F (x) is a 
vector of binary or numeric features extracted from x. Thus, 
every feature will have an additively weighted influence in 

Figure 1. Examples of structured output prediction tasks: predicting trees in natural language parsing (left), predicting the structure of 
proteins (middle), and predicting an equivalence relation over noun phrases (right).
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Figure 2. Structured output prediction as a multiclass problem.
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2.3. Problem 3: Inconsistent training data
So far we have tacitly assumed that the optimization problem 
in Equation 3 has a solution, i.e., there exists a weight vector 
that simultaneously fulfills all margin constraints. In prac-
tice this may not be the case, either because the training data 
is inconsistent or because our model class is not powerful 
enough. If we allow for mistakes, though, we must be able to 
quantify the degree of mismatch between a prediction and the 
correct output, since usually different incorrect predictions 
vary in quality. This is exactly the role played by a loss function, 
formally D: Y ´ Y → Â, where D(y, y–) is the loss (or cost) for 
predicting y–, when the correct output is y. Ideally we are inter-
ested in minimizing the expected loss of a structured output 
classifier, yet, as is common in machine learning, one often 
uses the empirical or training loss 1_n Σ

n

i=1 D(yi, h(xi)) as a proxy for 
the (inaccessible) expected loss. Like the choice of Y, defining 
D is problem-specific. If we predict a set or sequence of labels, 
a natural choice for D may be the number of incorrect labels 
(a.k.a. Hamming loss). In the above parsing problem, a quality 
measure like F1 may be the preferred way to quantify the simi-
larity between two labeled trees in terms of common constitu-
ents (and then one may set D º 1 − F1).

Now we will utilize the idea of loss functions to refine our 
initial problem formulation. Several approaches have been 
suggested in the literature, all of which are variations of the 
so-called soft-margin SVM: instead of strictly enforcing con-
straints, one allows for violations, yet penalizes them in the 
overall objective function. A convenient approach is to intro-
duce slack variables that capture the actual violation,

	 f (xi, yi) - f (xi, y
–) ≥ 1 - xiy–("y– ¹ yi)� (4)

so that by choosing xiy– > 0, a smaller (even negative) separa-
tion margin is possible. All that remains to be done then is to 
define a penalty for the margin violations. A popular choice is 
to use 1_

n Σ
n

i=1 maxy– π y
i

 {D (yi, y
–)xiy–} thereby penalizing violations 

more heavily for constraints associated with outputs y– that 
have a high loss with regard to the observed yi. Technically, one 
can convert this back into a quadratic program as follows:

	 � (5)

s.t. w × Y(xi, yi) - w × Y(xi, y
–) ≥ 1 -        

xi        ("i, y– ¹ yi)
	 D ( yi, y

–)

Here C > 0 is a constant that trades-off constraint violations with 
the geometric margin (effectively given by 1/||w||). This has been 
called the slack rescaling formulation. As an alternative, one 
can also rescale the margin to upper-bound the training loss as 
first suggested in Taskar et al.25 and discussed in Tsochantaridis 
et al.27 This leads to the following quadratic program

	 �
(6)

s.t. w × Y(xi, yi) - w × Y(xi, y
–) ≥ D (yi, y

–) - xi  ("i, y– ¹ yi)

Since it is slightly simpler, we will focus on this margin-
rescaling formulation in the following.

	 mi
w

n
  

1_
2 

||w||2� (3)

s.t.    w × Y(xi, yi) - w × Y(xi, y
–) ≥ 1  ("i, y– ¹ yi)

In words, find a weight vector w of an input–ouput compat-
ibility function f that is linear in some joint feature map Y 
so that on each training example it scores the correct output 
higher by a fixed margin than every alternative output, while 
having low complexity (i.e., small norm ||w||). Note that the 
number of linear constraints is still n(|Y | - 1), but we will 
suggest ways to cope with this efficiently in Section 2.4.

