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(Cover) Given only the above, learning isn't always possible
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Some Natural Restrictions

 Realizability
 There is some hypothesis that makes no mistakes

 Implies simple algs like Consistent and Halving

 Randomization
 Our predictions are made via a probability distribution, and 

the environment does not control the randomness

 Suggests Expected Regret as a performance metric

• Non-adversarial
– Loss functions are sampled iid from some distribution

– This is stochastic gradient descent
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 Randomization is just OCO with the probability simplex

and a 'surrogate loss function'     that upper-bounds the 
original loss function.

 Realizability additionally assumes       



How to Learn in OCO



 For quadratic optimization problems, in which                                            ,

The Naïve Approach

FTL has regret                     .



 For linear optimization problems, in which                             ,

Just imagine a 1-dimensional      alternating between -1 and 1 each 
round.

The Naïve Approach

FTL has unbounded regret.



Follow-the-Regularized-Leader (FoReL)

• Regularization stabilizes the solution of follow-the-leader

• Goal: eliminate the jumpiness!

• Regularization function: 𝑅: 𝑆 → ℝ

• 𝒘𝑡 = argmin𝐰 ∈𝑆 σ𝑖=1
𝑡 −1 𝑓𝑖 𝒘 + 𝑅(𝒘)



Special Case: Linear Loss Functions

• FoReL: 𝒘𝑡 = argmin𝐰 ∈𝑆[σ𝑖=1
𝑡 −1 𝑓𝑖 𝒘 + 𝑅(𝒘)]

• Let 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 >, 𝑆 = ℝ𝑑 , 𝑅 𝒘 =
1
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𝒘𝑡+1 = argmin𝒘 σ𝑖=1
𝑡 𝑓𝑖 𝒘 + 𝑅 𝒘

= argmin𝒘 σ𝑖=1
𝑡 < 𝒘, 𝒛𝑖 > +
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2𝜂
𝒘
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• Set derivative equal to zero:

• 0 = σ𝑖=1
𝑡 𝒛𝑖 +

1

2𝜂
2𝒘  𝒘𝑡+1 = −𝜂σ𝑖=1

𝑡 𝒛𝑖



𝒘𝑡+1 = −𝜂෍

𝑖=1

𝑡

𝒛𝑖 = −𝜂෍

𝑖=1

𝑡−1

𝒛𝑖 − 𝜂𝒛𝑡 = 𝒘𝑡 − 𝜂 < 𝒛𝑡 , 𝑡 > 1

• Note that 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 > → 𝛻𝑓𝑡 𝒘𝑡 = 𝑧𝑡

• This gives us the formula for gradient descent for linear functions:

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝑓𝑡 𝒘𝑡
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How can we bound the regret?

• Regret𝑇 𝒖 = σ𝑡=1
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• Let 𝑓𝑡 𝒘 =< 𝒘, 𝒛𝑡 >, 𝑆 = ℝ𝑑 , 𝑅 𝒘 =
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• For all 𝒖, we have the following regret bound:

Regularization term
Loss functions have
greater magnitude



Digression: Proof of Lemma 2.3

• Define a function 𝑓0 to be equal to the regularization function 𝑅

• Then, running FoReL on f1, … , f𝑇 is equivalent to running FTL on 
𝑓0, 𝑓1, … , 𝑓𝑇

• Apply Lemma 2.1, which is:



Digression: Proof of Lemma 2.3, continued

• Since 𝑓0 = 𝑅, this is equivalent to:

෍

𝑡=1

𝑇

𝑓𝑡 𝒘𝑡 − 𝑓𝑡 𝒖 + 𝑅 𝒘0 − 𝑅 𝒖 ≤ ෍

𝑡=1

𝑇

𝑓𝑡 𝒘𝑡 − 𝑓𝑡 𝒘𝑡+1 + 𝑅 𝒘0 − 𝑅(𝒘1)



Special Case: Linear Loss Functions (Thm. 2.4)

• From Lemma 2.3:

• By definitions of 𝑅 and 𝑓𝑡:

Regret𝑇 𝑢 ≤ 1
2𝜂 𝒖

2

2
−

1
2𝜂 𝒘1 2

2
+σ𝑡=1

𝑇 <𝒘𝑡−𝒘𝑡+1 , 𝒛𝑡>

≤ 1

2𝜂
𝒖

2

2
+σ𝑡=1

𝑇 <𝒘𝑡−𝒘𝑡+1 , 𝒛𝑡>

• Using that 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝒛𝑡:

