
An Efficient Simulation-based Approach to Ambulance Fleet Allocation
and Dynamic Redeployment

Yisong Yue and Lavanya Marla and Ramayya Krishnan
iLab, H. John Heinz III College

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213
{yisongyue, lavanyamarla, rk2x}@cmu.edu

Abstract
We present an efficient approach to ambulance fleet al-
location and dynamic redeployment, where the goal is
to position an entire fleet of ambulances to base loca-
tions to maximize the service level (or utility) of the
Emergency Medical Services (EMS) system. We take a
simulation-based approach, where the utility of an al-
location is measured by directly simulating emergency
requests. In both the static and dynamic settings, this
modeling approach leads to an exponentially large ac-
tion space (with respect to the number of ambulances).
Futhermore, the utility of any particular allocation can
only be measured via a seemingly “black box” simula-
tor. Despite this complexity, we show that embedding
our simulator within a simple and efficient greedy al-
location algorithm produces good solutions. We derive
data-driven performance guarantees which yield small
optimality gap. Given its efficiency, we can repeatedly
employ this approach in real-time for dynamic reposi-
tioning. We conduct simulation experiments based on
real usage data of an EMS system from a large Asian
city, and demonstrate significant improvement in the
system’s service levels using static allocations and re-
deployment policies discovered by our approach.

1 Introduction
Emergency Medical Services (EMS) comprise an impor-
tant component of public services, and involve allocation of
scarce resources as critical events occur. The life and death
nature of the events involved and the generally limited avail-
ability of resources necessitate the use of sophisticated ana-
lytical tools to design and operate EMS systems. Within this
domain, one important resource allocation challenge is how
to allocate and dynamically reposition ambulances to best
serve a given set of requests.

Due to their computational convenience, conventional ap-
proaches typically employ relatively simple models that do
not fully capture the dynamics of how particular ambulance
allocations provide service to some distribution of emer-
gency requests (Larson and Stevenson 1972; Brotcorne, La-
porte, and Semet 2003; Budge, Ingolfsson, and Erkut 2007;
Erkut, Ingolfsson, and Erdogan 2008) or capture them ap-
proximately (Restrepo, Henderson, and Topaloglu 2009).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, how any given request is served depends on
which ambulances are available when that request arrives –
this can give rise to congestion and other interdependencies.
Such dependencies typically can only be captured via simu-
lation, which consequently are often used for final evaluation
(Restrepo, Henderson, and Topaloglu 2009).

In this paper, we propose an optimization approach that
directly incorporates a simulator as a subroutine. By lever-
aging structural properties, we show that, for a large class
of fitness measures,1 the problem can be efficiently solved
to near-optimality using a simple and efficient greedy ap-
proach. Furthermore, due its efficiency, we can repeatedly
apply our approach in real-time for dynamic repositioning.
This allows us to employ a two-tiered optimization approach
that combines static allocation with real-time repositioning
to deal with congestion and other “hotspots” that arrive.

We applied our approach to an EMS provider in Asia,
where such a system is being established to meet emer-
gent demand for service. The setting is highly resource-
constrained due to the relatively small number of ambu-
lances. We demonstrate that, by directly leveraging a simula-
tor for optimization, our approach can significantly improve
the performance of the system along several metrics.

2 Related Work
The study of vehicle allocation (or deployment) for Emer-
gency Medical Services (EMS) enjoys a rich history. The
general setting can be described as computing an allocation
(and possibly a reallocation strategy) for a set of ambulances
such that some measure of fitness of the system is optimized.
As such, the two main technical challenges that arise are that
of system modeling and allocation optimization.

From the perspective of this work, the end goal of sys-
tem modeling is to accurately measure or evaluate the fit-
ness of the system. Conventional methods typically em-
ploy mathematical models (cf. (Larson and Stevenson 1972;
Brotcorne, Laporte, and Semet 2003; Gendreau, Laporte,
and Semet 2005; Andersson and Värbrand 2006; Restrepo,
Henderson, and Topaloglu 2009)), and the desired fitness
measure can then be computed via fitting the model’s pa-
rameters to a particular system. Afterwards, optimization

1E.g., the number of requests served within 15 minutes.

or local search techniques are employed to identify a well-
performing allocation or set of allocations.

However, such mathematical programming approaches
often fail to fully characterize the dynamics of ambulance
dispatch and emergency response in general. In particular,
they fail to capture features such as time-dependent travel
times, congestion patterns and high variability in travel time
to hospital specified by patient. To that end, simulation-
based evaluation is often used.

Indeed, many recent modeling approaches employed sim-
ulations for final evaluation (Restrepo, Henderson, and
Topaloglu 2009; Maxwell et al. 2010). This implicit pref-
erence for simulation-based evaluation as the evaluation
method of choice motivates directly optimizing via simula-
tion during ambulance allocation.

