Reinforcement Learning

Vincent Zhuang

April 18, 2016

1 Introduction

Reinforcement learning characterizes learning problems in which an agent seeks to
determine its optimal actions given partial and delayed rewards from the enwviron-
ment. Typically, there is a state space S and action space A. At each time step t,
the agent performs an action a; € A while the environment is in state s; € S, which
then transitions to state s;41 and emits reward r411 (generated from some unknown
reward function R: S x A — R).

Within an episode (see below), we typically define the reward as the total discounted
future return starting at time ¢:

Ry =1¢ +yreq1 + 727“t+2 +...= nyt/_trt/
>t

for some 7 € [0, 1].

The goal of the agent is to select the sequence of actions that maximizes its future
reward. This motivates the two fundamental concepts of policy and value:

e Policy: m: S — P(A) - how the agent behaves given the state of the environ-
ment.

e Value or Q-Function: Q7 (s¢, ar) = E[R¢|st, at] - for some fixed policy =, the
expected future reward given some state and action. Given a Q-function, the
policy is then 7(s) = argmax, Q™ (s, a).

The majority of reinforcement learning algorithms find the optimal policy by opti-
mizing the value function, although some seek to learn the optimal policy indepen-
dent of any value function.

Episodic vs. Continuing RL. We distinguish between two types of reinforce-
ment learning problems - one in which the learning process can be separated into a
series of fixed-length episodes, and one in which a single episode simply continues
indefinitely. The former is called episodic, and the latter continuing.

In episodic tasks, the learning problem has clearly defined initial and terminal states.
After each episode, the agent starts at the beginning of a new episode, and so on as
its behavior improves. For example, playing a game (repeatedly) is more naturally
modelled as an episodic RL problem, whereas a personalized home assistance robot
is more naturally modelled as a continuing RL problem.

2 Markov Decision Processes

A common way to model reinforcement learning problems (and, in general, online
decision making problems) is via the Markov decision process (MDP). A MDP treats
the sequence of states as a Markov chain with the agent picking the transitions
(actions) given the rewards emitted by the environment. Formally, we define a
state transition probability kernel P : S x A — P(S) to model the environment’s
transitions.

A standard MDP operates as follows:
1. Begin at initial state sg
2. Agent performs action aq
3. Transition to state s; according to transition kernel P on (sg, a1)
4. Receive reward r; according to reward function R

5. Repeat fort =1,...

Markov Property. The defining characteristic of MDPs is the Markov property:

Pr(sip1lse, at, ..., s1,a1) = Pr(siy1|se, ar)

The Markov property allows us to (often compactly) parameterize the policy us-
ing only the current state, but also restricts us only being able to perfectly model
situations where the transition dynamics between states is truly Markovian. Fur-
thermore, the classical MDP setting also assumes perfect information, i.e., the agent
alwys knows what state she is in. Nevertheless, relaxing this assumption still leads
to good performance of MDP-based algorithms on many problems [3].

POMDPs. A partially observable MDP (POMDP) are MDPs in which the agent
cannot see the actual state of the environment, but instead must infer the state from
observations that are stochastically emitted from the state.

If the underlying state-space is discrete and take a Bayesian approach, then a
POMDP can be viewed as a continuous-state MDP on the belief states via Bayes’s
rule, although in practice this is intractable and approximate algorithms are used
instead (analogous to EM for HMMs).

RL vs. Bandits. Reinforcement learning is a generalization of standard online
learning (e.g. multi-armed bandits) in the following two ways:

e it involves a changing environment: MAB, on the other hand, operates
in a fixed state. There are two ways that a MAB problem can be viewed as a
special case of a MDP or POMDP. First, the continuous RL setting modeled
by a POMDP reduces to the MAB if we assume there is only a single state at
all times, and the goal is only to learn the reward function of actions on that
single state. Second, the episodic RL setting reduces to the MAB if we assume
that the length of each episode is 1 (which trivially negates the effect of state
transitions). In both cases the state transition is either non-existent (only one
state) or unstructured (the prior probability of start states in episodic RL).

e it incorporates long-term action-environment dynamics: the contex-
tual bandits setting is closer to general reinforcement learning than vanilla
bandits, but still restricts the effect of the current action to the immediate re-
ward. On the other hand, in general reinforcement learning the current action
influences the future states as well as the immediate reward.

