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Abstract

How can we e�ciently gather information
to optimize an unknown function, when
presented with multiple, mutually dependent
information sources with di↵erent costs? For
example, when optimizing a physical system,
intelligently trading o↵ computer simulations
and real-world tests can lead to significant
savings. Existing multi-fidelity Bayesian
optimization methods, such as multi-fidelity
GP-UCB or Entropy Search-based ap-
proaches, either make simplistic assumptions
on the interaction among di↵erent fidelities
or use simple heuristics that lack theoretical
guarantees. In this paper, we study multi-
fidelity Bayesian optimization with complex
structural dependencies among multiple
outputs, and propose MF-MI-Greedy, a prin-
cipled algorithmic framework for addressing
this problem. In particular, we model
di↵erent fidelities using additive Gaussian
processes based on shared latent relation-
ships with the target function. Then we use
cost-sensitive mutual information gain for
e�cient Bayesian optimization. We propose
a simple notion of regret which incorporates
the varying cost of di↵erent fidelities, and
prove that MF-MI-Greedy achieves low regret.
We demonstrate the strong empirical per-
formance of our algorithm on both synthetic
and real-world datasets.

1 Introduction

Optimizing an unknown function that is expensive to
evaluate is a common problem in real applications. Ex-
amples include experimental design for protein engi-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

neering, where chemists need to synthesize designed
amino acid sequences and then test whether they sat-
isfy certain properties (Romero et al., 2013); or black-
box optimization for material science, where scientists
need to run extensive computational experiments at
various levels of accuracy to find the optimal material
design structure (Fleischman et al., 2017). Conduct-
ing real experiments could be labor-intensive and time-
consuming. In practice, one often utilizes alternative
ways to gather information to make the most e↵ec-
tive use of the real experiments that are conducted. A
prevalent example is the use of computer simulation
(van Gunsteren & Berendsen, 1990), which tends to
be less time consuming but produces less accurate re-
sults. For instance, computer simulation is ubiquitous
in robotic applications, e.g. one tests a control policy
first in simulation before deploying it in a real physical
system (Marco et al., 2017).

The central challenge in e�ciently using multiple
sources of information is captured in the general
framework of multi-fidelity optimization (Forrester
et al., 2007; Kandasamy et al., 2016, 2017; Marco
et al., 2017; Sen et al., 2018) where multiple measure-
ment/objective functions with varying degrees of accu-
racy and costs can be e↵ectively leveraged to provide
the maximal amount of information. However, strict
assumptions, such as requiring strict relations between
the quality and the cost of a lower fidelity function, and
two-stage query selection criteria (cf. §2.2) are likely
to lead to sub-optimal experiment design, and limit
their practicality.

In this paper, we propose a general and principled
multi-fidelity Bayesian optimization framework MF-

MI-Greedy (Multi-fidelity Mutual Information Greedy)
that prioritizes maximizing the amount of mutual in-
formation gathered across fidelity levels. Figure 1 cap-
tures the intuition of maximizing mutual information.
Gathering information from a lower fidelity measure-
ment also conveys information on the target fidelity.
We make this idea concrete in §4. Our method im-
proves upon prior work on multi-fidelity Bayesian op-
timization by establishing explicit connections across
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(a) Only querying target fidelity function. (b) Querying both target and a lower fidelity.

Figure 1: Depicting the benefit of multi-fidelity Bayesian optimization. The left panel shows normal single
fidelity Bayesian optimization where locations near a query point (crosses) have low uncertainty. When there
is a lower fidelity cheaper approximation in the right panel, by querying a large number of points of the lower
fidelity function, the uncertainty in the target fidelity can also be reduced significantly.

fidelity levels to enable joint posterior updates and hy-
perparameter optimization. In summary, our contri-
butions in this paper are:

• We study multi-fidelity Bayesian optimization
with complex structural dependencies among
multiple outputs (§3), and proposeMF-MI-Greedy,
a principled algorithmic framework for addressing
this problem (§4).

• We propose a simple notion of regret which incor-
porates the cost of di↵erent fidelities, and prove
that MF-MI-Greedy achieves low regret (§5).

• We demonstrate the empirical performance of
MF-MI-Greedy on both simulated and real-world
datasets (§6).

2 Background and Related Work

In this section, we review related work on Bayesian
optimization with Gaussian processes (GPs).

2.1 Background on Gaussian Processes

A Gaussian process (Rasmussen & Williams, 2006)
models an infinite collection of random variables, each
indexed by an x 2 X , such that every finite subset of
random variables has a multivariate Gaussian distribu-
tion. The GP distribution GP (µ(x), k(x, x0)) is a joint
Gaussian distribution over all those (infinitely many)
random variables specified by its mean µ(x) = E [f(x)]
and covariance (also known as kernel) function:

k(x, x0) = E [(f(x)� µ(x)) (f(x0)� µ(x0))] .