= 1

2𝜂
𝒖

2

2
+σ𝑡=1

𝑇 <𝜂𝒛𝑡, 𝒛𝑡> =
1

2𝜂
𝒖

2

2
+𝜂 σ𝑡=1

𝑇 𝒛𝑡 2

2

• Thus: 



Extending from Linear to Convex Functions: 
Subgradients



Extending from Linear to Convex Functions: 
Online Gradient Descent

• SGD is the special case where loss functions are sampled iid from a distribution



Extending from Linear to Convex Functions: 
(Unsatisfying) Regret Bound

• We want sublinear regret



Extending from Linear to Convex Functions: 
Lipschitz-ness to the rescue!
• A function f is L-Lipschitz if for all x, y in the domain of f, we have 

|f(x) – f(y)| <= L|x – y|
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• A function f is L-Lipschitz if for all x, y in the domain of f, we have 

|f(x) – f(y)| <= L|x – y|



Extending from Linear to Convex Functions: 
How to pick step size?



Special Cases:
Specific Convex Functions

 Logarithmic Regret Algorithms (Hazan)
 If the loss functions have bounded first and second gradients, OGD has 

regret 

 Other              algorithms exist for weaker assumptions:

 Newton Step/FTApproximateL

(for bounded gradient and concave exponential)

 Exponentially Weighted Optimization

(for concave exponential)



Special Case: Smoothed OCO

Chen, N., Agarwal, A., Wierman, A., Barman, S., & Andrew, L. L. (2015, 
June). Online convex optimization using predictions. In Proceedings of 
the 2015 ACM SIGMETRICS International Conference on Measurement 
and Modeling of Computer Systems (pp. 191-204). ACM.

Andrew, L., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A., & 
Wierman, A. (2013, June). A tale of two metrics: Simultaneous bounds 
on competitiveness and regret. In ACM SIGMETRICS Performance 
Evaluation Review (Vol. 41, No. 1, pp. 329-330). ACM.



Special Case: Smoothed OCO
The cost model

Applications: Geographical Load Balancing, Dynamic Capacity Provisioning



Special Case: Smoothed OCO
Some performance metrics



Special Case: Smoothed OCO
Result from first paper
• You can’t have both! (in the worst case)



Special Case: Smoothed OCO
Result from second paper
• … but in practice, it doesn’t matter!

• Most noise is not adversarial

• Often have access to “noisy predictions”

• => Propose an algorithm with good performance in both metrics



Special Case: Smoothed OCO
Averaging Fixed Horizon Control
• Fixed Horizon Control: Given predictions over timesteps t … t + w, just 

play whatever is optimal over these steps.

• AFHC: average several FHC algorithms starting at different time steps



Special Case:
Iterative Soft-Thresholding Algorithm 

• Assume 𝐿 can be decomposed into differentiable and non-
differentiable components:

• 𝐿 𝒘 = 𝐺 𝒘 + 𝐻(𝒘)

• Example:

• 𝐿 𝒘 = σ(𝑥𝑖,𝑦𝑖) ∈𝑆
𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 + 𝜆| 𝒘 |1

Differentiable
Non-differentiable

G H



Special Case:
Iterative Soft-Thresholding Algorithm 

• 𝐿 𝒘 = 𝐺 𝒘 + 𝐻 𝒘 = σ(𝑥𝑖,𝑦𝑖) ∈𝑆
𝑙 𝑥𝑖 , 𝑦𝑖 , 𝑤 + 𝜆| 𝒘 |1

• Solve the differentiable part G using gradient descent:

• 𝒗𝑡 = 𝒘𝑡−1 − 𝜂𝑡𝛻𝑤𝐺(𝒘 = 𝒘𝑡 −1)

• For the non-differentiable part H, add a regularization term:

• Perform the minimization:



Special Case:
Iterative Soft-Thresholding Algorithm 



Generalizing OCO



Generalizations

What if our     can break the rules sometimes?

If the weight vectors need only be convex on average in the long 
run, lower-regret algorithms exist. (Jennaton, et al.)



What if our     can't change too quickly?

Not only is the regret worse under these 'ramp constraints', but 
learners must be designed not to constrain their future actions. 
(Badiei, Li, Wierman)

Generalizations



What if our loss functions aren't convex?

Often OCO techniques still work, especially when training deep 
learners. (Balduzzi)

Generalizations



What if we, or our experts, don't have to play each round?