Two natural areas for resource allocation are in allocation
of ambulances to bases, and dispatching of ambulances to re-
quests. We restrict ourselves to the former, since it typically
offers greater gains (which we observe empirically in our
experiments). In contrast to (Andersson and Värbrand 2006;
Bjarnason et al. 2009) which optimizes over both alloca-
tions and dispatching, our problem setting and algorithmic
approach yield provable aposteriori guarantees on optimal-
ity. In contrast to (Maxwell et al. 2010), we focus on allocat-
ing and repositioning entire fleets of ambulances rather than
individual ambulances.

Our approach is closely related to a line of coverage-based
optimization approaches known as submodular optimization
(Nemhauser, Wolsey, and Fisher 1978; Feige 1998; Khuller,
Moss, and Naor 1999; Leskovec et al. 2007). Applications
include optimizing information gain in sensor placements
(Leskovec et al. 2007; Krause, Singh, and Guestrin 2008;
Streeter, Golovin, and Krause 2009), conservation planning
(Golovin et al. 2011), maximizing cascading behavior in vi-
ral marketing (Kempe and Kleinberg 2003), and maximizing
information coverage in content recommendation (El-Arini
et al. 2009; Yue and Guestrin 2011). Submodular optimiza-
tion is an attractive formalism due to greedy forward selec-
tion achieving an (1− 1/e) approximation guarantee.

Our fitness function is essentially a notion of coverage
over a distribution of requests. We show that our optimiza-
tion objective is “close” to submodular in a data-dependent
way, which motivates a greedy optimization approach. We
then leverage this property to derive data-dependent bounds
on the optimality gap. Furthermore, we show how to com-
pute even tighter data-dependent bounds by more directly
leveraging the structure of our problem setting. Thus, unlike
many simulation-based multi-resource allocation problems
that are provably hard (e.g., (Sheldon et al. 2010)), our set-
ting lies within a regime where worst case instances that ad-
mit no approximation guarantee can be shown to not arise
through a posteriori analysis.

3 Data-driven Simulation
We first present a data-driven simulation approach for eval-
uating ambulance allocations. After simulating how a call
center assigns ambulances to a sequence of emergency re-
quests, we can then measure any evaluation metric of inter-
est (e.g., the number of requests serviced within 15 minutes).

Algorithm 1 SIMULATOR: Data-driven Simulator Method
1: input: (R,A, π, td), DISPATCH
2: W ← A //keeps track of which ambulances are free
3: R̂← ∅ //keeps track of active requests
4: initialize Y = {yr}r∈R such that yr ← ⊥
5: initialize events E ← R sorted in arrival order
6: insert redeployment events spaced every td minutes to E .
7: while |E| > 0 do
8: remove next arriving event e from E
9: if e = new request r then

10: yr ← DISPATCH(r,W,R) //dispatch policy
11: if yr 6= ⊥ then
12: R̂← R̂+ r(yr) //updating active requests
13: W ←W − yr //updating free ambulances
14: insert job completion event at time t̄r(yr) into E
15: end if
16: else if e = job completion event t̄r(yr) then
17: R̂← R̂− r(yr) //updating active requests
18: W ←W + yr //updating free ambulances
19: else if e = redeployment event then
20: W ← π(W, R̂) //redeploying free ambulances
21: end if
22: end while
23: return: Processed assignments of ambulances to requests Y

Whenever a new emergency request arrives, the dispatch
officer assigns the best available ambulance to service the
request (or none if no good ambulances are available). We
define the following inputs to our simulator:
• A request log R = {r1, . . . , rN}.
• An allocation A of ambulances to bases.
• A redeployment policy π(W, R̂) that takes as input the

current allocation of free ambulances A and the currently
active requests R̂, and outputs a repositiong of A to po-
tentially different base locations.

• A dispatch policy, DISPATCH, which emulates how am-
bulances are dispatched to service emergency requests. In
our experiments, we employ the “closest available ambu-
lance” myopic dispatch policy used by the EMS operator.
We assume that ambulances are exchangeable or identi-

cal up to base allocation. We use yr to denote the base of
the ambulance dispatched to service request r (or ⊥ if no
ambulance was dispatched). Let r(yr) denote a request r
to which ambulance yr is dispatched, and t̄r(yr) denote the
corresponding completion time of r. Our event-driven simu-
lator processes emergency requests in first-come first-served
order as they arrive, and is described in Algorithm 1. There
are three types of events that are processed:
• Request arrival (Lines 10-15). The new request r is pro-

cessed using DISPATCH. If an ambulance is assigned
(yr 6= ⊥), then three book-keeping steps are performed:
r is added to the set of active requests with assignment yr
(Line 12), the assigned ambulance is removed from the set
of free ambulances (line 13), and a request job completion
event is added to the event queue (Line 14).

• Request job completion (Lines 17-18). A currently active
request r has been completed. Two book-keeping steps

R1 R2

R3

R4

A1

A2

15m

(15m)

20m

(10m) (20m)

R1 R2

R3

R4

A1

A2

15m
15m

(10m) 20m

(x2)

(17m)

17m

Figure 1: Examples of simulated dispatch of four requests
and two bases. The top example has one ambulance allo-
cated per base. The bottom example has two ambulances al-
locationed to A1 and one to A2.

are performed: r is removed from the set of active requests
(Line 17), and the assigned ambulance is added to the set
of available ambulances (Line 18).