3 Q-Learning
In Q-learning, we seek to learn the optimal action-value function: Q*(s,a) =

max, Q™ (s,a), i.e. the best value achievable by any policy.

The standard online Q-learning algorithm uses a one-step wvalue iteration update
given by the Bellman equation, which is just depth-one expansion of the recursive

definition of Q:

Q(s,a) =r +ymaxQ(s', d)

Algorithm 1 Q-learning
1: Init learning rate «
2: while not converged do
3: t+—t+1
4: pick and do action a; according to current policy (e.g. e-greedy)
5 receive reward ry
6: observe new state s’
7
8

. update Q(s¢, ar) = Qs ar) + alry + ymaxy Q(s',a’) — Q(st, ar)]
: end while

Action selection. Instead of using the obvious greedy policy max, Q(s,a), it is
generally better to introduce exploration by occasionally visiting suboptimal states.
Simple action selection strategies for introducing exploration including e-greedy and
softmax (Boltzmann) exploration.

Function approximation. Vanilla Q-learning stores a table of the) function
estimates. However, Q-learning can also be combined with powerful functional ap-
proximation methods, such as deep convolutional neural networks.

Convergence. Given ergodicity assumptions (specifically that each state must
be visited infinitely often) is simple to prove that Q-learning always converges (to
optimal @ and 7) via stochastic approximation techniques [2] [1]. See [5] for an
alternative proof in a slightly more restrictive setting.

Comparison to Bandit Algorithms. The main conceptual difference between
Q-Learning (and learning in RL problems in general) and bandit algorithms is the
fact that in RL on needs to do exploration over sequences of states. In the bandit
setting, there are no state transitions, so the goal is to just explore the rewards for
actions in that single state as efficiently as possible. In RL problems, exploration
must take into account the potential impact of future rewards as well.

4 SARSA

SARSA, or ”state action reward state action,” is essentially just Q-learning in which
the optimistic Q-update is replaced with a depth-one actual reward update:

Q(st,ar) = (1 — a)Q(st, ar) + afry + yQ(St4+1, Gr+1)]

where « is the learning rate.

The distinction between Q-learning and SARSA lies primarily in the role of the
agent’s policy in the value updates. To wit, Q-learning does not depend on what
actions the agent performs and is an off-policy algorithm, whereas SARSA does and
is on-policy.

5 Other RL algorithms

We primarily focused on value-based reinforcement learning methods, and in par-
ticular, model-free algorithms. Other common RL algorithms also seek to learn the
policy directly, either alongside a value function (e.g. actor-critic) or without the
value function (e.g. policy gradient).

Model-based vs. Model-free RL If one has domain knowledge about the envi-
ronment (i.e. the transition probabilities of the MDP), then one can use model-based
dynamic programming algorithms such as value iteration and policy iteration to
solve the MDP exactly. If one does not have a priori information about the MDP,
one can still use model-based approaches that simultaneously learn a model of the
environment, which can then be used to model future behavior, etc. However, it
is in general difficult to learn a good model, and using a bad model can negatively
impact performance w.r.t. a model-free approach.

Acknowledgements

Thanks to Yisong and Stephan for comments and suggestions.

References

[1] Jaakkola, T., Jordan, M. I., & Singh, S. P. (1994). On the convergence of stochas-
tic iterative dynamic programming algorithms. Neural computation, 6(6), 1185-
1201.

[2] Melo, F. S. (2001). Convergence of Q-learning: A simple proof. Institute Of
Systems and Robotics, Tech. Rep.

[3] Sutton, R. S., & Barto, A. G. (2011). Reinforcement learning: An introduction.
The MIT Press (March 1998).

[4] Szepesvari, C. (2009). Algorithms for reinforcement learning. Morgan and Clay-
pool.

[6] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-
292. Chicago