A key advantage of GPs is that it is very ef-
ficient to perform inference. Assume that f ⇠

GP(µ(x), k(x, x0)) is a sample from the GP distri-
bution, and that y = f(x) + "(x) is a noisy obser-
vation of the function value f(x). Here, the noise
"(x) ⇠ N (0,�2(x)) could depend on the input x.
Suppose that we have selected S ✓ X and received
yS = [f(xi) + "(xi)]xi2S . We can obtain the poste-
rior mean µS(x) and covariance kS(x, x0) of the func-
tion through the covariance matrix KS = [k(xi, xj) +
�ij�2(xi)]xi,xj2S and kS(x) = [k(xi, x)]xi2S :

µS(x) = µ(x) + kS(x)
|K�1

S yS (2.1)

kS(x, x
0) = k(x, x0)� kS(x)

|K�1
S kS(x

0), (2.2)

where �ij is the Kronecker delta function.

2.2 Bayesian Optimization via GPs

Single-fidelity Gaussian Process optimization

Optimizing an unknown and noisy function is a com-
mon task in Bayesian optimization. In real applica-
tions, such functions tend to be expensive to evaluate,
for example tuning hyperparameters for deep learning
models (Snoek et al., 2012), so it is typically desir-
able to minimize the number of evaluation queries. A
Gaussian process is an expressive and flexible tool to
model a large class of functions. A classical method for
Bayesian optimization with GPs is GP-UCB (Srinivas
et al., 2010), which treats Bayesian optimization as a
multi-armed bandit problem and proposes an upper-
confidence bound based algorithm for query selections.

Entropy search (Hennig & Schuler, 2012) represents
another class of GP-based Bayesian optimization
approach. Its main idea is to directly search for the
global optimum of an unknown function through
queries. Each query point is selected based on its in-
formativeness in learning the location for the function
optimum. Predictive entropy search (Hernández-
Lobato et al., 2014) addresses some computational
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issues from entropy search by maximizing the ex-
pected information gain with respect to the location of
the global optimum. Max-value entropy search (Wang
et al., 2016; Wang & Jegelka, 2017) instead focuses
on identifying the value of the global optimum, which
e↵ectively avoids issues related to the dimension of
the search space, and the authors are able to provide
regret bounds previous entropy search methods lacked.

A computational consideration for learning with GPs
is how to optimize specific kernels used to model the
covariance structures of GPs. As this optimization
task depends on the dimension of feature space, ap-
proximation methods are often needed to speed up the
learning process. For instance, Random Fourier fea-
tures (Rahimi & Recht, 2008) can be e�cient tools for
dimension reduction and are often employed in GP re-
gression tasks (Lázaro-Gredilla et al., 2010). As elab-
orated on in §4, our algorithmic framework o↵ers the
flexibility of choosing among di↵erent single-fidelity
optimization approaches as a subroutine, so that one
can take advantage of these computational and ap-
proximation algorithms for e�cient optimization.

Multi-output Gaussian Process In some applica-
tions, it is desirable to model multiple correlated out-
puts with Gaussian processes. Most GP-based multi-
output models create correlated outputs by mixing a
set of independent latent processes. A simple form
of such a mixing scheme is the linear model of core-
gionalization (Teh et al., 2005; Bonilla et al., 2008),
where each output is modeled as a linear combination
of latent GPs with fixed coe�cients. The dependen-
cies among outputs are captured by sharing those la-
tent GPs. More complex structures can be captured
by a linear combination of GPs with input-dependent
coe�cients (Wilson et al., 2012), shared inducing vari-
ables (Nguyen & Bonilla, 2014), or convolved process
(Boyle & Frean, 2005; Alvarez & Lawrence, 2009).
In comparison with single fidelity/output GPs, multi-
output GPs often require more sophisticated approx-
imate models for e�cient optimization, e.g., using in-
ducing points (Snelson & Ghahramani, 2007) to reduce
the storage and computational complexity, and varia-
tional inference approaches to approximate the poste-
rior of the latent processes (Titsias, 2009; Nguyen &
Bonilla, 2014). While the analysis of our framework is
not limited to a fixed structural assumption in model-
ing the joint distribution among multiple outputs, for
e�ciency concerns, we use a simple, additive model
between multiple fidelity outputs in our experiments
(cf. §6.1) to demonstrate the e↵ectiveness of the opti-
mization framework.

Multi-fidelity Bayesian optimization Multi-
fidelity optimization is a general framework that cap-

tures the trade-o↵ between cheap low quality ver-
sus expensive high quality experiments. Recently,
there have been several works on using GPs to model
functions of di↵erent fidelity levels. Recursive co-
kriging (Forrester et al., 2007; Le Gratiet & Garnier,
2014) considers an autoregressive model for multi-
fidelity GP regression, which assumes that the higher
fidelity consists of a lower fidelity term and an inde-

pendent GP term which models the systematic error
for approximating the higher-fidelity output. There-
fore, one can model cross-covariance between the high-
fidelity and low-fidelity functions using the covariance
of the lower fidelity function only. Virtual vs Real
(Marco et al., 2017) extends this idea to Bayesian op-
timization. The authors consider a two-fidelity setting
(i.e., virtual simulations and real system experiments),
where they model the correlation between the two fi-
delities through co-kriging, and then apply entropy
search (ES) to optimize the target output. Zhang
et al. (2017) model the dependencies between di↵erent
fidelities with convolved Gaussian processes (Alvarez
& Lawrence, 2009), and then apply predictive entropy
search (PES) (Hernández-Lobato et al., 2014) to ef-
ficient exploration. Although both multi-fidelity ES
and multi-fidelity PES heuristics have shown promis-
ing empirical results on some datasets, little is known
about their theoretical performance.

