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Today

What should you take away from this lecture?

• How should you base your prediction on expert predictions?
• What are the characteristics of multiplicative weights algorithms?
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Online Learning with Experts



Leo at the Oscars: an online binary prediction problem

Will Leo win an Oscar this year? (running question since ∼1997...)
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Leo at the Oscars: an online binary prediction problem

... No

2005 No

2006 No

2007 No

2008 No

2009 No

2010 No
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Leo at the Oscars: an online binary prediction problem

2011 No

2012 No

2013 No

2014 No

2015 No

2016 Yes!
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Leo at the Oscars: an online binary prediction problem

A frivolous extrapolation:

2016 Yes!

2017 No

2018 Yes!

2019 No

2020 Yes

2021 Yes
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Leo at the Oscars: an online binary prediction problem

Imagine you’re a showbiz fan and want to predict the answer every year t.

But, you don’t know all the ins and outs of Hollywood.

Instead, you are lucky enough to have access to experts {i}i∈I , that each
make a (possibly wrong!) prediction pi,t.

• How do you use the experts for your own prediction?
• How do you incorporate the feedback from Nature?
• How do we achieve sublinear regret?
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Formal description
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Online Learning with Experts

Formal setup: there are T rounds in which we predict a binary label
p̂t ∈ Y = {0, 1}.

At every timestep t:

1. Each expert i = 1 . . .n predicts pi,t ∈ Y
2. You make a prediction p̂t ∈ Y
3. Nature reveals yt ∈ Y
4. We suffer a loss l(p̂t, yt) = 1 [p̂t ̸= yt]
5. Each expert suffers a loss l(pi,t, yt) = 1 [pi,t ̸= yt]

Loss: L̂T =
∑T

t=1 l(p̂t, yt), Li,T =
∑T

t=1 l(pi,t, yt) # of mistakes made

Regret: RT = L̂T −mini Li,T

How do you decide what p̂t to predict? How do you incorporate the feedback
from Nature? How do we achieve sublinear regret?
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Online Learning with Experts

• ”Experts” is a way to abstract a hypothesis class.
• For the most part, we’ll deal with a finite, discrete number of experts,
because that’s easier to analyze.

• In general, there can be a continuous space of experts = using a
standard hypothesis class.

• Boosting uses a collection of n weak classifiers as ”experts”. At every
time t it adds 1 weak classifier with weight αt to the ensemble classifier
h1:t. The prediction p̂t is based on the ensemble h1:t that we have
collected so far.
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Weighted Majority: the halving algorithm

Let’s assume that there is a perfect expert i∗, that is guaranteed to know the
right answer (say a mind-reader that can read the minds of the voting
Academy members). That is, ∀t : pi∗,t = yt and li∗,t = 0.

Keep regret (= # mistakes) small −→ find the perfect expert quickly with few
mistakes.

• Eliminate experts that make a mistake
• Take a majority vote of ”alive” experts

Let’s define some groups of experts:

The ”alive” set:
Et = {i : i did not make a mistake until time t} , E0 = {1, . . . ,n}

The nay-sayers: E0t−1 = {i ∈ Et−1 : pi,t = 0}

The yay-sayers: E1t−1 = {i ∈ Et−1 : pi,t = 1}
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Weighted Majority: the halving algorithm

t l̂t yt p̂t p1,t p2,t p3,t p4,t p5,t p6,t p7,t p8,t p9,t p10,t p11,t p12,t

2011 0 No

2012 0 No

2013 0 No

2014 0 No

2015 0 No

2016 1 Yes!

2017 0 No

2018 0 Yes!

2019 0 No

2020 1 Yes

2021 0 Yes
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Weighted Majority: the halving algorithm

The halving algorithm
1: for t = 1 . . . T do
2: Receive expert predictions (p1,t . . .pn,t)
3: Split Et−1 into E0t−1 ∪ E1t−1

4: if |E1t−1| > |E0t−1| then ▷ follow the majority
5: Predict p̂t = 1
6: else
7: Predict p̂t = 0
8: end if
9: Receive Nature’s answer yt (and incur loss l(p̂t, yt))
10: Update Et with experts that continue to be right
11: end for

16



Weighted Majority: the halving algorithm

Notice that if halving makes a mistake, then at least half of the experts in
Et−1 were wrong:

Wt = |Et| = |Eytt−1| ≤ |Et−1|/2.

Since there is always a perfect expert, the algorithm makes no more than
⌊log2 |E0|⌋ = ⌊log2 n⌋ mistakes −→ sublinear regret.

Qualitatively speaking:

• Wt multiplicatively decreases when halving makes a mistake. If Wt

doesn’t shrink too much, then halving can’t make too many mistakes.
• There is a lower bound on Wt for all t, since there is an expert. Wt can’t
shrink ”too much” starting from its initial value.

