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What is Reinforcement Learning?

RL: general framework for online decision making given partial
and delayed rewards

learner is an agent that performs actions
actions influence the state of the environment
environment returns reward as feedback

Generalization of the Multi-Armed Bandit problem
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Markov Decision Processes (MDP)

Models the environment that we are trying to learn
Tuple (S,A,Pa,R, γ)

S the set of states (not necessarily finite)
A the set of actions (not necessarily finite)
Pa(s, s′) the transition probability kernel
R : S × A→ R the reward function
γ ∈ (0,1) the discount factor
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GridWorld MDP Example

States: each cell of the grid is a state
Actions: move N, S, E, W, or stationary (can’t move off grid
or into wall)
Transitions: Deterministic, move into cell in action direction
Rewards: 1 or -1 in special spots, 0 otherwise

Simulation . . .
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Another GridWorld Example

States: each cell of the grid is a state
Actions: move N, S, E, W (can’t move off grid or into wall)
Transitions: Deterministic, move into cell in action
direction. Any move from 10 or -100 transitions to Start.
Rewards: 10 or -100 moving out of special spots, 0
otherwise
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MDP Overview Example

Three states S = {S0,S1,S2}.
Two actions for each states A = {a0,a1}.
Probabilistic transitions Pa.
Rewards defined by R : S × A→ R.
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Markov Property

Markov Decision Processes (MDP) are very similar to
Markov chains. An important property is the Markov
Property.
Markov Property: Set of possible actions and probability
of transitions does not depend on the sequence of events
that preceded it. In other words, the system is memoryless.
Sometimes not completely satisfied, but approximation is
good enough.
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Episodic vs Continuing RL

Two classes of RL problems:
Episodic problems are separated by terminations and
restarting, such as losing in a game and having to start
over.
Continuing problems are single-episode and continue
forever, such as a personalized home assistance robot.
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Objective

Pick the actions that lead to the best future reward
”best”←→ maximize expected future discounted return:

Rt = rt + γrt+1 + γ2rt+2 + . . . =
∑
t ′≥t

γt ′−t rt ′

Discount factor γ ∈ (0,1)

avoids infinite return
encodes uncertainty about future rewards
encodes bias towards immediate rewards

Using a discount factor γ is only one way of capturing this.
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Policy and Value

Policy: π : S → P(A) - given a state, the probability
distribution of the action the agent will choose
Value: Qπ(st ,at ) = E[Rt |st ,at ] - given some policy π, the
expected future reward under some state and action

Compare to the MAB definitions:
Policy: Pick an action ai . For example, UCB1 can be used
to determine what action to pick.
Value: The expected reward µi associated with each action.
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RL vs. Bandits

Reinforcement learning is an extension of bandit problems.
Standard stochastic MAB problem←→ single-state MDP.
Contextual bandits can model state, but not transitions
Key point: RL utilizes the entire MDP (S,A,Pa,R, γ). RL
can account for delayed rewards and can learn to
“traverse” the MDP states.
No regret analysis for RL (too difficult, hard to generalize).
MAB is more constrained, so it is easier to analyze and
bound.
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Model-based vs. Model-free RL

Model-based approaches assume information about the
environment
Do we know the MDP (in particular its transition probabilities)?

Yes: can solve MDP exactly using dynamic
programming/value iteration
No: try to learn the MDP (e.g. E3 algorithm1)

Model-free: learn a policy in absence of a model
We will focus on model-free approaches

1Kearns and Singh (1998)
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Model-free approaches

Optimize either value or policy directly - or both!
Value-based:

Optimize value function
Policy is implicit

Policy-based:
Optimize policy directly

Value and policy based:
Actor-critic2

We will mostly consider value-based approaches.

2Konda and Tsitsiklis 2003
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Value-based RL

Define optimal value function to be the best payoff among
all possible policies:

Q∗(s,a) = max
π

Qπ(s,a)

Recall π are the policies and Qπ are the value functions.
Value-based approaches: learn optimal value function
Simple to derive a target policy from optimal value function
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Exploration vs. Exploitation in RL

Important concept for both RL and MAB
Relevant in learning stage
Fundamental tradeoff: agent should explore enough to
discover a good policy, but should not sacrifice too much
reward in the process
ε-greedy strategy:
Pick the ‘optimal’ strategy with probability 1− ε, and select
a random action with probability ε.
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Recall that the value function is defined as

Qπ(st ,at ) = E[Rt |st ,at ]

Recall that we can solve the RL problem by learning the
optimal value function

Q∗(s,a) = max
π

Qπ(s,a)
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Bellman equation

Suppose action a leads to state s′. We can expand the
value function recursively:

Qπ(s,a) = Es′ [r + γmax
a′

Qπ(s′,a′)|s,a]