• Ambulance redeployment (line 20). All available ambu-
lances are considered for redeployment by the redeploy-
ment policy π. Note that these events are only used when
simulating dynamic redeployment policies.

Figure 1 describes two examples with four requests and
two base locations. Requests R1, . . . , R4 arrive in index or-
der. Figure 1 top shows dispatch behavior with one ambu-
lance allocated per base. R1 arrives first, and is assigned
its closest ambulance (from A1). When R2 arrives, the dis-
patcher assigns it its closest free ambulance (from A2).
When R3 and R4 arrive, all nearby ambulances are busy,
so both requests are not serviced. Figure 1 bottom shows a
similar example with two ambulances allocated to A1.

3.1 Sampling Requests
In order to evaluate ambulance allocations and redeployment
policies, we also require a sample of emergency requests R.
In this paper, we assume requests are sampled from a gener-
ative model P(R) (with parameters estimated from historical
data). We begin by stating an independence assumption.

Assumption 1. Sampling a request depends only on exoge-
nous factors (e.g., location, time of day, road conditions),
and is independent of other requests and the allocation and
dispatch behavior of the EMS.2

2E.g., poor road conditions can increase the probability of ac-
cidents, but each accident event is sampled independently. This as-
sumption is not suitable for modeling cascading behavior such as
epidemics, since modeling how epidemics spread can depend on
previous incidents as well as the service level of the EMS.

Algorithm 2 SAMPLER: Request Sampler
1: input: tstart, tend

2: R← ∅, t← tstart
3: while t < tend do
4: Sample r ← P (r|t) //sampling request starting at time t
5: t← tr //incrementing current time
6: R← R ∪ {r} //adding sampled request to collection
7: end while
8: return: R

This independence between request arrival patterns and
EMS behavior will be important when developing our opti-
mization approach and analysis. When simulating dispatch
behavior (and evaluating EMS service levels), we can first
pre-sample a call log R (e.g., one week’s worth), and then
evaluate service quality of an allocation A by running SIM-
ULATOR described in Algorithm 1. On the other hand, if re-
quest arrival depends on the EMS allocation and dispatch
behavior (and thus violates Assumption 1), then one can no
longer pre-sample future calls for simulation.

Assumption 1 also implies that R can be incrementally
sampled according to a memory-less stochastic process.3
Thus, for any time interval (e.g., one week), we can incre-
mentally sample requests using Algorithm 2. Here, P (r|t)
denotes the distribution of the next arriving request starting
at time t, and tr denotes the arrival time of request r.

4 Static Allocation Problem Formulation
We begin by describing the static allocation setting, which
we later build upon for the dynamic setting. Let A denote an
allocation of ambulances to basesA (there can be more than
one ambulance at a base). We represent A as a multiset of
elements in A. Let M(A) denote the multi-powerset of A.
We measure the utility of an allocationA using a real-valued
objective F : M(A) → <. We focus on penalty reduction
formulations, where we can write F (A) as

F (A) = L(∅)− L(A), (1)

where L : M(A) → < measures the penalty (or cost) of
an ambulance allocation over some period of time (e.g., one
week). For example, L(A) may correspond to the fraction
of requests whose service time is above some target thresh-
old, and is a tunable component of the framework. In that
case, F (A) would then correspond to the reduction of such
requests after adding A to the empty allocation ∅.

We define L using the outcomes of simulated requests.
Ideally, our goal is to maximize the expected gain in perfor-
mance over some (known) distribution of requests P(R). Let
Y = {yr}r∈R denote the output of Algorithm 1 for request
log R. Then we can write the expected penalty as

L(A) = ER∼P(R)

[∑
r∈R

Lr(yr,A))

]
, (2)

where Lr(y) is the penalty of assigning request r with y
(e.g., whether or not assigning ambulance y to r results in a

3In our experiments, we use a Poisson process (Ross 1983).

Algorithm 3 Greedy Ambulance Allocation
1: input: F , K
2: A← ∅
3: for ` = 1, . . . ,K do
4: â← argmaxa δF (a|A) //see (5)
5: A← A+ â
6: end for
7: return: A

Table 1: Comparing incremental gain when adding an am-
bulance to A2 w.r.t. the two allocations shown in Figure 1.
F (A) is defined as the #requests serviced within 15 min-
utes. The left and right sides of the table below correspond
to the top and bottom allocations, respectively, of Figure 1.
Submodularity is violated since the gain on the left side is
smaller than the gain on the right side.

A1 A2 F (A) A1 A2 F (A)
1 1 1 2 1 1
1 2 1 2 2 2

Gain 0 Gain 1

service time above a target threshold), and yr,A denotes the
assignment that the simulator (Algorithm 1) gives to r.