We’ll see similar behavior later.
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Weighted Majority

So what should we do if we don’t know anything about the experts? The
majority vote might be always wrong!

Give each of them a weight wi,t, initialized as wi,1 = 1.

Decide based on a weighted sum of experts:

p̂t = 1 [weighted sum of yay-sayers > weighted sum of nay-sayers]

p̂t = 1
[ n∑
i=1

wi,t−1pi,t >
n∑
i=1

wi,t−1(1− pi,t)
]
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Weighted Majority

Recall: with a perfect expert we had

The halving algorithm
1: for t = 1 . . . T do
2: Receive expert predictions (p1,t . . .pn,t)
3: Split Et−1 into E0t−1 ∪ E1t−1

4: if |E1t−1| > |E0t−1| then ▷ follow the majority
5: Predict p̂t = 1
6: else
7: Predict p̂t = 0
8: end if
9: Receive Nature’s answer yt (and incur loss l(p̂t, yt))
10: Update Et with experts that continue to be right
11: end for
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Weighted Majority

Without knowledge about the experts: choose a decay factor β ∈ [0, 1)

The Weighted Majority algorithm
1: Initialize wi,1 = 1,W1 = n.
2: for t = 1 . . . T do
3: Receive expert predictions (p1,t . . .pn,t)
4: if

∑n
i=1 wi,t−1pi,t >

∑n
i=1 wi,t−1(1− pi,t) then

5: Predict p̂t = 1
6: else
7: Predict p̂t = 0
8: end if
9: Receive Nature’s answer yt (and incur loss l(p̂t, yt))
10: wi,t ← wi,t−1β

1(pi,t ̸=yt)

11: end for
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Weighted Majority

• halving is equivalent to choosing wi,t = 1 if i is ”alive” (β = 0).
• What happens as β −→ 1? Faulty experts are not punished that much.
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Weighted Majority

Define the potential Wt =
∑n

i=1 wi,t (the weighted size of the set of experts).

Theorem 1:

• Wt ≤ Wt−1

• If p̂t ̸= yt then Wt ≤ 1+β
2 Wt−1.

Compare with before:

• Wt multiplicatively decreases when halving makes a mistake.
• Is there always a lower non-zero bound on Wt for all t? Yes, with finite T.
No, infinite time all weights could decay towards 0. Note that we didn’t
normalize the wi,t - we’ll fix this in the next part.

• What about the regret behavior? Is it sublinear? We’ll leave this for now.
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Multiplicative Weights algorithms



Multiplicative Weights

High-level intuition:

• More general case: choose from n options.
• Stochastic strategies allowed.
• Not always experts present.
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Multiplicative Weights

Setup: at each timestep t = 1 . . . T:

1. you want to take a decision d ∈ D = {1, . . . ,n}
2. you choose a distribution pt over D and sample randomly from it.
3. Nature reveals the cost vector ct, where each cost ci,t is bounded in

[−1, 1]
4. the expected cost is then Ei∼pt [ct] = ct · pt.

Goal: minimize regret with respect to the best decision in hindsight,
mini

∑T
t=1 ci,t.

In halving, decision = ”choose expert”, cost = ”mistake”, and pt was 1 for the
majority of alive experts (note that p is not ”prediction” here).
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The Multiplicative Weights algorithm

Comes in many forms!

The multiplicative weights algorithm
1: Fix η ≤ 1

2 .
2: Initialize wi,1 = 1
3: Initialize W1 = n
4: for t = 1 . . . T do
5: Wt =

∑
i wi,t.

6: Choose a decision i ∼ pt =
wi,t
Wt

7: Nature reveals ct
8: wi,t+1 ← wi,t (1− ηci,t)
9: end for
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Regret of Multiplicative Weights

Regret of multiplicative weights

Assume cost ci,t is bounded in [−1, 1] and η ≤ 1
2 . Then after T rounds, for

any decision i:

T∑
t=1

ct · pt ≤
T∑
t=1

ci,t + η

T∑
t=1
|ci,t|+

logn
η
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Regret of Multiplicative Weights

Regret of multiplicative weights

Assume cost ci,t is bounded in [−1, 1] and η ≤ 1
2 . Then after T rounds, for

any decision i:

T∑
t=1

ct · pt ≤
T∑
t=1

ci,t + η

T∑
t=1
|ci,t|+

logn
η

• The cost of any fixed decision i
• Relates to how quickly the MWA updates itself after observing the costs
at time t

• How conservative the MWA should be - if η is too small, we ”overfit” too
quickly
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Regret of Multiplicative Weights

Regret of multiplicative weights

Assume cost ci,t is bounded in [−1, 1] and η ≤ 1
2 . Then after T rounds, for

any decision i:

T∑
t=1

ct · pt ≤
T∑
t=1

ci,t + η

T∑
t=1
|ci,t|+

logn
η

• η ≤ 1
2 is needed to make some inequalities work.