The design of the features Y is problem-specific, and it 
is the strength of the developed methods to allow for a great 
deal of flexibility in how to choose it. In the parsing example 
above, the features extracted via Y may consist of counts of 
how many times each production rule of the underlying gram-
mar has been applied in the derivation described by a pair  
(x, y). For other applications, the features can be derived from 
graphical models as proposed in Lafferty et al. and Taskar  
et al.,16, 25 but more general features can be used as well.

2.2. Problem 2: Efficient prediction
Before even starting to address the efficiency of solving a qua-
dratic programs of the form (3) for large n and |Y |, we need to 
make sure that we can actually solve the inference problem 
of computing a prediction h(x). Since the number of possible 
outputs |Y | may grow exponentially in the length of the repre-
sentation of outputs, a brute-force exhaustive search over Y 
may not always be feasible. In general, we require some sort of 
structural matching between the (given) compositional struc-
ture of the outputs y and the (designed) joint feature map Y.

For instance, if we can decompose Y into nonoverlapping 
independent parts, Y = Y1´ × × × ́  Ym and if the feature extraction 
Y respects this decomposition such that no feature combines 
properties across parts, then we can maximize the compat-
ibility for each part separately and compose the full output 
by simple concatenation. A significantly more general case 
can be captured within the framework of Markov networks as 
explored by Lafferty et al. and Taskar et al.16, 25 If we represent 
outputs as a vector of (random) variables y = ( y1, …, ym), then 
for a fixed input x, we can think of Y(x, y) as sufficient statis-
tics in a conditional exponential model of P(y|x). Maximizing 
f (x, y) then corresponds to finding the most probable output, 
ŷ  = argmaxy P(y|x). Modeling the statistical dependencies 
between output variables vis a dependency graph, one can 
use efficient inference methods such as the junction tree 
algorithm for prediction. This assumes the clique structure 
of the dependency graph induced by a particular choice of Y 
is tractable (e.g., the state space of the largest cliques remains 
sufficiently small). Other efficient algorithms, for instance, 
based on dynamic programming or minimal graph cuts, may 
be suitable for other prediction problems.

In our example of natural language parsing, the sug-
gested feature map will lead to a compatibility function 
in which parse trees are scored by associating a weight 
with each production rule and by simply combining all 
weights additively. Therefore, a prediction can be com-
puted efficiently using the CKY-Parsing algorithm (cf. 
Tsochantaridis et al.27).
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makes the algorithm general and easily transferable to new 
applications. In particular, all applications discussed in 
the following used the general SVMstruct implementation of 
Algorithm 1 and supplied these three functions via an API.

2.5. Related approaches
The structural SVM method is closely related to other 
approaches, namely Conditional Random Fields16 and 
Maximum Margin Markov Networks (M3N).25 The crucial 
link to probabilistic methods is to interpret the joint feature 
map as sufficient statistics in a conditional exponential fam-
ily model. This means, we define a conditional probability of 
outputs given inputs by

	 P(y|x) = ___1
Z(x)

__ exp [w × Y(x, y)]� (7)

where Z(x) is a normalization constant. Basically Equation (7) 
is a generalization of the well-known logistic regression 
where Y(x, y) = yF(x) for y Î {−1, 1}. The compatibility func-
tion used in structural SVMs directly governs this condi-
tional probability. The probabilistic semantics lends itself 
to statistical inference techniques like penalized (condi-
tional) maximum likelihood, where one maximizes Σn

i=1 log 
P(yi | xi) - l||w||2. Unlike in Algorithm 1, however, here one 
usually must compute the expected sufficient statistics  
Σy P(y|x) Y(x, y), for instance, in order to compute a gradient 
direction on the conditional log-likelihood. There are addi-
tional algorithmic challenges involved with learning CRFs 
(cf. Sha, and Pereira22) and one of the key advantages of struc-
tural SVMs is that it allows an efficient dual formulation. This 
enables the use of kernels instead of explicit feature repre-
sentations as well as a sparse expansion of the solution (cf. 
Hofmann et al.10). A simpler, but usually less accurate learning 
algorithm that can be generalized to the structured output set-
ting is the perceptron algorithm, as first suggested in Collins.5

