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Background and Teaching Process



Overview
● Last time: Machine Teaching

○ How do we design an optimal example set to show a learner?
■ Optimal: minimizing some objective function, often size
■ Classic example:

○ How do we teach humans?
■ “Extreme”/curriculum strategy vs boundary strategy



Overview
● Crowdsourcing

○ Useful for obtaining a large number of labels
○ But low-paid workers make mistakes, and may not work very hard/accurately
○ Result: Lots of noise in the labels.

● Using MTurk or other crowd platforms to gather labels, how do we obtain the 
highest-quality labels with a given budget?



Machine Teaching for Crowdsourcing
● Can we teach workers in crowdsourcing services in order to improve 

their accuracy?
● Combination of the previous topics
● Explores orthogonal direction to the previous crowdsourcing paper

○ Instead of testing worker reliability, teach workers to be more reliable



Problem Setup
● Problem: We wish to teach the crowd to label a large set of images.
● Restrictions: We only have ground truth labels for a small “teaching set” of 

examples.

1. From the teaching set, we elicit a set of candidate features and a collection of 
hypotheses (linear classifiers) that the crowd might be using.

2. We use a teaching algorithm to select training examples and steer the learner 
towards the target hypothesis.

Butterfly or Moth?



Noise-tolerant teaching
● Noise-free: Learners immediately abandon hypotheses inconsistent with 

observed examples.
● Noise-tolerant: There are less strict assumptions on how workers treat 

inconsistent hypotheses.



STRICT
● Submodular Teaching for CRowdsourcIng ClassificaTion
● Noise-tolerant
● Approximately optimal (chooses the smallest teaching set)
● With a few assumptions (linear separators, etc), obtain learner error less than 

ϵ with examples.



Review: Submodularity
- Problem: How can we choose as few examples as possible while maximizing 

efficiency?
- Minimize number of examples
- Don’t want examples to overlap

- We can phrase this problem as a submodularity optimization problem.
- Submodularity problems can be optimized using a greedy algorithm 

(Nemhauser et al., 1978).
- In order to find the global optimum, we make the locally optimal choice at each stage.



Submodularity Example
- We would like to estimate the average temperature of a building using 

sensors placed in various locations in the building.
- Near-optimal sensor placements: Maximizing information while minimizing communication 

cost (Krause et al., 2006)

- However, we only have a limited number of sensors.
- Where do we place the sensors to cover the most space and get the most 

accurate reading of the building temperature?



Submodularity Example

        : sensors

        : possible locations 
for sensors

              : physical space 
we want to cover

http://submodularity.org/submodularity-slides.pdf



Submodularity Example

        : examples

        : possible locations 
for examples

              : feature space 
we want to cover

http://submodularity.org/submodularity-slides.pdf



Submodularity Example



Review: Submodularity
- In our average temperature example, we see that selecting two sensors that 

cover some or all of the same area lowers our utility/coverage of the 
building space we want to cover.

- Thus, it is in our best interest to choose diverse sensor placement, as 
opposed to redundant sensor placement.

- Analogously, to maximize utility/coverage, it is in our best interest to choose 
diverse teaching examples, as opposed to redundant teaching examples.



Mathematical model

● ᭛: set of examples (e.g. images) called the “teaching set”
○ Labeled examples given as (x,y), with y ∈ {1,-1}

● ℋ: a finite class of hypotheses
○ h(x) = sgn(x)
○
○ |h(x)|: h’s confidence in labeling x

● Assume that ᭛ and ℋ are known to both the teacher and the learner.



Mathematical model (cont’d)

● Teacher
○ knows labels y(x) for all examples x ∈ ᭛
○ knows correct hypothesis h* for which sgn(h*(x)) = y(x) for all x ∈ ᭛
○ Note: realizable setting

● Learner
○ just knows ℋ

○ wants to find h*

Big idea: if we can teach classification of ᭛, we should have similar performance 
on new examples drawn with the same distribution as ᭛



Model of the Learner



Modeling the learner
● Modelled as a non-stationary Markov chain
● Carries out a random walk in ℋ

● Starts at some hypothesis
● Stays there until an inconsistency arises
● Then, randomly jumps to an alternative hypothesis more consistent with the 

received training



Formal Definition
1. Before the first example, the learner randomly chooses a hypothesis h1 from 

some prior distribution P0.
2. Every round t, there are two possibilities.