Solve using value iteration:

Qπ
i+1(s,a) = Es′ [r + γmax

a′
Qπ

i (s′,a′)|s,a]
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Approximating the expectation

If we know the MDP’s transition probabilities, we can just
write out the expectation:

Q(s,a) =
∑
s′

pss′(r + γmax
a′

Q(s′,a′))

Q-learning approximates this expectation with a
single-sample iterative update (like in SGD)
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Iteratively solve for optimal action-value function Q∗ using
Bellman equation updates

Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

for learning rate αt

Intuition for value iteration algorithms: a la gradient
descent, iterative updates (hopefully) lead to desired
convergence
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Target vs. training policy

We distinguish between action selection policies during training
and test time.

Training policy: balance exploration and exploitation such
as

ε-greedy (most commonly used)
Softmax

σ(zi ) =
ezi∑K

k=1 ezk

Target policy: pick the best possible action (highest
Q-value) every time
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Q-learning algorithm

1: Init Q(s,a) = 0∀(s,a)inS × A
2: while not converged do
3: t+ = 1
4: pick and do action at according to current policy (e.g.

ε-greedy)
5: receive reward rt
6: observe new state s′

7: update
Q(st ,at ) = Q(st ,at ) + αt [rt + γmaxa′ Q(s′,a′)−Q(st ,at )]

8: end while



Reinforcement Learning Q-Learning Deep Q-Learning on Atari

On-policy vs. off-policy algorithm

Q-learning is an off-policy algorithm
learned Q function approximates Q∗ independent of policy
being used

On-policy algorithms perform updates that depend on the
policy, such as SARSA:

Q(st ,at ) = (1− α)Q(st ,at ) + αt [rt + γQ(st+1,at+1)]

Convergence properties dependent on policy
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Q-learning GridWorld Example

States: each cell of the grid is a state
Actions: move N, S, E, W (can’t move off grid or into wall)
Transitions: Deterministic, move into cell in action
direction. Any move from 10 or -100 transitions to Start.
Rewards: 10 or -100 moving out of special spots, 0
otherwise

https://www.youtube.com/watch?v=4MOx2_e5tug
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Q-learning GridWorld Details

Recall Bellman equation update

Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

We have
α = 0.5 (for fast updates; usually much smaller)
γ = 1
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Walkthrough: Initial state
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Let’s say the agent keeps on moving right until he reaches the exit
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Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

Q(s∗,a) = 0 + 0.5[10 + 0− 0] = 5
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What happens if we reach the exit again?
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Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

Q(s,a = E) = 0 + 0.5[0 + 5− 0] = 2.5
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Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

Q(s,a = E) = 5 + 0.5[10 + 0− 5] = 7.5
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What happens if we keep on going east?

Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]
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Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

Q(s,a = E) = 0 + 0.5[0 + 2.5− 0] = 1.25
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After going only east for several episodes
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What if we go south?
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Q(st ,at ) = Q(st ,at ) + αt [rt + γmax
a′

Q(s′,a′)−Q(st ,at )]

Q(s,a) = 0 + 0.5[−100 + 0− 0] = −50
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Recall that update is greedily optimistic:

Q(st ,at ) = Q(st ,at ) + αt [rt + γmaxa′Q(s′,a′)−Q(st ,at )]
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Q-learning Convergence

Two major assumptions:
i. Every state is visited infinitely often
ii. Learning rate αt satisfies

∞∑
t=1

αt =∞
∞∑

t=1

α2
t <∞

Theorem
Q-learning converges to the optimal action-value function
Q∗(s,a) with probability 1 given i. and ii.

Proof: use stochastic approximation ideas.
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Proof Sketch

Lemma
A random iterative process
∆t+1(x) = (1− αt (x))∆t (x) + αt (x)Ft (x) convergences to zero
w.p.1 under the following assumptions:

i.
∑∞

t=1 αt =∞
∑∞

t=1 α
2
t <∞

ii. ||E[Ft (x)|Ft ]||W ≤ γ||∆t ||W for γ ∈ (0,1)

iii. Var[Ft (x)|Ft ] ≤ C(1 + ||∆t ||2W ) for some constant C

x denotes state.
drop dependence on state for clarity
‖ · ‖W denotes some weighted max norm - can just analyze
for sup norm
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Applying the lemma

Rewrite Bellman equation update:

Qt+1(st ,at ) = (1− αt )Qt (st ,at ) + αt (rt + γmax
a′

Qt (st+1,a′))

Subtract Q∗(st ,at ) from both sides:

Qt+1(st ,at )−Q∗(st ,at ) = (1− αt )(Qt (st ,at )−Q∗(st ,at ))

+ αt (rt + γmax
a′

Qt (st+1,a′)−Q∗(st ,at ))

∆t+1 = (1− αt )∆t + αtFt
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Proof boils doing to showing that requirements 2 and 3 of the
lemma are satisfied

First follows from fact that value iteration update Ft is a
contraction mapping.
Second follows by expanding and noting that rewards are
bounded.
See [2] for details.
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Function Approximation

Vanilla Q-learning for finite MDPs stores values in a lookup
table
Obviously intractable for large or continuous MDPs
However, we can replace this with a function approximator
Find some model Q with parameters θ s.t.