Recently, Kandasamy et al. (2016) proposed Multi-
fidelity GP-UCB (MF-GP-UCB), a principled frame-
work for multi-fidelity Bayesian optimization with
Gaussian processes. In their followup works (Kan-
dasamy et al., 2017; Sen et al., 2018), the authors ad-
dress the disconnect issue by considering a continuous
fidelity space and performing joint updates to e↵ec-
tively share information among di↵erent fidelity levels.

In contrast to our general assumption on the joint dis-
tribution between di↵erent fidelities, Kandasamy et al.
(2016) and Sen et al. (2018) assume a specific structure
over multiple fidelities, where the cost of each lower fi-
delity is determined according to the maximal approx-
imation error in function value when compared with
the target fidelity. Kandasamy et al. (2017) consider a
two-stage optimization process, where the action and
the fidelity level are selected in two separate stages.
We note that this procedure may lead to non-intuitive
choices of queries: For example, in a pessimistic case
where the low fidelity only di↵ers from the target fi-
delity by a constant shift, their algorithm is likely to
focus only on querying the target fidelity actions even
though the low fidelity is as useful as the target fi-
delity. In contrast, as described in §4, our algorithm
jointly selects a query point and a fidelity level so such
sub-optimality can be avoided.

Another related work is the multi-fidelity version of
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Truncated Variance Reduction (TruVaR) proposed in
(Bogunovic et al., 2016) where each fidelity level is
represented by the target fidelity plus a known ho-
moscedastic noise function. Costs for querying each
fidelity is inversely related to the variance of the noise.
TruVar uses variance reduction per unit cost as the ac-
quisition function. Similar to Kandasamy et al. (2017),
TruVar treats each fidelity level separately whereas
our proposed approach considers di↵erent fidelity lev-
els jointly. Furthermore, in our experiments, we don’t
assume knowledge about noise functions and instead
learn them with Gaussian processes.

3 Problem Statement

Payo↵ function and auxiliary functions Con-
sider the problem of maximizing an unknown payo↵
function fm : X ! R. We can probe the function
fm by directly querying it at some x 2 X and ob-
taining a noisy observation yhx,mi = fm(x) + ", where
" ⇠ N (0,�2) denotes i.i.d. Gaussian white noise. In
addition to the unknown payo↵ function fm, we are
also given query access to other unknown auxiliary
functions f1, . . . , fm�1 : X ! R; similarly, we obtain a
noisy observation yhx,`i = f`(x)+" when querying f` at
x. Here, each f` could be viewed as a low-fidelity ver-
sion of fm for ` < m. For example, if fm(x) represents
the reward obtained by running a physical system with
input x, then f`(x) may represent the simulated payo↵
from a numerical simulator at fidelity level `.

Joint distribution on multiple fidelities We as-
sume that multiple fidelities {f`}`2[m] are mutually
dependent through a joint probability distribution
P[f1, . . . , fm]. In particular, we model P with a mul-
tiple output Gaussian process; hence the marginal
distribution on each fidelity is a separate GP, i.e.,
8` 2 [m], f` ⇠ GP(µ`(x), k`(x, x0)), where µ`, k` spec-
ify the (prior) mean and covariance at fidelity level `.

Action, reward, and cost Let us use hx, `i to de-
note the action of querying f` at x. Each action hx, `i
incurs a cost of �`, and achieves a reward:

q(hx, `i) =
(
fm(x) if ` = m

qmin o.w.
(3.1)

That is, performing hx,mi (at the target fidelity)
achieves a reward fm(x). We receive the minimal im-
mediate reward qmin with lower fidelity actions hx, `i
for ` < m, even though it may provide some infor-
mation about fm and could thus lead to more in-
formed decisions in the future. W.l.o.g., we assume
that maxx fm(x) � 0, and qmin ⌘ 0.

Policy Let the policy ⇡ be an adaptive strategy
for picking actions. Specifically, a policy specifies
which action to perform next, based on the actions
picked so far and their corresponding observations.
We consider policies with a fixed budget ⇤: upon
termination, ⇡ returns a sequence of actions S⇡, such
that

P
hx,`i2S⇡ �`  ⇤. Note that for a given policy

⇡, the sequence S⇡ is random, and depends on the
joint distribution P and the (random) observations of
the selected actions.