The example (xt, yt) received agrees 
with the learner’s prediction, i.e. sgn(ht
(xt)) = yt.

Keep the same hypothesis

ht + 1 = ht 

The label yt disagrees with the learner’s 
prediction, i.e. sgn(ht(xt)) ≠ yt.

Draw a new hypothesis based on 
distribution Pt that reduces the 

probability of hypotheses that disagreed 
with the previous true labels.



Constructing Pt

More precisely, if sgn(ht(xt)) ≠ yt, then ht + 1 is drawn from:

This has normalization factor



Updating the learner hypotheses
If we model label likelihood with a sigmoid, we get, for some α > 0,

α: scaling parameter that controls the effect of inconsistent examples

As α → ∞, our learner never jumps to a hypothesis with an inconsistency, 
corresponding to the noise-free case.

The intuition here is that hypotheses that are strongly inconsistent to 
observed data have a low likelihood of being chosen.



Toy example
- Butterfly vs moths
- 3 hypotheses: bright color == butterfly, large body == moth, purple == moth
- Prior probabilities: ⅖, ⅖, ⅕ 
- Pick a random hypothesis to start with: purple.
- Get example:



Toy example
- We would predict butterfly with high confidence, but this would be an error.
- Update probabilities: P1 = (.48, .48, .02)
- Choose new hypothesis: bright color.
- Get new example:



Toy example
- No error, but lower confidence prediction.
- P2 = (.485, .485, .01)
- Even so, we keep the same hypothesis.



Notes on the learner
- Not a very good approximation for a human learner
- Infinite memory
- Only changes on error
- Always reconsiders on error
- Even so, experiments show interesting results



Teaching Algorithm



Teaching Motivation
● Now that we’ve defined the learner’s behavior, how should the teacher 

choose examples to help the learner narrow down her belief to accurate 
hypotheses?

● The ultimate goal of the teacher is to steer the learner towards a distribution 
with which she makes few mistakes.



Teaching Algorithm
● A = { x1, …, xt }: a set of examples shown to the learner
● Then, the posterior distribution is referred to by Pt(∙) and P(∙ | A) 

interchangeably.
● With the new notation, we have the learner’s posterior after showing A:



Expected Error-Rate of the Learner

- If our hypothesis h* is very inconsistent with other hypotheses in P that are 
likely to be correct, it’s more likely that h* will be wrong, and vice versa.

- Weighted average of these errors



Finding a set of examples
- Given an allowed tolerance ∈ for the learner’s error, we would like to find the 

smallest set of examples A* achieving this error, i.e.

---

Proposition 1. Problem (2) is NP-hard.



Approximating Problem (2) 
We will approximate this NP-hard problem by framing it as the problem of 
maximizing Problem (2) with a budget constraint as follows.

Let us first consider the following objective function.

This quantifies the expected reduction in error upon teaching A.

Solving Problem (2) is equivalent to finding the smallest set A achieving error 
reduction                   .



Approximating Problem (2) (cont’d)
- We would like to find, for each k, a set A of size k that maximizes R(A).
- Define the surrogate function

- with unnormalized posterior of the learner



Approximating Problem (2) (cont’d)

- This surrogate objective function satisfies submodularity.
- Natural diminishing returns function

- As previously mentioned, submodular functions can be effectively optimized 
using a greedy algorithm.

- At each iteration, we will add the example that maximally increases F.
- As before, as α → ∞, F(A) corresponds to the noise-free case.

- Running the algorithm until                                                   is sufficient to 
produce a feasible solution to Problem (2).





Approximation Guarantees



Sketch of Proof of Theorem 1
- We can write

Since Gh(A) is submodular for every h, F(A) is also submodular.