The M3N approach is also taking the probabilistic view 
as its starting point, but instead of maximizing a likelihood-
based criterion, aims at solving Equation 6. More specifically, 
M3Ns exploit the clique-based representation of P(y|x) over 
a dependency graph to efficiently reparametrize the dual 
problem of (6), effectively replacing the margin constraints 
over pairs of outputs by constraints involving functions of 
clique configurations. This is an interesting alternative to 
our cutting-plane algorithm, but has a somewhat more lim-
ited range of applicability.

3. APPLICATIONS
As outlined above, one needs to design and supply the fol-
lowing four functions when applying a structural SVM to a 
new problem:

	 Y(x, y)� (8)
	 D (y, y–)� (9)
	 argmaxy–ÎY{w × Y(xi, y

–)}� (10)
	 argmaxy–ÎY {D (yi, y

–) + w × Y(xi, y
–)}� (11)

The following three sections illustrate how this can be 
done for learning retrieval functions that provide diver-
sified results, for aligning amino-acid sequences into 

2.4. Problem 4: Efficient training
Last, but not least, we need a training algorithm that finds 
the optimal w solving the quadratic program in (6). Since 
there is a contraint for every incorrect label y–, we cannot 
enumerate all constraints and simply give the optimiza-
tion problem to a standard QP solver. Instead, we propose 
to use the cutting-plane Algorithm 1 (or a similar algorithm 
for slack-rescaling). The key idea is to iteratively construct 
a working set of constraints W that is equivalent to the full 
set of constraints in (6) up to a specified precision e. Starting 
with an empty W and w = 0, Algorithm 1 iterates through the 
training examples. For each example, the argmax in Line 5 
finds the most violated constraint of the quadratic program 
in (6). If this constraint is violated by more than e (Line 6), 
it is added to the working set W in Line 7 and a new w is 
computed by solving the quadratic program over the new 
W (Line 8). The algorithm stops and returns the current w if  
W did not change between iterations.

It is obvious that for any desired e, the algorithm only 
terminates when it has found an e-accurate solution, 
since it verifies in Line 5 that none of the constraints of 
the quadratic program in (6) is violated by more than e. 
But how long does it take to terminate? It can be shown27 
that Algorithm 1 always terminates in a polynomial num-
ber of iterations that is independent of the cardinality 
of the output space Y. In fact, a refined version of Algo
rithm 113, 14 always terminates after adding at most O(Ce −1) 
constraints to W (typically |W | << 1000). Note that the 
number of constraints is not only independent of |Y |, but 
also independent of the number of training examples n, 
which makes it an attractive training algorithm even for 
conventional SVMs.13

While the number of iterations is small, the argmax in 
Line 5 might be expensive to compute. In general, this is 
true, but note that this argmax is closely related to the arg-
max for computing a prediction h(x). It is therefore called 
the “loss-augmented” inference problem, and often the 
prediction algorithm can be adapted to efficiently solve the 
loss-augmented inference problem as well.

Note that Algorithm 1 is rather generic and refers to the 
output structure only through a narrow interface. In par-
ticular, to apply the algorithm to a new structured predic-
tion problem, one merely needs to supply implementations 
of Y(x, y), D (y, y–), and argmaxy–ÎY{D(yi, y

–) + w × Y(xi, y
–)}. This 

Algorithm 1 for training structural SVMs (margin-rescaling).
  1:  Input: S = ((x1, y1), …, (xn, yn)), C, e
  2:  W ¬ 0/, w = 0, xi ¬ 0 for all i = 1, …, n
  3:  repeat
  4:    for i=1, …,n do
  5:      ŷ ← argmaxŷ ÎY {D(yi, ŷ ) + w × Y(xi, ŷ )}
  6:      if w × [Y(xi, yi) - Y(xi, ŷ )] < D(yi, ŷ ) - xi - e then
  7:        W ¬ W È {w × [Y(xi, yi) - Y(xi, ŷ )] ≥ D(yi, ŷ ) - xi}
  8:        (w, x ) ¬ �argmin 1_2 w . w + C_n Σn

i=1 xi s.t. W 
w,x ³ 0  9:      end if

10:    end for
11:  until W has not changed during iteration
12:  return(w, x )
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We now present a simple example of the joint feature rep-
resentation Y. Let f (v, x) denote the feature vector describ-
ing the frequency of a word v amongst documents in x. For 
example, we can construct f (v, x) as

.