Objective Given a budget ⇤, our goal is to maxi-
mize the expected cumulative reward, so as to iden-
tify an action hx,mi with performance close to x⇤ =
argmaxx2X fm(x) as rapidly as possible. Formally, we
seek:

⇡⇤ = argmax
⇡:

P
hx,`i2S⇡ �`⇤

ES⇡

2

4
X

hx,`i2S⇡

q(hx, `i)

3

5 . (3.2)

Remarks Problem 3.2 strictly generalizes the opti-
mal value of information (VoI) problem (Chen et al.,
2015) to the online setting. To see this, consider
the scenario where �m � �` for ` < m, and ⇤ 2
(�m, 2�m). To achieve a non-zero reward, a policy
must pick hx,mi as the last action before exhausting
the budget ⇤. Therefore, our goal translates to adap-
tively choosing lower fidelity actions that are the most
informative about x⇤ under budget ⇤� �m, which re-
duces to the optimal VoI problem.

4 The Multi-fidelity BO Framework

We now present MF-MI-Greedy, a general framework
for multi-fidelity Gaussian process optimization. In a
nutshell, MF-MI-Greedy attempts to balance the “ex-
ploratory” low-fidelity actions and the more expensive
target fidelity actions, based on how much informa-
tion (per unit cost) these actions could provide about
the target fidelity function. Concretely, MF-MI-Greedy

proceeds in rounds under a given budget ⇤. Each
round can be divided into two phases: (i) an explo-
ration (i.e., information gathering) phase, where the
algorithm focuses on exploring the low fidelity actions,
and (ii) an optimization phase, where the algorithm
tries to optimize the payo↵ function fm by performing
an action hx,mi at the target fidelity. The pseudo-
code of the algorithm is provided in Algorithm 1.

A key challenge in designing the algorithm is to decide
when to stop exploration, or equivalently, to invoke
the optimization phase. While somewhat analogous
to the exploration-exploitation tradeo↵ in the classi-
cal single-fidelity Bayesian optimization problems, the
multi-fidelity setting has a more distinctive notion of
“exploration” and a more complicated structure of the
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Algorithm 1: Multi-fidelity Mutual Information
Greedy Optimization (MF-MI-Greedy)

1 Input: Total budget ⇤; cost �i for all fidelities
i 2 [m]; joint GP (prior) distribution on {fi, "i}i2[m]

begin

2 S  ;
3 B  ⇤ ; /* initialize remaining budget */

while B > 0 do

/* explore with low fidelity */

4 L Explore-LF
�
B, [�`],GP

�
{f`, "`}`2[m]

�
,S

�

/* select target fidelity */

5 x⇤  SF-GP-OPT(GP ({fm, "m}) ,yS[L)
6 S  S [ L [ {hx⇤,mi}
7 B  ⇤� ⇤S ; /* update remaining budget */

8 Output: Optimizer of the target function fm

action space (i.e., each exploration phase corresponds
to picking a set of low fidelity actions). Furthermore,
note that there is no explicit measurement of the rel-
ative “quality” of a low fidelity action, as they all
have uniform reward by our modeling assumption (c.f.
Eq. (3.1)); hence we need a an appropriate measure to
keep track of the progress of exploration.

We consider an information-theoretic selection crite-
rion for picking low fidelity actions. The quality of a
low fidelity action hx, `i is captured by the information

gain, defined as the amount of entropy reduction in the
posterior distribution of the target payo↵ function1:
I
�
yhx,`i; fm

�� yS
�
= H

�
yhx,`i

�� yS
�
�H

�
yhx,`i

�� fm,yS
�
.

Here, S denotes the set of previously selected actions,
yS denote the observation history and H denotes the
entropy. Given an exploration budget B, our objec-
tive for a single exploration phase is to find a set of
low-fidelity actions, which are (i) maximally informa-
tive about the target function, (ii) better than the best
action on the target fidelity when considering the infor-
mation gain per unit cost (otherwise, one would rather
pick the target fidelity action to trade o↵ exploration
and exploitation), and (iii) not overly aggressive in
terms of exploration (since we would also like to re-
serve a certain budget for performing target fidelity
actions to gain reward).

Finding the optimal set of actions satisfying the above
design principles is computationally prohibitive, as it
requires us to search through a combinatorial (for fi-
nite discrete domains) or even infinite (for continuous
domains) space. In Algorithm 2, we introduce Explore-
LF, a key subroutine of MF-MI-Greedy, for e�cient ex-
ploration on low fidelities. At each step, Explore-LF

1An alternative, more aggressive information mea-
surement is the information gain over the optimizer of
the target function fm (Hennig & Schuler, 2012), i.e.,
I
�
yhx,`i; argmaxx fm(x)

�� yS
�
, or the optimal value of fm

(Wang & Jegelka, 2017), i.e., I
�
yhx,`i; maxx fm(x)

�� yS
�
.