Often OCO techniques still work. (Balduzzi)

Generalizations



What if we have a whole network of online learners that can 
communicate?

Even when communication is local, low regret-algorithms exist. 
(Koppel, et al.)

Generalizations



Generalizations: Dynamically-Varying Environment

• What if the underlying environment varies over time?

• To improve performance, dynamically model the environment (Hall 2013, 
Hall 2014)

• Dynamic Mirror Descent: incorporates dynamical model state updates

• Dynamic Fixed Share: selects a dynamical model from a family of 
candidates at each time step

• DMD tracking regret bound: Φ is the dynamical system, and we take the 
regret with respect to the sequence of moves {𝜃𝑡}

𝑅 𝜃𝑇 = 𝑂( 𝑇[1 +෍

𝑡

| 𝜃𝑡+1 −Φ𝑡 𝜃𝑡 |])

• Note: regret scales with deviation of {𝜃𝑡} from dynamical system Φ



Generalizations: Bandit Setting (Agarwal 2010)

• Bandit setting: at each time 𝑡, we only find out 𝑙𝑡(𝑥𝑡), not all of 𝑙𝑡
• Completely adaptive adversary: chooses 𝑙𝑡 knowing 𝑥1, … , 𝑥𝑡

• Regret is Ω(𝑇): at least order 𝑇

• Adaptive adversary: chooses 𝑙𝑡 knowing 𝑥1, … , 𝑥𝑡−1
• Regret is Ω( 𝑇)

• Regret is ෨𝑂 𝑇 with linear loss functions (i.e. 𝑂( 𝑇) with high 
probability)

• Compare with regret for full information case

• 𝑂( 𝑇) for convex Lipschitz and smooth loss functions

• 𝑂(log 𝑇 ) for strongly convex and smooth loss functions



Generalizations: Multi-Point Bandit Setting

• Player queries each loss function at 𝑘 randomized points

• Take expected regret WRT the player’s randomness:

𝑅𝑒𝑔𝑟𝑒𝑡 = 𝔼 1
𝑘
σ𝑡=1
𝑇 σ𝑖=1

𝑘 𝑙𝑡 𝑦𝑡,𝑖 − min
𝑥∈𝒦

𝔼 ෍
𝑡=1

𝑇

𝑙𝑡 𝑥

Setting Regret for convex Lipschitz 
and smooth loss functions

Regret for strongly convex 
and smooth loss functions

Multi-Point, 𝑘 = 2; adaptive 
adversary

෨𝑂 𝑇 (with high 

probability)

𝑂(log 𝑇 ) (expected)

Multi-Point, 𝑘 = 𝑑 + 1; 
completely adaptive adversary

𝑂( 𝑇) (deterministic) 𝑂(log 𝑇 ) (deterministic)

Full Information 𝑂( 𝑇) (deterministic) 𝑂(log 𝑇 ) (deterministic)



Summary

• Online convex optimization framework captures a huge part of online 
learning
• Lots of algorithms we already know are OCO, for instance SGD

• Follow-the-regularized leader, and variants, all perform well in OCO

• Generalizations of OCO are widespread, and rely on OCO algorithms



Questions?
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A Couple Back-Up Slides



Strongly Convex Function



Eliminating the Time Horizon Dependence:
The Doubling Trick

For 𝑚 = 0, 1, 2, … ,⎾ log2 𝑇⏋: run algorithm on the 2𝑚 rounds 𝑡 =
2𝑚, … ,min(2𝑚+1 − 1, 𝑇)

m = 0: run for t = 1

m = 1: run for t = 2, 3

m = 2: run for t = 3, …, 7

Etc.



Eliminating the Time Horizon Dependence:
The Doubling Trick

• Assume the algorithm’s regret on each 2𝑚 rounds is bounded by 𝛼 2𝑚

Regret𝑇 𝒖 ≤ σ𝑚=0
⎾ log2 𝑇⏋𝛼 2𝑚 = 𝛼σ𝑚=0

⎾ log2 𝑇⏋ 2
𝑚

= 𝛼
1 − 2

⎾ log2 𝑇⏋+1

1 − 2
≤ 𝛼

1 − 2
log2 𝑇+1

1 − 2

= 𝛼
1 − 2𝑇

1 − 2
=

2𝑇−1

2−1
𝛼 ≤

2

2−1
𝛼 𝑇

• So, the regret bound only worsens by a constant multiplicative factor