In practice, we resort to optimizing over a collection of
request logs R = {Rm}Mm=1 , where each Rm ∈ R is sam-
pled i.i.d according to P(R). We thus approximate the ex-
pectation with the sampled average,4

LR(A) =
1

M

M∑
m=1

∑
r∈Rm

Lr(yr,A). (3)

Given a budget of K ambulances, the static allocation
goal then is to select the ambulance allocation A (with
|A| ≤ K) that has maximal utility F (A). More formally,
we can write our optimization problem as

argmax
A∈M(A):|A|≤K

F (A). (4)

5 Greedy Allocation Algorithm and Analysis
At first glance, it may seem difficult to compute good solu-
tions to (4), since M(A) is exponentially large in |A|, and
F (A) is evaluated using a simulator that appears compli-
cated to analyze. Nonetheless, we show that a simple greedy
algorithm can compute provably good solutions.

Let δF (a|A) denote the gain of adding a to A,

δF (a|A) = F (A ∪ a)− F (A). (5)

The greedy algorithm is described in Algorithm 3, and can
be used to solve both the static allocation problem (4) and
the redeployment problem (11) to be defined later. The algo-
rithm iteratively selects the ambulance a that has maximal
incremental gain relative to the current solution until K am-
bulances have been allocated. Note that each evaluation of
δ(a|A) requires running the simulator to evaluate F (A+a).

4In our experiments, we use Sample Average Approximation
(Verweij et al. 2003) to bound the difference between our sample
average objective and the optimal expected performance.

5.1 Non-submodularity
Optimization problems that are well-solved by greedy algo-
rithms are often submodular. Formally, a set function F (A)
is submodular if and only if

∀A ⊆ B, ∀a : δF (a|A) ≥ δF (a|B).

When F is monotone and submodular, it is known that the
greedy algorithm returns a solution that achieves F (A) ≥
(1− 1/e)OPT (Nemhauser, Wolsey, and Fisher 1978).

In our setting, this notion of diminishing returns can be
interpreted as “the gain of adding an ambulance decreases
with larger allocations.” Unfortunately, one can show that
our setting is not submodular.

Consider the two examples in Figure 1. Table 1 left and
right show the incremental gains of adding an ambulance to
A2 with respect to the top and bottom allocations, respec-
tively, of Figure 1. Notice that the first allocation is a sub-
set of the second allocation. Submodularity is violated since
the incremental gain with respect to the second allocation
is greater than the first. This is due to request R4 only being
serviced in the allocation (A1 = 2, A2 = 2). In fact, one can
construct pathological cases with arbitrarily bad submodu-
larity (and monotonicity) violations.

We will present a method for measuring how close F is to
monotone submodular. We then derive data-driven bounds
on the optimality gap. Our experiments show this gap for
Algorithm 3 to be reasonably tight.

5.2 Submodular Upper Bound
In order to analyze our objective F , (1), we first consider the
behavior of a simulator using an onmiscient dispatch policy.
In particular, for any sequence of requests R and allocation
A, the omniscient dispatcher computes an assignment Y ∗A
with minimal penalty

L̄R(A) =
∑
r∈R

Lr(y∗r,A) = min
YA

∑
r∈R

Lr(yr,A).

We can now define a new objective GR(A) based on omni-
scient dispatching,

GR(A) = L̄R(∅)− L̄R(A). (6)

Figure 2 shows how one can computeG(A) by solving a rel-
atively simple integer linear program. Note that Assumption
1 allows us to pre-sample the requests R and then compute
G(A) knowing all of R in advance.
Observation 1. The objective G, (6), as measured by sim-
ulating an omniscient dispatcher, is monotone submodular.
Furthermore, for any A and R, we have GR(A) ≥ FR(A).

Simulating with an onmiscient dispatcher yields an ide-
alized objective G that is both monotone submodular and a
rigorous upper bound on F (which results from simulating
the myopic dispatcher). Define

OPTR(K) = max
A:|A|≤K

FR(A),

and define OPTG
R (K) analagously for G. By leveraging

properties of monotone submodular functions (Leskovec et
al. 2007), we arrive at a data-dependent bound on the opti-
mality gap of any allocation A, OPTR(K)− FR(A).

Computing Omniscient Dispatching Utility:

G(A) = L̄(∅)−min
x

∑
i∈R

∑
s∈Qi

xisLis (8)

s.t.∑
s∈Qi

xis = 1, ∀i ∈ R

xis +
∑
j∈Ps

i

xjs ≤ as, ∀i ∈ R

Notation:

• R: the request set .

• ⊥: denotes the null assignment for a request.

• Qi: the set of feasible bases for request i (including ⊥).

• xis: (binary variable) defined for s ∈ Qi and i ∈ R, is 1 iff
assignment to i is from base s (s can be ⊥).

• P s
i : set of parents of request i via base s (j ∈ P s

i iff j arrives
before i, j completes after i arrives, and s is in bothQj andQi).