Algorithm 2: Explore-LF: Explore low fidelities

1 Input: Exploration budget B; cost [�`]`2[m]; joint
GP distribution on {fi, "i}i2[m]; previously selected
items S

begin

2 L ; ; /* selected actions */

3 ⇤L  0 ; /* cost of selected actions */

4 �  1
↵(B) ; /* threshold (c.f. Theorem 1) */

while true do

/* greedy benefit-cost ratio */

5 hx⇤, `⇤i  

argmaxhx,`i:�`B�⇤L��m

I(yhx,`i;fm | yS[L)
�`

if `⇤ = null then

6 break ; /* budget exhausted */

if `⇤ = m then

7 break ; /* worse than target */

else if
I(yL[{hx⇤,`⇤i};fm | yS)

(⇤L+�`⇤ )
< � then

8 break ; /* low cumulative ratio */

else

9 L L [ {hx⇤, `⇤i}
10 ⇤L  ⇤L + �`⇤

11 Output: Selected set of items L from lower fidelities

takes a greedy step w.r.t. the benefit-cost ratio over
all actions. To ensure that the algorithm does not ex-
plore excessively, we consider the following stopping
conditions: (i) when the budget is exhausted (Line 6),
(ii) when a single target fidelity action is better than
all the low fidelity actions in terms of the benefit-cost
ratio (Line 7), and (iii) when the cumulative benefit-
cost ratio is small (Line 8). Here, the parameter � is

set to be ⌦
⇣

1p
B

⌘
to ensure low regret, and we defer

the detailed discussion of the choice of � to §5.2.

Optimization phase At the end of the exploration
phase, MF-MI-Greedy updates the posterior distribu-
tion of the joint GP using the full observation his-
tory, and searches for a target fidelity action via the
(single-fidelity) GP optimization subroutine SF-GP-

OPT (Line 5). Here, SF-GP-OPT could be any o↵-
the-shelf Bayesian optimization algorithm, such as GP-
UCB (Srinivas et al., 2010), GP-MI (Contal et al.,
2014), EST (Wang et al., 2016) and MVES (Wang &
Jegelka, 2017), TruVaR (Bogunovic et al., 2016), etc.
Di↵erent from the previous exploration phase which
seeks an informative set of low fidelity actions, the GP
optimization subroutine aims to trade o↵ exploration
and exploitation only within the target fidelity, and
outputs a single action at each round. MF-MI-Greedy

then iteratively proceeds to the next round until it
exhausts the preset budget, and finally outputs an es-
timator of the target function optimizer.
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5 Theoretical Analysis

In this section, we investigate the theoretical behavior
of MF-MI-Greedy. We first introduce an intuitive no-
tion of regret for the multi-fidelity setting, and then
state our main theoretical results.

5.1 Multi-fidelity Regret

Definition 1 (Episode). Let t 2 Z be any integer. We
call a sequence of items E = {hx1, `1i, . . . , hxt, `ti} an
episode, if 8⌧ < t : `⌧ < m and `t = m.

Note that only the last action of an episode is from
the target fidelity fm and all remaining actions are
from lower fidelities. We now define a simple notion of
regret for an episode.

Definition 2 (Episode regret). The regret of an
episode E = {hx1, `1i, . . . , hxt,mii} is:

r(E) = ⇤E
�m

f⇤
m � q(E), (5.1)

where ⇤E :=
P

hx,`i2E �` is the total cost of episode
E , f⇤

m := max
x

fm(x), and q(E) := fm (xt) denotes the

reward value of the last action on the target fidelity.

Suppose we run policy ⇡ under budget ⇤ and select a
sequence of actions S⇡. One can represent S⇡ using
multiple episodes S⇡ = {E(1), . . . , E(k)}, where E(j) =
L(j) [ {hx,mi(j)} denotes the sequence of low fidelity
actions L(j) and target fidelity action hx,mi(j) selected
at the jth episode. Let ⇤(j)

E be the cost of episode j;

clearly
Pk

j=1 ⇤
(j)
E  ⇤. We define the multi-fidelity

cumulative regret as follows.

Definition 3 (Cumulative regret). The cumulative re-
gret of policy ⇡ under budget ⇤ is:

R(⇡,⇤) =
⇤

�m
f⇤
m �

kX

j=1

q(E(j)). (5.2)

Intuitively, Definition 3 characterizes the di↵erence be-
tween the cumulative reward of ⇡ and the best possible
reward gathered under budget ⇤.2

5.2 Regret Analysis

In the following, we establish a bound on the cumula-
tive regret of MF-MI-Greedy, as a function of the mu-
tual information between the target fidelity function
and the actions attained by the algorithm.

2Note that our notion of cumulative regret is di↵erent
from the multi-fidelity regret (Eq. (2)) of Kandasamy et al.
(2016). Although both definitions reduce to the classical
single-fidelity regret (Srinivas et al., 2010) when m = 1,
Definition 3 has a simpler form and intuitive interpretation.

