
Online Convex Optimization

Gautam Goel, Milan Cvitkovic, and Ellen Feldman

CS 159

4/5/2016

The General Setting

The General Setting

(Cover) Given only the above, learning isn't always possible

Some Natural Restrictions

 Realizability
 There is some hypothesis that makes no mistakes

 Implies simple algs like Consistent and Halving

Some Natural Restrictions

 Realizability
 There is some hypothesis that makes no mistakes

 Implies simple algs like Consistent and Halving

 Randomization
 Our predictions are made via a probability distribution, and

the environment does not control the randomness

 Suggests Expected Regret as a performance metric

Recall:

Some Natural Restrictions

 Realizability
 There is some hypothesis that makes no mistakes

 Implies simple algs like Consistent and Halving

 Randomization
 Our predictions are made via a probability distribution, and

the environment does not control the randomness

 Suggests Expected Regret as a performance metric

• Non-adversarial
– Loss functions are sampled iid from some distribution

– This is stochastic gradient descent

Unifying Framework

Unifying Framework

 Randomization is just OCO with the probability simplex

and a 'surrogate loss function' that upper-bounds the
original loss function.

Unifying Framework

 Randomization is just OCO with the probability simplex

and a 'surrogate loss function' that upper-bounds the
original loss function.

 Realizability additionally assumes

How to Learn in OCO

 For quadratic optimization problems, in which ,

The Naïve Approach

FTL has regret .

 For linear optimization problems, in which ,

Just imagine a 1-dimensional alternating between -1 and 1 each
round.

The Naïve Approach

FTL has unbounded regret.

Follow-the-Regularized-Leader (FoReL)

• Regularization stabilizes the solution of follow-the-leader

• Goal: eliminate the jumpiness!

• Regularization function: 𝑅: 𝑆 → ℝ

• 𝒘𝑡 = argmin𝐰 ∈𝑆 σ𝑖=1
𝑡 −1 𝑓𝑖 𝒘 + 𝑅(𝒘)

Special Case: Linear Loss Functions

• FoReL: 𝒘𝑡 = argmin𝐰 ∈𝑆[σ𝑖=1
𝑡 −1 𝑓𝑖 𝒘 + 𝑅(𝒘)]

• Let 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 >, 𝑆 = ℝ𝑑 , 𝑅 𝒘 =
1

2𝜂
| 𝒘 |2

2

𝒘𝑡+1 = argmin𝒘 σ𝑖=1
𝑡 𝑓𝑖 𝒘 + 𝑅 𝒘

= argmin𝒘 σ𝑖=1
𝑡 < 𝒘, 𝒛𝑖 > +

1

2𝜂
𝒘

2

2

• Set derivative equal to zero:

• 0 = σ𝑖=1
𝑡 𝒛𝑖 +

1

2𝜂
2𝒘 𝒘𝑡+1 = −𝜂σ𝑖=1

𝑡 𝒛𝑖

𝒘𝑡+1 = −𝜂

𝑖=1

𝑡

𝒛𝑖 = −𝜂

𝑖=1

𝑡−1

𝒛𝑖 − 𝜂𝒛𝑡 = 𝒘𝑡 − 𝜂 < 𝒛𝑡 , 𝑡 > 1

• Note that 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 > → 𝛻𝑓𝑡 𝒘𝑡 = 𝑧𝑡

• This gives us the formula for gradient descent for linear functions:

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝑓𝑡 𝒘𝑡

Special Case: Linear Loss Functions

Special Case: Linear Loss Functions

How can we bound the regret?

• Regret𝑇 𝒖 = σ𝑡=1
𝑇 (𝑓𝑡 𝒘𝑡 − 𝑓𝑡(𝒖))

• Let 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 >, 𝑆 = ℝ𝑑 , 𝑅 𝒘 =
1

2𝜂
| 𝒘 |2

2

• For all 𝒖, we have the following regret bound:

Special Case: Linear Loss Functions

How can we bound the regret?