• Lis: the cost of assigning ambulance from base s to request i.

• as: #ambulances allocated to base s (A = {a1, . . . , a|A|}).

Figure 2: ILP formulation for computing utility of a static
allocation using the omniscient dispatcher.

Theorem 1. For any allocationAwith |A| = K and request
log R, define

δa = GR(A+ a)−GR(A).

Then

OPTR(K) ≤ FR(A) + (GR(A)− FR(A)) +K max
a

δa. (7)

Proof. Applying Theorem 4 in (Leskovec et al. 2007) yields

max
A′:|A′|=K

GR(A′) ≤ GR(A) +K max
a

δa.

Hence,

OPTR(K) = max
A′:|A′|≤K

FR(A′)

≤ max
A′:|A′|≤K

GR(A′)

≤ GR(A) +K max
a

δa

= FR(A) + (GR(A)− FR(A)) +K max
a

δa

Upon termination of Algorithm 3, we can upper bound
OPT via (7). Note that the δa in Theorem 1 are defined
with respect to G(A) and not F (A). Thus G(A) − F (A) is
a measure of how close F is to monotone submodular. Note
also that if G(A) − F (A) is small, then one would expect
little to be gained from smarter dispatching (since G(A) is
the value of the omniscient dispatcher).

5.3 Omniscient-Optimal Upper Bound
Rather than appealing to submodularity, we can compute an
even tighter bound on the optimality gap by leveraging the

structure of G directly. In particular, we can extend the ILP
formulation of Figure 2 to optimally solve G,

OPTG
R (K) = max

A∈M(A):|A|≤K
GR(A). (9)

Theorem 2. For any A with |A| = K,
FR(A) ≤ OPTR(K) ≤ OPTG

R (K).

Proof. Define A∗F = argmaxA∈M(A):|A|≤K FR(A). The
result follows immediately from

OPTR(K) = FR(A∗F) ≤ GR(A∗F) ≤ OPTG
R (K).

6 Dynamic Redeployment
In the dynamic setting, free ambulances can be redeployed
to nearby bases to improve service levels under changing
conditions. This is motivated by the intuition that a tempo-
rary repositioning of available ambulances offers better (ex-
pected) service to incoming requests until the busy ambu-
lances are freed.

We consider redeployment at regular intervals td (e.g., 30
minutes). Let st denote the state of the system at time step t.
The utility of redeployment policy π on requests R is

FR(π) = E

[
T∑

t=1

F (π(st)|st)

]
, (10)

where the expectation is over the randomness of π. The ex-
pected utility of π is then

F (π) = ER∼P(R) [FR(π)] ,

or its sample mean approximation.
Due to randomness, requests can cluster in time and

space, which results in patterns of congestion (e.g., Figure
1). Due to Assumption 1, the distribution of future requests
do not depend on the past. As a consequence, the main ben-
efit of redeployment is to better cover the distribution of re-
quests P(R) until the busy ambulances become free again.

Since ambulances take time to redeploy to another base,
we incorporate this cost into the service time of dispatch-
ing a redeploying ambulance. In particular, dispatching a re-
deploying ambulance to a request incurs an additional ser-
vice time equal to the redeploy travel time remaining. We
incorporate the additional service time of redeploying am-
bulances into FR̂t

(·|st).

6.1 Myopic Redeployment
We consider myopically redeploying ambulances to opti-
mize the expected utility of the next time interval. Assump-
tion 1 implies that myopic redeployment is essentially equiv-
alent to (a smaller version of) the static allocation problem.
By sampling requests R̂t from P(R) up to td into the fu-
ture (e.g., using Algorithm 2), as well as sampling when
currently busy ambulances become free, the myopic rede-
ployment problem is

π(t) = argmax
A∈M(A,Wst),|A|≤|Wst |

FR̂t
(A|st), (11)

where swhere denotes the current state, andWst denotes the
currently free allocation, and M(A,Wst) denotes the set of
possible redeployments. Like in the static setting, we solve
(11) approximately using a greedy approach (Algorithm 3).

�����

����

�����

����

�����

����

�����

����

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��
��

��
��
�
�
�

��
��
��
�

�
��
�
��

��

����

�����

���

�����

	
�
���������

����
����
�����

	
�
���������

����
����
������

	
�
���������

����
����
������

��������

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��

��
��
��
�

�
��
�
��

��

����

�����

����

�����

����

�����

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��
��

��
��
�
�
�

��
��
��
�

�
��
�
��

��

����

�����

����

�	
	��������

����	����	�����

�	
	��������

����	����	�����

�	
	��������

����	����	�����

�
������

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��

��
��
��
�

�
��
�
��

��

����

����

����

����

����

����

�
��
��
��
�
	�

�
�

�
	
�
�
�	

��

�

�

���	

���

�������������������

��������	�

�������������������

���������
�

�������������������

�����������

�������

�
��
��
��
�
	�

�
�

�
	
�
�
�	

��

�

Figure 3: Comparing static allocation solutions to uniform baseline on the test set (K = 58).