Theorem 1. Assume that MF-MI-Greedy terminates

in k episodes, and w.h.p., the cumulative regret in-

curred by SF-GP-OPT is upper bounded by C1
p
⇤�m,

where C1 is some constant independent of ⇤, and �m
denotes the mutual information gathered by the target

fidelity actions chosen by SF-GP-OPT (equivalently by

MF-MI-Greedy). Then, w.h.p, the cumulative regret of

MF-MI-Greedy (Algorithm 1) satisfies:

R(MF-MI-Greedy,⇤)  C1

p
⇤�m + C2↵⇤�L,

where ↵⇤ = maxB⇤ ↵(B), C2 is some constant in-

dependent of ⇤, and �L =
Pk

j=1 I

⇣
y
(j)
L ; fm

��� y(1:j�1)
E

⌘

denotes the mutual information gathered by the low fi-

delity actions when running MF-MI-Greedy.

The proof of Theorem 1 is provided in the Appendix.
Similar to the single-fidelity setting, a desirable asymp-
totic property of a multi-fidelity optimization algo-
rithm is to be no-regret, i.e., lim⇤!1 R(⇡,⇤)/⇤! 0.

If we set ↵(B) = o
⇣p

B
⌘
, then Theorem 1 reduces

to R(MF-MI-Greedy,⇤)  C1
p
⇤�m + C2�L · o

⇣p
⇤
⌘
.

Clearly, MF-MI-Greedy is no-regret as ⇤!1.

Furthermore, let us compare the above result with
the regret bound of the single-fidelity GP optimiza-
tion algorithm SF-GP-OPT. By the assumption of The-
orem 1, we know R(SF-GP-OPT,⇤) = O

�p
⇤�0

m

�
,

where �0
m is the information gain of all the (target

fidelity) actions by running SF-GP-OPT for b⇤/�mc
rounds. When the low fidelity actions are very infor-
mative about the fm and have much lower costs than
�m (hence larger �L), the less likely MF-MI-Greedy will
focus on exploring the target fidelity, i.e., �m  �0

m,
and hence MF-MI-Greedy becomes more advantageous
to SF-GP-OPT. The implication of Theorem 1 is sim-
ilar in spirit to the regret bound provided in Kan-
dasamy et al. (2016), however, our results apply to a
much broader class of optimization strategies, as sug-
gested by the following corollary.

Corollary 2. Let ↵(B) = o
⇣p

B
⌘
. Running MF-MI-

Greedy with subroutine GP-UCB, EST, or GP-MI in the

optimization phase is no-regret.

6 Experiments

In this section, we empirically evaluate our algorithm
on three synthetic test function optimization tasks and
two practical optimization problems.

6.1 Experimental Setup

To model the relationship between a low fidelity func-
tion fi and the target fidelity function fm, we use an
additive model. Specifically, we assume that fi(x) =
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fm(x)+"i(x) for all fidelity levels i < m where "i is an
unknown function characterizing the error incurred by
a lower fidelity function. We use Gaussian processes
to model fm and "i. Since fm is embedded in every
fidelity level, we can use an observation from any fi-
delity to update the posterior for every fidelity level.
We use square exponential kernels for all the GP co-
variances, with hyperparameter tuning scheduled peri-
odically during optimization by maximizing likelihood
of the observed data. Specifically, we use a two-step
procedure: First, we keep the error functions fixed and
update the GP for the shared fm across all fidelities;
second, we keep the fm fixed for each fidelity level and
update the GP for the error function. We keep the
same experimental setup for MF-GP-UCB as in Kan-
dasamy et al. (2016). For all our experiments, we use
a total budget of 100 times the cost of target fidelity
function evaluation fm. When the optimal value f⇤

m

for fm is known, we compare simple regrets. Other-
wise, we compare simple rewards, which is defined as
the best objective value found so far.

6.2 Compared Methods

Our framework is general and we could plug in dif-
ferent single fidelity Bayesian optimization algorithms
for the SF-GP-OPT procedure in Algorithm 1. In our
experiment, we choose to use GP-UCB as one instan-
tiation. We compare with MF-GP-UCB (Kandasamy
et al., 2016) and GP-UCB (Srinivas et al., 2010).

6.3 Synthetic Examples

We first evaluate our algorithm on three synthetic
datasets, (a) Hartmann 6D, (b) Currin exponential
2D and (c) BoreHole 8D (Kandasamy et al., 2016).
We follow the setup used in Kandasamy et al. (2016)
to define lower fidelity functions, while we use a dif-
ferent definition of lower fidelity costs. We emphasize
that in synthetic settings, the artificially defined costs
do not have practical meanings, as function evalua-
tion costs do not di↵er across di↵erent fidelity levels.
Nevertheless, we set the cost of the function evalua-
tions (monotonically) according to the fidelity levels,
and present the results in Fig. 3. The x-axis repre-
sents the expended budget and the y-axis represents
the smallest simple regret. The error bars represent
one standard error over 20 runs of each experiment.