Sketch of Proof of Theorem 1 (cont’d)
- Since F(A) is submodular, as previously mentioned, the greedy algorithm 

gives a set reasonably close to F’s optimum.
- We analyze the connection between maximizing F(A) and minimizing the 

expected error of the learner.
- Maximizing F(A) is both necessary and sufficient to achieve ε precision.
- See the entire proof in the supplementary material.



Teaching Complexity for Linear Separators
- Under some additional assumptions, we can show that the optimal number 

of examples is not too large.
- First, we will define λ-richness.
- Note that       partitions       into polytopes (intersections of half-spaces), 

where with a polytope, all examples are labeled the same by every 
hypothesis.

- Then,       is λ-rich if any      contains at least λ examples.



Teaching Complexity for Linear Separators
- Under some additional assumptions, we can show that the optimal number 

of examples is not too large.



Sketch of Proof of Theorem 2
- Let us consider the randomized teaching policy Relaxed-Greedy Teaching 

Policy (next slide).
- With positive probability, this policy reduces the learner error exponentially.
- Thus, there must exist a sequence of examples that reduce the learn error 

exponentially.
- See the entire proof in the supplementary material.





RGTP vs. STRICT
- At each step, RGTP picks an example uniformly at random that is relatively 

good, but not necessarily the absolute greediest choice.
- if condition

- As one would intuitively guess, RGTP is more relaxed than STRICT.



Experiments



Evaluating efficacy of STRICT
A set of three experiments were created to test the overall effectiveness of the 
STRICT algorithm. These experiments were both simulated and carried out using 
the Mechanical Turk platform. 



Experiment 1 (VW Classification)
● The first experiment deals with classification of insectile silhouettes as 

belonging to a weevil or to a vespula.                                                                                                                                                                           



Experiment 1 (VW Classification)
● These insect images are synthetically generated. In general, weevils are 

depicted as creatures with a small head-to-body ratio and relatively low color 
contrast between the head and the abdomen.

● Vespulae, on the other hand, are shown having relatively large heads and 
heads that don’t quite match their body color.                                                                                                                                                                          



Synthetic VW images

● VW images are generated along two dimensions. As alluded to previously, 
only head-to-abdomen ratio and color contrast between the head and 
abdomen are different between each image. 

● Each image is represented as a feature vector.                                                                                                                                 



Synthetic VW images

● These feature vectors are expressed as 
● Both parameters are independent from each other and drawn from a bivariate 

Gaussian distribution (with zero correlation/covariances). Thus they are each 
effectively drawn from independent univariate Normal distributions.                                                                                                                            



Synthetic VW images

● A total of 80 images are generated for usage by the teaching algorithm, while 
another 20 are generated to assess learning and gather data on the rate of 
learning.

● The hypothesis class     is then generated.  They are linear functions with 
parameters also generated by bivariate Normal distributions.                                                                                                                  



VW hypotheses

● There are eight clusterings of hypotheses (with respect to the slope of the 
dividing line). When considering the angle each line makes with the x-axis, 
there is a cluster for each multiple of 45 degrees. Within each cluster, the 
exact y-intercept and slope is determined again by a bivariate Normal 
distribution.



VW hypotheses

● Clusters are chosen for a reason.
● Each cluster represents a way of interpreting the data (ignoring a parameter, 

incorrectly assessing implication of trend in parameter, correctly assessing 
the impact of the parameter).





VW hypotheses

● Yellow: Ignores head/body color contrast altogether.



VW hypotheses

● Blue: Correctly identifies color trend, incorrectly identifies body ratio trend. 
(could also correctly identify neither)  



VW hypotheses

● Green: Ignores body ratio altogether..  



VW hypotheses

● Red: The target hypothesis clearly identifies all trends correctly. Note that all 
elements of the training set are correctly identified.  



VW hypotheses

● After all hypotheses were generated, a target hypothesis    is selected with 
minimal error. From here, elements of the teaching set that violate    are 
removed to induce realizability. 



VW hypotheses

● Realizability is a major assumption here.
● STRICT is meant to be used in realizable scenarios; the agnostic case 

violates many of our assumptions.



Experiment 2 (BM)

● The BM experiment uses images of various moths and butterflies, and asks 
participants to determine if they are looking at a moth or a butterfly

● Peacock butterflies and Caterpillar moths are easy to identify, but Ringlet 
butterflies and Tiger moths are more difficult to classify.