����

���

����

���

����

���

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��
��

��
��
�
�
��
�
��
�

��

�
��
�
��

��

�	
	������������	����	�����

�

����

���

� �� �� �� �� �� ��

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��

����
����������������	���
����
�����

�	
	������������	����	�����

�	
	������������	����	�����

�	
	������������	����	�����

���

���

���

���

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��
��

��
��
�
�
��
�
��
�

��

�
��
�
��

��

��	�
�������������������
����

��	�
�������������������
�����

���

���

� �� �� �� �� �� ��

�
�
�
�
�
��
��
	

��
�
�
��
��
�
��

��

����
����������������	���
����
�����

��	�
�������������������
�����

��	�
�������������������
�����

���

���

���

���

���

���

�
��
��
��
�
	�

	
��
�

�
��
�	
�
�
�	
��
��
�
� 	
�
�������������
����
�����

	
�
�������������
����
������

	
�
�������������
����
������

�

���

���

� �� �� �� �� �� ��

�
��
��
��
�
	�

	
��
�

�
��
�	
�
�
�	
��
��
�
�

����������	����	�������	�
	����������

Figure 4: Comparing static allocation solutions on test set as allocation budget is varied.

6.2 Discussion on Dynamic Upper Bounds
Similar to the static upper bound (9), in principle, one can
further extend the ILP of Figure 2 to optimally solve the
omniscient dynamic redeployment problem for a set of re-
quests R. In other words, an omniscient algorithm with per-
fect knowledge of future requests (which can be sampled
exogenously due to Assumption 1) can jointly optimize re-
deployment and dispatch. We defer a detailed evaluation of
dynamic upper bounds to future work.

7 Experiments
We conducted simulation experiments derived using real us-
age data from an EMS system in a large Asian city. The us-
age data contained approximately ten thousand logged emer-
gency requests over the course of one month. Each logged
request contains the type and location of the request, the am-
bulance (if any) that was dispatched, and the various travel
times (e.g., base to scene, scene to hospital, etc). The request
arrivals and service times both fit into a Poisson distribution
per zone and base, respectively. Request arrivals and service
times all appear statistically independent, lending support
for Assumption 1. Using the parameters of the fitted Poisson
distributions, we built a generative Poisson process model
P(R) (Ross 1983) for sampling emergency requests.5

Our action space contains 58 bases and 58 ambulances.
We evaluate our methods over a period of one week. Rather
than using Algorithm 3, we employ a lazy variant (called
CELF in (Leskovec et al. 2007)) which greatly reduces the
number of function evaluations and provides almost identi-
cal solutions. Computing an allocation takes only a few sec-
onds, easily allowing for real-time redeployment.

7.1 Sample Average Approximation (SAA)
We use Sample Average Approximation (SAA) (Verweij et
al. 2003) for model selection and for bounding the deviation

5An anonymized data sample and software are available at
projects.yisongyue.com/ambulance_allocation.

����

����

�����

�����

�����

�����

�
�
��
��
�
�
	

�
��

��	
�����������������

�������������������

�

����

����

� �� �� �� �� �� ��

�����	�
���������������	����������������
��������

�������������������

�
��� �����!����� "

�
��� ����#����
�������������

Figure 5: Comparing greedy static allocation versus data-
dependent bound on OPT when optimizing for Cost 1.

of our sample average (3) to (2). Furthermore, we also wish
to bound the optimality gap of our greedy approach (with
respect to the true distribution of requests P(R)).

For the static allocation setting, we compute M alloca-
tions A1, . . . , AM using M collections of Ntrain sets of re-
quests. We select the allocation Â with the highest valida-
tion performance and on separate collection of Nvalid sets
of requests. Finally, we report the test performance of Â on
another separate collection of Ntest sets of requests.

A simple modification of Theorem 1 in (Mak, Morton,
and Wood 1999) yields the optimality gap to be bounded by
the difference between the sample average upper bounds, (7)
and (9), and the test performance Ftest(Â).

7.2 Static Allocation Results
We consider three penalty functions in our experiments.
Cost 1.

L(1)
r (y) =

0 if service time ≤ 15 min
1 if service time ≤ 30 min
2 if service time ≤ 60 min
5 otherwise

Cost 2.
L(2)

r (y) =

{
20 if not served
L

(1)
r (y) otherwise

�����

����

�����

����

�����

����

�
��
��
��
�
	�

�
�

�
	
�
��
�
	�
�

��
�
�
�

�

	

�
�
�
�
	�

��

�����

����

�����

�	
	�� ����� ����� ����� �����

�
��
��
��
�
	�

�
�

�
	
�
��
�
	�
�

�
�
�����
��	���
����

����

�����

����

�����

����

�����

�
��
��
��
�
	�

�
�

�
	
�
��
�
	�
�

��
�
�
�

�

	

�
�
	�
�
	�

��

����

�����

����

��	�
� ���
� ���
� ���
� ���
�

�
��
��
��
�
	�

�
�

�
	
�
��
�
	�
�

�
�
�����
��	���
����

����

�����

����

�����

����

�����

�
��
��
��
�
	�

�
�
�
	
�
�
�	
�
��
�
�

�

�����

����

��	�
� ���
� ���
� ���
� ���
�

�
��
��
��
�
	�

�
�
�
	
�
�
�	
�
��
�
�

������������	��������

Figure 6: Comparing static allocation versus dynamic redeployment solutions on test set when optimizing for Cost 1.