MF-MI-Greedy is generally competitive with MF-GP-

UCB. A common issue is its simple regrets tend to be
larger at the beginning. A cause for this behavior may
be the parameters controlling the termination condi-
tions early on are not tuned optimally, which leads to
over exploration in regions that do not reveal much
information on where the function optimum lies.

6.4 Real Experiments

We test our methods on two real-world settings: max-
imum likelihood inference for cosmological parameters
and experimental design for material science.

6.4.1 Maximum Likelihood Inference for

Cosmological Parameters

The first real-world experiment is to perform maxi-
mum likelihood inference on 3 cosmological param-
eters, the Hubble constant H0 2 (60, 80), the dark
matter fraction ⌦M 2 (0, 1) and the dark energy frac-
tion ⌦A 2 (0, 1). It thus has a dimensionality of 3.
The likelihood is given by the Roberson-Walker met-
ric, which requires a one-dimensional numerical inte-
gration for each point in the dataset from Davis et al.
(2007). In Kandasamy et al. (2017), the authors set up
two lower fidelity functions by considering two aspects
of computing the likelihood: (i) how many data points
(denoted by N) are used, and (ii) what is the discrete
grid size (denoted by G) for performing the numeri-
cal integration. The range for these two parameters
are N 2 [50, 192] and G 2 [102, 106]. We follow the fi-
delity levels selected in Kandasamy et al. (2017) which
correspond to two lower fidelities with (N1, G1) =
(97, 2.15 ⇥ 103), (N2, G2) = (145, 4.64 ⇥ 104) and the
target fidelity with (N3, G3) = (192, 106). Costs are
defined as the product of N and G.

Upon further investigation, we find that the grid sizes
selected above for performing numerical integration do
not a↵ect the final integral values, i.e., the grid size for
the lowest fidelity G1 = 2.15 ⇥ 103 is fine enough to
compute an approximation to the integration as using
the grid size for the target fidelity. So the costs used
are not an accurate characterization of the true com-
putation costs. As a result, we propose a di↵erent cost
definition that depends only on how many data points
are used to compute the likelihood, i.e., the new costs
for the 3 functions are (97, 145, 192), respectively.

The results using the original cost definition are shown
in Figure 3a. Note for this task we do not know the op-
timal likelihood, so we report the best objective value
so far (simple rewards) in the y-axis. Our method
MF-MI-Greedy (red) outperforms both baselines. The
results using the new cost definition are shown in Fig-
ure 3b. Our method obtains a consistent high likeli-
hood when the cost structure changes. However, MF-

GP-UCB’s quality degrades significantly, which implies
that it is sensitive to how the costs among fidelity lev-
els are defined. These two set of results demonstrate
the robustness of our method against costs, which is
a desirable property as inaccuracy in cost estimates is
inevitable in practical applications.
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(a) Hartmann 6D] (b) Currin Exp 2D (c) BoreHole 8D

Figure 2: Synthetic datasets. For the Hartmann 6D dataset, costs = [1, 2 ,4, 8]; for Currin Exp 2D, costs = [1,
3]; for BoreHole 8D, costs = [1, 2]. Error bar shows one standard error over 20 runs for each experiment.

(a) M.L. with grid cost. (b) M.L. with observation cost. (c) Nanophotonic FOM.

Figure 3: Two cost settings for maximum likelihood inference task and the task of optimizing FOM for nanopho-
tonic structures. Error bar shows one standard error over 20 runs for each experiment.

6.4.2 Optimizing Nanophotonic Structures

The second real-world experiment is motivated by a
material science task of designing nanophotonic struc-
tures with desired color filtering property (Fleischman
et al., 2017). In this setup, a nanophotonic structure
is characterized by the following 5 parameters: mir-
ror height, film thickness, mirror spacing, slit width,
and oxide thickness. For each parameter setting, we
use a fitness score, commonly called a figure-of-merit
(FOM), to represent how well the resulting structure
satisfies the desired color filtering property. By op-
timizing the FOM, we can find a set of high-quality
design parameters.

Traditionally, perfect estimation of FOMs can only be
performed through the actual fabrication of a structure
and the testing of its various physical properties, which
is a time-consuming process. Of course, simulations
can be utilized to estimate what physical properties a
design will have. By solving a variant of the Maxwell’s
equations, we can simulate the transmission of the
light spectrum and compute FOM from the spectrum.
We data at three fidelity levels from 5000 nanopho-
tonic structures. What distinguishes each fidelity is
the mesh size used to solve the Maxwell’s equations.
Finer meshes lead to more accurate results. Specifi-
cally, lowest fidelity uses a mesh size of 3nm ⇥ 3nm,

the middle fidelity 2nm ⇥ 2nm and the target fidelity
1nm⇥ 1nm. The costs, simulation time, are inversely
proportional to the mesh size, so we use the following
costs [1, 2.25, 9] for our three fidelity functions.

Figure 3c shows the results of this experiment. Here,
the x-axis is the cost and y-axis is negative FOM. After
a small portion of the budget is used in initial explo-
ration, MF-MI-Greedy (red) is able to arrive at a better
final design compared with MF-GP-UCB and GP-UCB.