• Regret𝑇 𝒖 = σ𝑡=1
𝑇 (𝑓𝑡 𝒘𝑡 − 𝑓𝑡(𝒖))

• Let 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 >, 𝑆 = ℝ𝑑 , 𝑅 𝒘 =
1

2𝜂
| 𝒘 |2

2

• For all 𝒖, we have the following regret bound:

Regularization term
Loss functions have
greater magnitude

Digression: Proof of Lemma 2.3

• Define a function 𝑓0 to be equal to the regularization function 𝑅

• Then, running FoReL on f1, … , f𝑇 is equivalent to running FTL on
𝑓0, 𝑓1, … , 𝑓𝑇

• Apply Lemma 2.1, which is:

Digression: Proof of Lemma 2.3, continued

• Since 𝑓0 = 𝑅, this is equivalent to:

𝑡=1

𝑇

𝑓𝑡 𝒘𝑡 − 𝑓𝑡 𝒖 + 𝑅 𝒘0 − 𝑅 𝒖 ≤

𝑡=1

𝑇

𝑓𝑡 𝒘𝑡 − 𝑓𝑡 𝒘𝑡+1 + 𝑅 𝒘0 − 𝑅(𝒘1)

Special Case: Linear Loss Functions (Thm. 2.4)

• From Lemma 2.3:

• By definitions of 𝑅 and 𝑓𝑡:

Regret𝑇 𝑢 ≤ 1
2𝜂 𝒖

2

2
−

1
2𝜂 𝒘1 2

2
+σ𝑡=1

𝑇 <𝒘𝑡−𝒘𝑡+1 , 𝒛𝑡>

≤ 1

2𝜂
𝒖

2

2
+σ𝑡=1

𝑇 <𝒘𝑡−𝒘𝑡+1 , 𝒛𝑡>

• Using that 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝒛𝑡:

= 1

2𝜂
𝒖

2

2
+σ𝑡=1

𝑇 <𝜂𝒛𝑡, 𝒛𝑡> =
1

2𝜂
𝒖

2

2
+𝜂 σ𝑡=1

𝑇 𝒛𝑡 2

2

• Thus:

Extending from Linear to Convex Functions:
Subgradients

Extending from Linear to Convex Functions:
Online Gradient Descent

• SGD is the special case where loss functions are sampled iid from a distribution

Extending from Linear to Convex Functions:
(Unsatisfying) Regret Bound

• We want sublinear regret

Extending from Linear to Convex Functions:
Lipschitz-ness to the rescue!
• A function f is L-Lipschitz if for all x, y in the domain of f, we have

|f(x) – f(y)| <= L|x – y|

Extending from Linear to Convex Functions:
Lipschitz-ness to the rescue!
• A function f is L-Lipschitz if for all x, y in the domain of f, we have

|f(x) – f(y)| <= L|x – y|

Extending from Linear to Convex Functions:
How to pick step size?

Special Cases:
Specific Convex Functions

 Logarithmic Regret Algorithms (Hazan)
 If the loss functions have bounded first and second gradients, OGD has

regret

 Other algorithms exist for weaker assumptions:

 Newton Step/FTApproximateL

(for bounded gradient and concave exponential)

 Exponentially Weighted Optimization

(for concave exponential)

Special Case: Smoothed OCO

Chen, N., Agarwal, A., Wierman, A., Barman, S., & Andrew, L. L. (2015,
June). Online convex optimization using predictions. In Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (pp. 191-204). ACM.

Andrew, L., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., &
Wierman, A. (2013, June). A tale of two metrics: Simultaneous bounds
on competitiveness and regret. In ACM SIGMETRICS Performance
Evaluation Review (Vol. 41, No. 1, pp. 329-330). ACM.

Special Case: Smoothed OCO
The cost model

Applications: Geographical Load Balancing, Dynamic Capacity Provisioning

Special Case: Smoothed OCO
Some performance metrics

Special Case: Smoothed OCO
Result from first paper
• You can’t have both! (in the worst case)

Special Case: Smoothed OCO
Result from second paper
• … but in practice, it doesn’t matter!

• Most noise is not adversarial

• Often have access to “noisy predictions”

• => Propose an algorithm with good performance in both metrics

Special Case: Smoothed OCO
Averaging Fixed Horizon Control
• Fixed Horizon Control: Given predictions over timesteps t … t + w, just

play whatever is optimal over these steps.