Cost 3.

L(3)
r (y) =

{
0 if service time ≤ 15 min
1 otherwise

Cost 1 can be interpreted as a blend of different thresh-
old functions. Cost 2 is similar except that it more severely
penalizes unserviced requests. Cost 3 is a simpler thresh-
old function that does not discriminate between requests
with service time longer than 15 minutes. We performed
SAA to select the best allocation A for each penalty func-
tion using M = 50 samples of Ntrain = 10 request logs,
Nvalid = 500 validation logs, and Ntest = 500 test logs.

Figure 3 shows the comparison with the default EMS allo-
cation (one ambulance per base) for three metrics of interest.
The choice of penalty function affects which metrics are im-
proved. Not surprisingly, optimizing for Cost 3 achieves the
best performance for requests serviced within 15 minutes,
albeit with an increase in requests not serviced at all. Opti-
mizing for Cost 2 achieves the greatest reduction in requests
not serviced, but does not greatly improve the other metrics.
Optimizing for Cost 1 offers a compromise between Cost 2
and Cost 3 and significant improves upon the baseline allo-
cation for all three metrics, including an almost 50% relative
reduction in requests not serviced. Figure 4 shows a com-
parison as the budget is varied. We see that the patterns in
relative performance are consistent.

Figure 5 compares our algorithm’s preformance (for Cost
1) with the upper bounds. Note that all the upper bound guar-
antees are computed using the training set. We see that our
objective is “close” to submodular since the gap between the
myopic dispatcher and the omniscient one is small. This im-
plies that there is little to be gained from smarter dispatch-
ing. We further observe that the omniscient-optimal upper
bound is almost identical to the omniscient dispatcher ob-
jective using the greedy allocation. This implies that the op-
timality gap is indeed quite small.

7.3 Dynamic Redeployment Results
In our dynamic redeployment experiments, we start with the
static allocation (for Cost 1), and then dynamically reposi-
tion ambulances every td minutes. Each window of td min-
utes is equivalent to a (smaller) static allocation problem.
For each redeployment, we sample 100 requests logs td min-
utes into the future to use for optimization. We estimated
inter-base travel times using road-network data.

Figure 6 compares the static allocation and myopic rede-
ployment policies with varying redeployment windows. We
observe significant improvements in all three metrics. For
example, with a redeployment window of 30 minutes, the

Table 2: Number of relocated ambulances per hour via dy-
namic redeployment for varying redeployment windows.

30 min 45 min 60 min 75 min
17.8 12.0 8.7 6.6

myopic redeployment policy achieves almost a 50% reduc-
tion in requests not serviced. Table 2 shows the average re-
location rate (per hour). For all redeployment windows, only
a small fraction (less than a third) of the ambulances are se-
lected for relocation at any point in time.

8 Discussion
Our approach offers the flexibility of using a similar ap-
proach to both planning (static allocation) and real-time op-
erations (redeployment), facilitating real-world implementa-
tion. Additionally, our approach offers flexibility in balanc-
ing between competing performance metrics. However, such
flexibility also implies the need to tune the penalty function
via simulation for different operational goals.

One potential limitation is the need for a reliable simula-
tor (and data sampler), which typically requires a substan-
tial amount of historical data as well as model engineering.
However, simulation is typically used for evaluation in these
types of settings, implying the ready availability of such sim-
ulators in practice to use for optimization.

Because our setting lies within a regime where our opti-
mization objective is “close” to submodular, we can employ
greedy algorithms to arrive at an efficient and effective al-
gorithm for real-time redeployment. Nonetheless, it may be
beneficial to develop more sophisticated algorithms that can
offer further improvements, especially for objectives that are
far from submodular.

Our modeling and optimization approach is applicable
in other resource allocation settings such as disaster re-
sponse, humanitarian service logistics and facility position-
ing. While the static allocation problem is well studied in
such settings, significant gains are possible via efficient and
effective dynamic redeployment. One caveat arises when ap-
plying our approach to other settings: we require the request
(or event or job) arrival distribution to not depend on the
behavior of the emergency response system (see Assump-
tion 1). In other settings, it may be more appropriate to
employ non-myopic planning approaches (e.g., for disrupt-
ing cascading disasters such as wildfires (Konoshima et al.
2008)). One possibility is embedding our approach within a
Markov Decision Process framework (Maxwell et al. 2010;
Lagoudakis and Parr 2003; Bertsekas and Tsitsiklis 1996).