Let V(y) denote the union of words contained in the docu-
ments of the predicted subset y. We can write Y as

Y(x, y) =  Σ
v ∈V (y)

 f (v, x).

Given a model vector w, the benefit of covering word v in x is  
w × f(v, x), and is realized when a document in y contains v, 
i.e., v Œ V(y). Because documents overlap in words, this is also 
a budgeted maximum coverage problem. Thus both predic-
tion (Equation 10) and loss-augmented inference (Equation 
11) can be solved effectively via the greedy method. Despite 
finding an approximate most violated constraint, we can 
still bound the precision of our solution.8 Practical applica-
tions require more sophisticated Y and we refer to Yue and 
Joachims31 for more details.
Experiments: We tested the effectiveness of our method using 
the TREC 6–8 Interactive Track queries. Relevant documents 
are labeled using subtopics. For example, query 392 asked 
human judges to identify applications of robotics in the world 
today, and they identified 36 subtopics among the results 
such as nanorobots and using robots for space missions. 
Additional details can be found in Yue and Joachims.31

We compared against Okapi,21 Essential Pages,24 random 
selection and unweighted word selection (all words have equal 
benefit). Okapi is a conventional retrieval function which does 
not account for diversity. Figure 4 shows the loss on the test set 
for retrieving K = 5 documents. The gains of the structural SVM 
over Essential Pages are 95% significant, and only the struc-
tural SVM and Essential Pages outperformed random.

This approach can accomodate other diversity criteria, 
such as diversity of clicks gathered from clickthrough logs. 
We can also accommodate very rich feature spaces based on, 
e.g., anchor text, URLs, and titles.

Abstractly, we are learning a mapping between two 
representations of the same set covering problem. One 
representation defines solution quality using manually 

homologuous protein structures, and for optimizing non-
standard performance measures in binary classification.

3.1. Optimizing diversity in search engines
State of the art retrieval systems commonly use machine 
learning to optimize their ranking functions. While effective 
to some extent, conventional learning methods score each 
document independently and, therefore, cannot account for 
information diversity (e.g., not presenting multiple redun-
dant results). Indeed, several recent studies in information 
retrieval emphasized the need for diversity (e.g., Zhai et al. 
and Swaminathan et al.24, 32). In particular, they stressed 
modeling interdocument dependencies, which is funda-
mentally a structured prediction problem. Given a dataset 
of queries and documents labeled according to information 
diversity, we used structural SVMs to learn a general model 
of how to diversify.31

What is an example (x, y) in this learning problem? For 
some query, let x = {x1, …, xn} be the candidate documents 
that the system needs to rank. Our ground truth labeling for 
x is a set of subtopics T = {T1, …, Tn}, where Ti denotes the 
subtopics covered by document xi. The prediction goal is to 
find a subset y ⊂ x of size K (e.g., K = 10 for search) maximiz-
ing subtopic coverage, and therefore maximizing the infor-
mation presented to the user. We define our loss function 
D(T, y) to be the (weighted) fraction of subtopics not covered 
by y (more weight for popular subtopics).a

Even if the ground truth subtopics were known, comput-
ing the best y can be difficult. Since documents overlap in 
subtopics (i.e., $i,  j : Ti Ç Tj ¹ 0/), this is a budgeted maximum 
coverage problem. The standard greedy method achieves a 
(1 − 1/e)-approximation bound,15 and typically yields good 
solutions. The greedy method also naturally produces a 
ranking of the top documents.