• Generality: no assumptions about the sequence of events (may be
correlated, costs may be adversarial)!

• Holds for all i: taking a min over decisions, we see:

RT ≤
logn
η

+ ηmin
i

T∑
t=1
|ci,t|
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Regret of Multiplicative Weights

RT ≤
logn
η

+ ηmin
i

T∑
t=1
|ci,t|

What is the regret behavior?

Since the sum is O(T), it’s sub-linear with appropriate choice η ∼
√

log n
T .

Then
RT ≤ O

(√
T logn

)
What is the issue with this?

We need to know the horizon T up front!

If T is unknown, use ηt ∼ min
(√

log n
t , 12

)
or the doubling trick.
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Regret of Multiplicative Weights

RT ≤
logn
η

+ ηmin
i

T∑
t=1
|ci,t|

What if we don’t choose η ∼
√

1
T?

• What if η is constant w.r.t. T?
• What if η < 1√

T?
• Fundamental tension between fitting to expert and learning from
Nature

• Optimality of MW: in the online setting you can’t do better: the regret is
lower bounded as RT ≥ Ω

(√
T logn

)
. See Theorem 4.1 in Arora.
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Regret of Multiplicative Weights

RT ≤
logn
η

+ ηmin
i

T∑
t=1
|ci,t|

Why can’t you achieve O(log T) regret as with FTL in this case?

• Recall for Follow The Leader with strongly convex loss, the difference
between the two consecutive decisions and losses scaled as
p∗t − p∗t−1 = O( 1t )

• In MW, the loss-differential scales with pt − pt−1 = O(η), which is O( 1√
t ),

so the MW algorithm needs to be prepared to make much bigger
changes than FTL over time.
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Proof of MW

The steps in the proof are:

1. Upper bound Wt in terms of cumulative decay factors
2. Lower bound Wt by using convexity arguments
3. Combine the upper and lower bounds on Wt to get the answer

Let’s go through the proof carefully.
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Proof of MW: Getting the upper bound on Wt

Wt+1 =
∑
i

wi,t+1

=
∑
i

wi,t (1− ηci,t)

= Wt − ηWt
∑
i

ci,tpi,t wi,t = Wtpi,t

= Wt (1− ηct · pt)
≤ Wt exp (−ηct · pt) convexity

Recursively using this inequality:

WT+1 ≤ W1 exp
(
−η

T∑
t=1

ct · pt

)

= n · exp
(
−η

T∑
t=1

ct · pt

)
∀x ∈ R : 1− x ≤ e−x
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Proof of MW: Getting the lower bound on Wt

WT+1 ≥ wi,T+1

=
∏
t≤T

(1− ηci,t) multipl. updates and wi,1 = 1

=
∏

t:ci,t≥0

(1− ηci,t)
∏

t:ci,t<0
(1− ηci,t) split positive + negative costs

Now we use the fact that:

• ∀x ∈ [0, 1] : (1− η)x ≤ (1− ηx)
• ∀x ∈ [−1, 0] : (1+ η)x ≤ (1− ηx)

Since ci,t ∈ [−1, 1], we can apply this to each factor in the product above:

WT+1 ≥ (1− η)
∑

≥0 ci,t (1+ η)−
∑

<0 ci,t

This is the lower bound we want.
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Proof of MW: Combine the upper and lower bounds

We get:

(1− η)
∑

≥0 ci,t (1+ η)−
∑

<0 ci,t ≤ WT+1 ≤ n · exp
(
−η

T∑
t=1

ct · pt

)

Take logs:

∑
≥0

ci,t log (1− η)−
∑
<0

ci,t log (1+ η) ≤ logn− η
T∑
t=1

ct · pt
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Proof of MW: Combine the upper and lower bounds

∑
≥0

ci,t log (1− η)−
∑
<0

ci,t log (1+ η) ≤ logn− η

T∑
t=1

ct · pt

Now we’ll massage this into the form we want:

η

T∑
t=1

ct · pt ≤ logn−
∑
≥0

ci,tlog (1− η) +
∑
<0

ci,t log (1+ η)

= logn+
∑
≥0

ci,tlog
(

1
1− η

)
+
∑
<0

ci,t log (1+ η)
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Proof of MW: Combine the upper and lower bounds

Since η ≤ 1
2 , we can use log

(
1

1−η

)
≤ η + η2 and log (1+ η) ≥ η − η2:

η

T∑
t=1

ct · pt

≤ logn+
∑
≥0

ci,t log
(

1
1− η

)
+
∑
<0

ci,t log (1+ η)