7 Conclusion

In this paper, we investigated multi-fidelity Bayesian
optimization, and proposed a general and principled
framework for addressing the problem. We introduced
an intuitive notion of regret, and showed that our
framework is able to lift many popular, o↵-the-shelf
single-fidelity GP optimization algorithms to the
multi-fidelity setting while still preserving their
original regret bounds. We demonstrated the perfor-
mance of our algorithm on several synthetic and real
datasets.
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J., and Póczos, B. Gaussian process bandit optimi-
sation with multi-fidelity evaluations. In Advances

in Neural Information Processing Systems, pp. 992–
1000, 2016. URL https://bit.ly/2Qngemh. 1, 3,
6, 7

Kandasamy, K., Dasarathy, G., Schneider, J., and
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A Proofs for §5

A.1 Proofs of Theorem 1

Proof of Theorem 1. Assume that MF-MI-Greedy ter-
minates within k episodes. Let us use E(1), . . . , E(k)

to denote the sequence of actions selected by MF-

MI-Greedy, where E(j) := L(j) [ {hx,mi(j)} denotes
the sequence of actions selected at the jth episode.

Further, let ⇤(j)
E be the cost of the jth episode, and

⇤(j)
L = ⇤(j)

E � �m the cost of lower fidelity actions of
the jth episode. The budget allocated for the target

fidelity is k�m = ⇤ �
Pk

j=1 ⇤
(j)
L . By definition of the

cumulative regret (Eq. (5.2)), we get

R(⇡,⇤) =
⇤

�m
f⇤
m �

kX

j=1

q(L(j) [ {hx,mi(j)})

=
⇤

�m
f⇤
m �

0

@
kX

j=1

⇠⇠⇠⇠:0
q(L(j)) +

kX

j=1

q(hx,mi(j))

1

A

=
⇤

�m
f⇤
m �

kX

j=1

fm
⇣
x(j)

⌘

=

✓
⇤

�m
� k

◆
f⇤
m +

kX

j=1

⇣
f⇤
m � fm

⇣
x(j)

⌘⌘

=
f⇤
m

�m
·

kX

j=1

⇤(j)
L +

kX

j=1

⇣
f⇤
m � fm

⇣
x(j)

⌘⌘

(A.1)

The first term on the R.H.S. of Eq. (A.1) represents
the regret incurred from exploring the lower fidelity ac-
tions, while the second term represents the regret from
the target fidelity actions (chosen by SF-GP-OPT).

According to the stopping condition of Algorithm 2 at
Line 8, we know that when Explore-LF terminates at
episode j, the selected low fidelity actions L satisfy

I

⇣
y
(j)
L ; fm

��� y(1:j�1)
E

⌘

⇤(j)
L

� �j ,

where y(1:j)
E :=

Sj
u=1 y

(u)
E denotes the observations ob-

tained up to episode j, and �j specifies the stopping
condition of Explore-LF at episode j. Therefore

kX

j=1

⇤(j)
L 

kX

j=1

I

⇣
y
(j)
L ; fm

��� y(1:j�1)
E

⌘

�j
(A.2)

(a)
 ↵⇤

kX

j=1

I

⇣
y
(j)
L ; fm

��� y(1:j�1)
E

⌘

= ↵⇤�L

where step (a) is because ↵⇤ = maxB ↵(B) > 1
�j

for

j 2 [k]. Recall that �1 = 1
o(

p
⇤)

. Therefore,

f⇤
m

�m
·

kX

j=1

⇤(j)
L  f⇤

m

�m
· ↵⇤�L. (A.3)

Note that the second term of Eq. (A.1) is the re-
gret of MF-MI-Greedy on the target fidelity. Since
all the target fidelity actions are selected by the
subroutine SF-GP-OPT, by assumption, we knowPk

j=1

�
f⇤
m � fm

�
x(j)

��
=

p
C�mk�m 

p
C�m⇤.

Combining this with Eq. (A.3) completes the
proof.

A.2 Proof of Corollary 2

To show that running MF-MI-Greedy with subroutine
GP-UCB (Srinivas et al., 2010), EST (Wang et al.,
2016), or GP-MI (Contal et al., 2014) in the optimiza-
tion phase is no-regret, it su�ces to show that the can-
didate subroutines GP-UCB, EST, and GP-MI satisfy
the assumption on SF-GP-OPT as provided in Theo-
rem 1. From the references above we know that the
statement is true.


	Introduction
	Background and Related Work
	Background on Gaussian Processes
	Bayesian Optimization via GPs

	Problem Statement
	The Multi-fidelity BO Framework
	Theoretical Analysis
	Multi-fidelity Regret
	Regret Analysis

	Experiments
	Experimental Setup
	Compared Methods
	Synthetic Examples
	Real Experiments
	Maximum Likelihood Inference for Cosmological Parameters
	Optimizing Nanophotonic Structures


	Conclusion