Figure 3 depicts an abstract visualization of our predic-
tion problem. The shaded regions represent candidate docu-
ments x of a query, and the area covered by each region is the 
“information” (represented as subtopics T) covered by that 
document. If T was known, we could use a greedy method 
to find a solution with high subtopic diversity. For K = 3, the 
optimal solution in Figure 3 is y = {D1, D3, D5}.

In general, however, the subtopics of new queries are 
unknown. One can think of subtopic labels as a manual par-
titioning of the total information of a query. We do, however, 
have access to an “automatic” representation of information 
diversity: the words contained in the documents. Intuitively, 
covering more (distinct) words should result in covering 
more subtopics. Since some words are more informative 
than others, a weighting scheme is required.

Following the approach of Essential Pages,24 we measure 
word importance primarily using relative word frequencies 
within x. For example, the word “computer” is generally infor-
mative, but conveys almost no information for the query “ACM” 
since it likely appears in most of the candidate documents. We 
learn a word weighting function using labeled training data, 
whereas Swaminathan et al.24 uses a predefined function.

Figure 3. Different documents (shaded regions) cover different infor-
mation (subtopics) of a query. Here, the set {D2, D3, D4} contains the 
three documents that individually cover the most information, but 
{D1, D3, D5} collectively covers more information.

D1
D2

D3

D4
D5

a  The loss function (Equation 9) can be defined using any ground truth for-
mat, not necessarily the same format as the output space.
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joint feature vector into a sum of feature vectors for individ-
ual alignment operations (match, insertion, or deletion):

F (x, yi) is the feature vector for the ith alignment operation 
in the alignment y of the sequence pair x. Below we describe 
several alignment models represented by F, focusing on the 
scoring of matching two amino acids (see Figure 5 for an 
illustration of the features used):

	 (i)	 Simple: we only consider the substitution cost of single 
features, e.g., the cost of matching a position with 
amino acid “M” with another position in a loop region.

	 (ii)	 Anova2: we consider pairwise interaction of features, 
e.g., the cost of matching a position with amino acid 
“M” in an alpha helix with another position with 
amino acid “V” in a loop region.

	(iii)	 Tensor: we consider three-way interaction of features 
among amino acid, secondary structure, and solvent 
accessibility.

	(iv)	 Window: on top of three alignment models above, we 
add neighborhood features using a sliding window, 
which takes into account the hydrophobicity and sec-
ondary structure in the neighborhood of a position.

	(iv)	 Profile: on top of the alignment model Window, we 
add PSI-BLAST profile scores as features.

As the loss function D(y, y–), we use Q4-loss. It is the percent-
age of matched amino acids in the correct alignment y that 
are aligned more than four positions apart in the predicted 
alignment y–. The linearity of the Q4-loss allows us to use 
the Smith–Waterman algorithm also for solving the loss-
augmented inference problem during training. We refer to 
Yu et al.29 for more details.
Experiments: We tested our algorithm with the training and 
validation sets developed in Qiu and Elber,20 which contain 
4542 and 4587 pairwise alignments of evolutionarily-related 
proteins with high structural similarites. For the test set we 
selected 4185 structures deposited in the Protein Data Bank 
from June 2005 to June 2006, leading to 29345 test pairs. 

labeled subtopics. The second representation learns a 
word weighting function, with goal of having the repre-
sentations agree on the best solution. This setting is very 
general and can be applied to other domains beyond sub-
topic retrieval.

3.2. Predicting protein alignments
Proteins are sequences of 20 different amino acids joined 
together by peptide bonds. They fold into various stable 
structures under normal cell environments. A central ques-
tion in biology is to understand how proteins fold, as their 
structures relate to their functions.

One of the more successful methods for predicting pro-
tein structure from an amino acid sequence is homology 
modeling. It approximates the structure of an unknown 
protein by comparing it against a database of proteins with 
experimentally determined structures. An important inter-
mediate step is to align the unknown protein sequence with 
known protein sequences in the database, and this is a diffi-
cult problem when the sequences have diverged too far (e.g., 
less than 20% sequence identity).