Q(s,a, θ) ≈ Q∗(s,a)

Linear models
Gaussian processes
Neural networks
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Deep Q-Learning

Approximates the value function using a deep network.
Non-linear function approximator

Approximate the value function Q(s,a,w) ≈ Qπ(s,a)

Objective function is mean-squared error of Q-values

L(w) = E
[(

r + γa′Q(s′,a′,w)−Q(s,a,w)
)2
]

Train using gradient descent

∇L = E
[(

r + γa′Q(s′,a′,w)−Q(s,a,w)
)
∇Q(s,a,w)

]
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Atari

Arcade Learning Environment (ALE): pixel-level games
Receive as input a 210x160 image with 128 colors and
current score
Action is any of the 18 buttons/joy stick movements

Actions unlabeled (ie no specification for up button)

Still largely unsolved (even after DQN!)
Main challenges:

Input is very high-dimensional (vision in the form of pixels)
Long-term planning is difficult (delay between action and
reward)
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Convolutional Neural Networks

Convolutional filters mirror the way we see
Same filter applies through sliding window across image
substantially decreases number of weights needed

Subsampling of results
Take average or max of sliding window
translational invariance

End with fully connected layers
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Preprocessing

CNN on raw CMYK data
Pre-processed images by downscaling from 210x160 to
110x84 then cropping to 84x84
Max of two frames used to account for flickering
Extracted solely Y (luminance) channel
Final fully-connected layer to separate output units for each
action

Action selected every k frames for faster training
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Q-network Example
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Q-network Example
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Atari-specific problems

Training deep RL networks directly leads to bad performance
Adjacent training samples are clearly correlated
Break correlations

experience replay
Unstable gradients from unknown reward scale

clip rewards
Oscillation from policy and Q-network changing

Fix Q-network
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Experience Replay

Build dataset from agent’s own experience
Store last N transitions (st ,at , rt+1, st+1) in replay memory
D
At each iteration, sample random mini-batch U(D) of
transitions from D
Recall Bellman equation
Q(s,a) = Es′ [r + γmaxa′ Q(s′,a′)|s,a]
Target y = r + γmaxa′ Q(s′,a′,w)

L(w) = E(s,a,r ,s′)∼U(D)

[
(y −Q(s,a,w))2

]
∇w = Es,a,r ,s′

[(
r + γmax

a′
Q(s′,a′,w ]−Q(s,a,w)

)
∇wQ(s,a,w)

]
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Reward clipping

Clip rewards to {−1,1}
Keeps Q-values small
Can use same gradient descent parameters
Can’t tell difference between small and large rewards
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Q-network Stability

Fix Q-network every C updates to a target network Q̂
Denote saved weights ŵ

Use Q̂ to generate Q-learning targets y
Less likely to have oscillations between y and Q changes

∇w = Es,a,r ,s′

[(
r + γmax

a′
Q(s′,a′, ŵ ]−Q(s,a,w)

)
∇wQ(s,a,w)

]



Reinforcement Learning Q-Learning Deep Q-Learning on Atari

1: initialize replay memory D
2: initialize action-value Q randomly
3: for episode = 1,M do
4: initialize sequence s1 and preprocessed sequence φ1
5: for t = 1,T
6: select random action at with probability ε
7: else select at = maxa Q∗(φ(st ),a; θ) do
8: execute action at in emulator and observe reward rt

and image xt+1
9: store transition (φt ,at , rt , φt+1) in D

10: sample random minibatch of transitions (φj ,aj , rj , φj+1)
from D

11: set yj = rj for terminal φj+1 and
yj = rj + γmaxa′ Q(φj+1,a′; θ) for non-terminal φj+1

12: perform gradient descent step on (yj −Q(φj ,aj ; θ))2

13: end for
14: end for
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Example

Water World

http://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
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Example

http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_SV2.html
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DQN results
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Long-term Planning

Performs poorly in games requiring long-term planning
Low probability of finding exact sequence of events with
ε− greedy

Sequence of n exact events is found with probability
exponential to n

Q-network has no memory state
DQRN tries to remedy this with LSTM layer replacing fully
connected layer

Partially successful on long term games
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Breakout trained for 24 hours on Titan X
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