• AFHC: average several FHC algorithms starting at different time steps

Special Case:
Iterative Soft-Thresholding Algorithm

• Assume 𝐿 can be decomposed into differentiable and non-
differentiable components:

• 𝐿 𝒘 = 𝐺 𝒘 + 𝐻(𝒘)

• Example:

• 𝐿 𝒘 = σ(𝑥𝑖,𝑦𝑖) ∈𝑆
𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 + 𝜆| 𝒘 |1

Differentiable
Non-differentiable

G H

Special Case:
Iterative Soft-Thresholding Algorithm

• 𝐿 𝒘 = 𝐺 𝒘 + 𝐻 𝒘 = σ(𝑥𝑖,𝑦𝑖) ∈𝑆
𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 + 𝜆| 𝒘 |1

• Solve the differentiable part G using gradient descent:

• 𝒗𝑡 = 𝒘𝑡−1 − 𝜂𝑡𝛻𝑤𝐺(𝒘 = 𝒘𝑡 −1)

• For the non-differentiable part H, add a regularization term:

• Perform the minimization:

Special Case:
Iterative Soft-Thresholding Algorithm

Generalizing OCO

Generalizations

What if our can break the rules sometimes?

If the weight vectors need only be convex on average in the long
run, lower-regret algorithms exist. (Jennaton, et al.)

What if our can't change too quickly?

Not only is the regret worse under these 'ramp constraints', but
learners must be designed not to constrain their future actions.
(Badiei, Li, Wierman)

Generalizations

What if our loss functions aren't convex?

Often OCO techniques still work, especially when training deep
learners. (Balduzzi)

Generalizations

What if we, or our experts, don't have to play each round?

Often OCO techniques still work. (Balduzzi)

Generalizations

What if we have a whole network of online learners that can
communicate?

Even when communication is local, low regret-algorithms exist.
(Koppel, et al.)

Generalizations

Generalizations: Dynamically-Varying Environment

• What if the underlying environment varies over time?

• To improve performance, dynamically model the environment (Hall 2013,
Hall 2014)

• Dynamic Mirror Descent: incorporates dynamical model state updates

• Dynamic Fixed Share: selects a dynamical model from a family of
candidates at each time step

• DMD tracking regret bound: Φ is the dynamical system, and we take the
regret with respect to the sequence of moves {𝜃𝑡}

𝑅 𝜃𝑇 = 𝑂(𝑇[1 +

𝑡

| 𝜃𝑡+1 −Φ𝑡 𝜃𝑡 |])

• Note: regret scales with deviation of {𝜃𝑡} from dynamical system Φ

Generalizations: Bandit Setting (Agarwal 2010)

• Bandit setting: at each time 𝑡, we only find out 𝑙𝑡(𝑥𝑡), not all of 𝑙𝑡
• Completely adaptive adversary: chooses 𝑙𝑡 knowing 𝑥1, … , 𝑥𝑡

• Regret is Ω(𝑇): at least order 𝑇

• Adaptive adversary: chooses 𝑙𝑡 knowing 𝑥1, … , 𝑥𝑡−1
• Regret is Ω(𝑇)

• Regret is ෨𝑂 𝑇 with linear loss functions (i.e. 𝑂(𝑇) with high
probability)

• Compare with regret for full information case

• 𝑂(𝑇) for convex Lipschitz and smooth loss functions

• 𝑂(log 𝑇) for strongly convex and smooth loss functions

Generalizations: Multi-Point Bandit Setting

• Player queries each loss function at 𝑘 randomized points

• Take expected regret WRT the player’s randomness:

𝑅𝑒𝑔𝑟𝑒𝑡 = 𝔼 1
𝑘
σ𝑡=1
𝑇 σ𝑖=1

𝑘 𝑙𝑡 𝑦𝑡,𝑖 − min
𝑥∈𝒦

𝔼
𝑡=1

𝑇

𝑙𝑡 𝑥

Setting Regret for convex Lipschitz
and smooth loss functions

Regret for strongly convex
and smooth loss functions

Multi-Point, 𝑘 = 2; adaptive
adversary

෨𝑂 𝑇 (with high

probability)