To align protein sequences accurately for homology 
modeling, we need to have a good substitution cost matrix 
as input to the Smith–Waterman algorithm (a dynamic pro-
gramming algorithm). A common approach is to learn the 
substitution matrix from a set of known good alignments 
between evolutionarily related proteins.

Structural SVMs are particularly suitable for learn-
ing the substitution matrix, since they allow incorporat-
ing all available information (e.g., secondary structures, 
solvent accessibility, and other physiochemical proper-
ties) in a principled way. When predicting the alignment  
y = ( y1, y2, …) for two given protein sequences x = (sa, sb), 
each sequence location is described by a vector of features. 
The discriminative approach of structural SVMs makes it 
easy to incorporate these extra features without having to 
make unjustified independence assumptions as in genera-
tive models. As explained below, this enables learning a 
“richer” substitution function w × F (x, yi) instead of a fixed 
substitution matrix.

The Smith–Waterman algorithm uses a linear function 
for scoring alignments, which allows us to decompose the 

Figure 5. Aligning a new protein sequence with a known protein 
structure. Features at the aligned positions are used to construct 
substitution matrices under different alignment models.

Know protein (Position 10)
amino acid: Methionine (M)
2nd structure: alpha helix
solvent access: Exposed

New protein (Position 11)
amino acid: Valine (V)
2nd structure (predicted): loop
solvent access (predicted): Buried

new
SQYGWNAYIDN-LMADKnown

SWQTYVDTNLVCT QGF

Figure 4. Subtopic loss comparison when retrieving five documents. 
Structural SVM performance is superior with 95% confidence (using 
signed rank test).
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Information Retrieval (IR) community has designed other per-
formance measures, like the F1-Score and the Precision/Recall 
Breakeven Point (PRBEP) (see e.g., Baeza-Yates and Ribeiro-
Neto1), that are meaningful even with unbalanced classes.

What does this mean for learning? Instead of optimiz-
ing some variant of error rate during training, which is what 
conventional SVMs and virtually all other learning algo-
rithms do, it seems like a natural choice to have the learning 
algorithm directly optimize, for example, the F1-Score (i.e., 
the harmonic mean of precision and recall). This is the point 
where our binary classification task needs to become a struc-
tured output problem, since the F1-Score (as well as many 
other IR measures) is not a function of individual examples 
(like error rate), but a function of a set of examples. In partic-
ular, we arrive at the structured output problem of predict-
ing an array of labels y = ( y1, …, yn), yi Î {−1, +1}, for an array 
of feature vectors x = (x1, …, xn), xi Î ÂN. Each possible array 
of labels y– now has an associated F1-Score F1(y, y–) w.r.t. the 
true labeling y, and optimizing F1-Score on the training set 
becomes a well-defined problem.

The problem of predicting an array of binary labels y for 
an array of input vectors x optimizing a loss function D(y, y–) 
fits neatly into the structural SVM framework. Again, we only 
need to define Y(x, y) and D(y, y–) appropriately, and then find 
algorithms for the two argmax problems. The choice of loss 
function is obvious: when optimizing F1-Score, which ranges 
from 0 (worst) to 1 (best), we will use

D (y, y–) = 1 - F1(y, y–).

For the joint feature mapping, using

can be shown to be a natural choice, since it makes the struc-
tural SVM equivalent to a conventional SVM if error rate is 
used as the loss D(y, y

_
). It also makes computing a prediction 

very efficient with

h(x) = arg
y
max {w × Y(x, y)} = (sign(w × x1),..., sign(w × xn)).