≤ logn+
∑
≥0

ci,t
(
η + η2

)
+
∑
<0

ci,t
(
η − η2

)
use inequalities

= logn+ η

T∑
t=1

ci,t + η2
∑
≥0

ci,t − η2
∑
<0

ci,t

= logn+ η
T∑
t=1

ci,t + η2
T∑
t=1
|ci,t| combine sums
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Proof of MW: Combine the upper and lower bounds
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Proof of MW: Combine the upper and lower bounds

Since η ≤ 1
2 , we can use log

(
1

1−η

)
≤ η + η2 and log (1+ η) ≥ η − η2:

η

T∑
t=1

ct · pt

≤ logn+
∑
≥0

ci,t log
(

1
1− η

)
+
∑
<0

ci,t log (1+ η)

≤ logn+
∑
≥0

ci,t
(
η + η2

)
+
∑
<0

ci,t
(
η − η2

)
use inequalities

= logn+ η

T∑
t=1

ci,t + η2
∑
≥0

ci,t − η2
∑
<0

ci,t

= logn+ η
T∑
t=1

ci,t + η2
T∑
t=1
|ci,t| combine sums
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Proof of MW: Combine the upper and lower bounds

Dividing by η, we get what we want:

T∑
t=1

ct · pt ≤
logn
η

+
T∑
t=1

ci,t + η

T∑
t=1
|ci,t|
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Some remarks

• Matrix form of MW
• Gains instead of losses

See Arora’s paper for more details
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Learning with Experts revisited



Multiplicative Weights with continuous label spaces.
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Exponential Weighted Average: continuous prediction case

Formal setup: there are T rounds in which you predict a label p̂t ∈ C.

C is a convex subset of some vector space.

At every timestep t:

1. Each expert i = 1 . . .n predicts pi,t ∈ C
2. You make a prediction p̂t ∈ C
3. Nature reveals yt ∈ Y
4. We suffer a loss l(p̂t, yt)
5. Each expert suffers a loss l(pi,t, yt)

Loss: L̂t =
∑T

t=1 l(p̂t, yt), Li,t =
∑T

t=1 l(pi,t, yt)

Regret: Rt = L̂t −mini Li,t
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Exponential Weighted Average: continuous prediction case

We assume that the loss l(p̂t, yt) as a function l : C × Y −→ R:

• is bounded: ∀p ∈ C, y ∈ Y : l(p, y) ∈ [0, 1]
• l(., y) is convex for any fixed y ∈ Y
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Exponential Weighted Average

This brings us to a familiar algorithm.

Choose an η > 0 (we’ll make this more directed later).

Exponential Weighted Average algorithm
1: Initialize wi,0 = 1,W0 = n.
2: for t = 1 . . . T do
3: Receive expert predictions (p1,t . . .pN,t)
4: Predict p̂t =

∑N
i=1 wi,t−1pi,t
Wt−1

5: Receive Nature’s answer yt (and incur loss l(p̂t, yt))
6: wi,t ← wi,t−1e−ηl(pi,t,yt)

7: Wt ←
∑N

i=1 wi,t
8: end for
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Exponential Weighted Average

Regret of EWA

Assume that the loss l is a function l : C × Y −→ [0, 1], where C is convex
and l(., y) is convex for any fixed y ∈ Y . Then

RT = L̂T −min
i
Li,T ≤

logn
η

+
ηT
8

Hence, if we choose η =
√

8 log n
T , the regret RT ≤

√
T
2 logn = O(

√
T).

The proof follows from an application of Jensen’s inequality and Hoeffding’s
lemma. See chapter 3 of Bartok for details.

Again note that we need to know what T is in advance.
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So how about the regret in the discrete case?
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Weighted Majority

Regret of Weighted Majority

Let C = Y , Y have at least 2 elements and l(p, y) = 1(p ̸= y). Let L∗i,T =

mini Li,T.

RT = L̂T −min
i
Li,T ≤

(
log2

(
1
β

)
− log2

(
2

1+β

)
L∗i,T
)
+ log2 N

log2
(

2
1+β

)

This bound is of the form RT = aL∗i,T + b = O(T)!

• The discrete case is harder than the continuous case if we stick to
deterministic algorithms.

• The worst-case regret is achieved by a set of 2 experts and an outcome
sequence yt such that L̂T = T.

See chapter 4 of Bartok for details.
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Today

What should you (at least) take away from this lecture?

How should you base your prediction on expert predictions?

• Can use a weighted majority algorithm, which is a type of MWA.
• General framework for online learning with experts (e.g. boosting).

What are the characteristics of multiplicative weights algorithms? ...

• Few assumptions on costs / Nature (can be adversarial), therefore
broadly applicable.

• Fundamental tension between fitting to decision and learning from
Nature.

• Tends to have instantenous loss-differential O( 1√
t ), worse than the

version of FTL O( 1t ) that we saw in lecture 1.
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Questions?
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