𝑂(log 𝑇) (expected)

Multi-Point, 𝑘 = 𝑑 + 1;
completely adaptive adversary

𝑂(𝑇) (deterministic) 𝑂(log 𝑇) (deterministic)

Full Information 𝑂(𝑇) (deterministic) 𝑂(log 𝑇) (deterministic)

Summary

• Online convex optimization framework captures a huge part of online
learning
• Lots of algorithms we already know are OCO, for instance SGD

• Follow-the-regularized leader, and variants, all perform well in OCO

• Generalizations of OCO are widespread, and rely on OCO algorithms

Questions?

References
• Agarwal, Alekh, Ofer Dekel, and Lin Xiao. "Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback."

COLT. 2010.

• Andrew, L., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., & Wierman, A. (2013, June). A tale of two
metrics: Simultaneous bounds on competitiveness and regret. In ACM SIGMETRICS Performance Evaluation Review
(Vol. 41, No. 1, pp. 329-330). ACM.

• Badiei, Masoud, Na Li, and Adam Wierman. "Online Convex Optimization with Ramp Constraints.“

• Balduzzi, David. "Deep Online Convex Optimization by Putting Forecaster to Sleep." arXiv preprint arXiv:1509.01851
(2015).

• Chen, N., Agarwal, A., Wierman, A., Barman, S., & Andrew, L. L. (2015, June). Online convex optimization using
predictions. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (pp. 191-204). ACM.

• Hall, Eric C., and Rebecca M. Willett. "Online convex optimization in dynamic environments." Selected Topics in Signal Processing,
IEEE Journal of 9.4 (2015): 647-662.

• Hall, Eric C., and Rebecca M. Willett. "Dynamical models and tracking regret in online convex programming." Proceedings of the
30th International Conference on Machine Learning. 2013.

• Hazan, Elad, Amit Agarwal, and Satyen Kale. "Logarithmic regret algorithms for online convex optimization."
Machine Learning 69.2-3 (2007): 169-192.

• Jenatton, Rodolphe, Jim Huang, and Cédric Archambeau. "Adaptive Algorithms for Online Convex Optimization
with Long-term Constraints." arXiv preprint arXiv:1512.07422 (2015).

• Koppel, Alec, Felicia Y. Jakubiec, and Alejandro Ribeiro. "A saddle point algorithm for networked online convex
optimization." Signal Processing, IEEE Transactions on 63.19 (2015): 5149-5164.

• Yue, Yisong. “Advanced Optimization Notes.” Course notes.
http://www.yisongyue.com/courses/cs15/lectures/optimization.pdf

http://www.yisongyue.com/courses/cs15/lectures/optimization.pdf

A Couple Back-Up Slides

Strongly Convex Function

Eliminating the Time Horizon Dependence:
The Doubling Trick

For 𝑚 = 0, 1, 2, … ,⎾ log2 𝑇⏋: run algorithm on the 2𝑚 rounds 𝑡 =
2𝑚, … ,min(2𝑚+1 − 1, 𝑇)

m = 0: run for t = 1

m = 1: run for t = 2, 3

m = 2: run for t = 3, …, 7

Etc.

Eliminating the Time Horizon Dependence:
The Doubling Trick

• Assume the algorithm’s regret on each 2𝑚 rounds is bounded by 𝛼 2𝑚

Regret𝑇 𝒖 ≤ σ𝑚=0
⎾ log2 𝑇⏋𝛼 2𝑚 = 𝛼σ𝑚=0

⎾ log2 𝑇⏋ 2
𝑚

= 𝛼
1 − 2

⎾ log2 𝑇⏋+1

1 − 2
≤ 𝛼

1 − 2
log2 𝑇+1

1 − 2

= 𝛼
1 − 2𝑇

1 − 2
=

2𝑇−1

2−1
𝛼 ≤

2

2−1
𝛼 𝑇

• So, the regret bound only worsens by a constant multiplicative factor