9 Conclusion
We have presented an efficient and effective approach to am-
bulance fleet allocation and dynamic redeployment. In simu-
lation experiments based on a real EMS system in Asia, our
approach significantly improved several performance met-
rics (including over 50% reduction in requests not serviced).
We further show that a simple myopic redeployment algo-
rithm can be effective when the randomness of the future
depends purely on exogenous factors.

Acknowledgments. The authors thank the anonymous review-
ers for their helpful comments. This work was funded in part by
gifts from industrial partners and other donors to the iLab at Heinz
College, Carnegie Mellon University. Yisong Yue was also partly
supported by ONR (PECASE) N000141010672 and ONR Young
Investigator Program N00014-08-1-0752.

References
Andersson, T., and Värbrand, P. 2006. Decision support
tools for ambulance dispatch and relocation. Journal of the
Operational Research Society 58(2):195–201.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Bjarnason, R.; Tadepalli, P.; Fern, A.; and Niedner, C. 2009.
Simulation-based optimization of resource placement and
emergency response. In Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI).
Brotcorne, L.; Laporte, G.; and Semet, F. 2003. Ambulance
location and relocation models. European journal of opera-
tional research 147(3):451–463.
Budge, S.; Ingolfsson, A.; and Erkut, E. 2007. Approximat-
ing vehicle dispatch probabilities for emergency service sys-
tems with location-specific service times and multiple units
per location. Operations Research.
El-Arini, K.; Veda, G.; Shahaf, D.; and Guestrin, C. 2009.
Turning down the noise in the blogosphere. In ACM Confer-
ence on Knowledge Discovery and Data Mining (KDD).
Erkut, E.; Ingolfsson, A.; and Erdogan, G. 2008. Ambu-
lance deployment for maximum survival. Naval Research
Logistics 55:42–58.
Feige, U. 1998. A threshold of lnn for approximating set
cover. Journal of the ACM (JACM) 45(4):634–652.
Gendreau, M.; Laporte, G.; and Semet, F. 2005. The
maximal expected coverage relocation problem for emer-
gency vehicles. Journal of the Operational Research Society
57(1):22–28.
Golovin, D.; Krause, A.; Gardner, B.; Converse, S. J.; and
Morey, S. 2011. Dynamic resource allocation in conserva-
tion planning. In AAAI Conference on Artificial Intelligence
(AAAI).
Kempe, D., and Kleinberg, J. 2003. Maximizing the spread
of influence through a social network. In ACM Conference
on Knowledge Discovery and Data Mining (KDD).
Khuller, S.; Moss, A.; and Naor, J. 1999. The budgeted
maximum coverage problem. Information Processing Let-
ters 1:39–45.

Konoshima, M.; Montgomery, C.; Albers, H.; and Arthur, J.
2008. Spatial-endogenous fire risk and efficient fuel man-
agement and timber harvest. Land Economics 84(3):449–
468.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-
optimal sensor placements in gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Ma-
chine Learning Research (JMLR) 9:235–284.
Lagoudakis, M., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research (JMLR)
4:1107–1149.
Larson, R., and Stevenson, K. 1972. On insensitivities in ur-
ban redistricting and facility location. Operations Research
595–612.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective outbreak
detection in networks. In ACM Conference on Knowledge
Discovery and Data Mining (KDD).
Mak, W.-K.; Morton, D. P.; and Wood, R. K. 1999. Monte
carlo bounding techniques for determining solution quality
in stochastic programs. Operations Research Letters 4:47–
56.
Maxwell, M.; Restrepo, M.; Henderson, S.; and Topaloglu,
H. 2010. Approximate dynamic programming for ambu-
lance redeployment. INFORMS Journal on Computing (IN-
FORMS) 22(2):266–281.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An anal-
ysis of the approximations for maximizing submodular set
functions. Mathematical Programming 14:265–294.
Restrepo, M.; Henderson, S.; and Topaloglu, H. 2009. Er-
lang loss models for the static deployment of ambulances.
Health care management science 12(1):67–79.
Ross, S. 1983. Stochastic processes, volume 23. John Wiley
& Sons New York.
Sheldon, D.; Dilkina, B.; Elmachtoub, A.; Finseth, R.; Sab-
harwal, A.; Conrad, J.; Gomes, C.; Shmoys, D.; Allen, W.;
Amundsen, O.; et al. 2010. Maximizing the spread of cas-
cades using network design. In Conference on Uncertainty
in Artificial Intelligence (UAI).
Streeter, M.; Golovin, D.; and Krause, A. 2009. Online
learning of assignments. In Neural Information Processing
Systems (NIPS).
Verweij, B.; Ahmed, S.; Kleywegt, A.; Nemhauser, G.; and
Shapiro, A. 2003. The sample average approximation
method applied to stochastic routing problems: a computa-
tional study. Computational Optimization and Applications
24(2):289–333.
Yue, Y., and Guestrin, C. 2011. Linear submodular ban-
dits and their application to diversified retrieval. In Neural
Information Processing Systems (NIPS).