Computing the loss-augmented argmax necessary for train-
ing is a bit more complicated and depends on the particular 
loss function used, but it can be done in time at most O(n2) 
for any loss function that can be computed from the contin-
gency table of prediction errors.12 SVMper f is an implementa-
tion of the method for various performance measures.
Experiments: Table 1 shows the prediction performance of 
the structural SVM on four benchmark datasets, described 
in more detail in Joachims.12 In particular, it compares the 
structural SVM that directly optimizes the measure it is eval-
uated on (here F1, PRBEP, and ROCArea) to a conventional 
SVM that accounts for unbalanced classes with a linear cost 
model. For both methods, parameters were selected to opti-
mize the evaluation measure via cross validation. In most 
cases, the structural SVM outperforms the conventional 
SVM, and it never does substantially worse.

Beyond these performance gains, the structural SVM 
approach has an attractive simplicity to it—direct optimization 

For all sequence pairs x in the training, validation, and test 
sets both structures are known, and we use the CE structural 
alignment program23 to generate “correct” alignments y.

The red bars in Figure 6 shows the Q4-scores (i.e., 100 
minus Q4-loss) of the five alignment models described 
above. By carefully introducing features and considering 
their interactions, we can build highly complex alignment 
models (with hundreds of thousands of parameters) with 
very good alignment performance. Note that a conventional 
substitution matrix has only 202 = 400 parameters.

SSALN20 (blue bar) uses a generative alignment model for 
parameter estimation, and is trained using the same train-
ing set and features as the structural SVM algorithm. The 
structural SVM model Window substantially outperforms 
SSALN on Q4-score. Incorporating profile information makes 
the SVM model Profile perform even better, illustrating the 
benefit of being able to easily add additional features in dis-
criminative training. The result from BLAST (green bar) is 
provided as a baseline.

To get a plausible upper bound for further improvements, 
we check in how far the CE alignments we used as ground 
truth agree with the structural alignments computed by 
TM-Align.33 TM-Align gives a Q4-score of 85.45 when using 
the CE alignments as ground truth to compare against. This 
provides a reasonable upper bound on the alignment accu-
racy we might achieve on this noisy dataset. However, it also 
shows significant room for further research and improve-
ment from our current alignment models.

3.3. Binary classification with unbalanced classes
Even binary classification problems can become structured 
output problems in some cases. Consider, for example, the 
case of learning a binary text classification rule with the 
classes “machine learning” and “other topics.” Like most text 
classification tasks, it is highly unbalanced, and we might only 
have, say, 1% machine-learning documents in our collection. 
In such a situation, prediction error typically becomes mean-
ingless as a performance measure, since the default classi-
fier that always predicts “other topics” already has a great 
error rate that is hard to beat. To overcome this problem, the 

Figure 6. Q4-score of various Structural SVM alignment models  
compared to two baseline models. The Structural SVM using 
Window or Profile features significantly outperforms the SSALN 
baseline. The number in brackets is the number of features of the 
corresponding alignment model.
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of the desired performance measure instead of using proxy 
measures during training (e.g., different linear cost models). 
However, there are still several open question before mak-
ing this process fully automatic; for example, understand-
ing the interaction between D and Y as recently explored in 
Chakrabarti et al. and Chapelle et al.3, 4

4. CONCLUSION AND OUTLOOK
In summary, structural SVMs are flexible and efficient meth-
ods for structured output prediction with a wide range of 
potential applications, most of which are completely or 
largely unexplored. Other explored applications include 
hierarchical classification,2 clustering,7 and optimizing aver-
age precision.30 Due to the universality of the cutting-plane 
training algorithm, only relatively small API changes are 
required for any new application. SVMstruct is an implemen-
tation of the algorithm with APIs in C and Python, and it is 
available at svmlight.joachims.org.

Beyond applications, there are several areas for research in 
further developing the method. One such area is training struc-
tural SVMs with Kernels. While the cutting-plane method can 
be extended to use Kernels, it becomes quite slow and more 
efficient methods are needed.28 Another area results from that 
fact that solving the two argmax problems exactly is intracta-
ble for many application problems. However, for many such 
problems there exist methods that compute approximate 
solutions. An interesting question is how the approximation 
quality affects the quality of the structural SVM solution.8
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