Experiment 2 (BM)

● 160 total images used for the teaching set, 40 additional images used for 
testing.

● Euclidean embedding not available due to nature of data.
● Can use Bayesian model to create embedding.



● Requested binary labels (of whether an image is of a butterfly) of all 160 
teaching images from 60 Mechanical Turk workers.

● Used the methods of Welinder et al. to create a two dimensional embedding.
● Also generated a linear hypothesis for each of the 60 workers.

Embedding BM data



● To create the hypothesis class    , a random sample of 15 of the 60 generated 
hypotheses are taken.

● A linear classifier is fitted which best separates the groups, and is taken to be 
the target hypothesis.  Elements of the data set which conflict with this target 
hypothesis are removed to induce realizability.

● This embedding (without the removed elements) and the hypotheses are now 
used to teach the crowd. Afterwards they will be assessed with the 40 image 
testing set.

BM hypotheses



● The third experiment involves participants determining whether or not a given 
image of a woodpecker is that of a Red-cockaded woodpecker. 

● Other possibilities are the Red-bellied and Downy woodpeckers..
● 80 images in total are used in the training set, with 40 of them depicting the 

Red cockaded woodpecker, and 20 each of the Red-bellied and Downy 
woodpeckers.

● Testing set will be 20 images, with 10 Red-cockaded woodpeckers and 5 
each of the other woodpeckers.

Experiment 3 (WP)



● An approximate Euclidean embedding can be obtained. 312 binary attributes 
are considered for each picture, and workers on Mechanical Turk classify 
them.

● For each attribute (say, has_forehead_color:black), the workers indicate that it 
is 1 (present), 0 (ambiguous or not applicable), or -1 (not present). In this way, 
an embedding in        is created. 

● Working with 312 dimensions can be quite clunky, and may not even yield 
results that are more precise than simpler approximations.

Embedding the WP data



● Instead of working with all 312 binary traits, the traits with the highest cross-
species variance are selected. 

● This reduces the embedding to thirteen dimensions. Still quite hard to 
visualize, but much more reasonable!

Embedding the WP data





● Initially, the hypothesis class,   , consists of every line in 13 dimensional 
space in the form                                              . 

● Essentially a weight of {+1, 0, -1} is placed on each feature, and the resulting 
line is passed through the origin. 

● This is very similar to the VW hypothesis generation.
● Unfortunately, there are 1594323 hypotheses to consider. 

WP hypotheses



● Workers probably will not pay attention to a wide variety of details when 
examining each woodpecker - most will look at colors and beak shape/size, 
but potentially little else.

● Thus, consider only hypotheses with non-zero weight for at most three 
features. 

● The target hypothesis is that with minimal error on this data set. 
● Now, images which disagree with this hypothesis are pruned to induce 

realizability. 
● Finally, we consider in the final hypothesis class    only those remaining with 

at most two features with non-zero weight. 

WP hypotheses



● Now, the experiment is carried out in a similar fashion to those before it. 
Mechanical Turk workers will be taught using the pruned training images and 
will be assessed on the pruned testing set.  

WP hypotheses



Experimental Results



Experimental Metrics and Baselines
● Experiments include

○ Simulations
○ Annotation tasks on MTurk

■ MTurk - a crowdsourcing Internet marketplace on Amazon to coordinate use of human 
intelligence to perform tasks that computers can’t do yet

● Test error of STRICT compared against 2 baseline teachers
○ Random
○ SetCover (the classical noise-free teaching model)



Results from Simulated Learners
● Simulated 100 learners with α = {2, 3, 4} randomly and different initial 

hypothesis of learners ∈ ℋ
● Results show STRICT generates the lowest test error of the 3 teachers in 

simulated experiments
● Graph below is for α = 2 for STRICT for VW dataset



Robustness of STRICT for Mismatched α
● STRICT is robust despite not knowing value of α (true for real world tasks)
● Experiment tested STRICT with α = {2, 3, 4}
● Graph reveals performance is just as good as knowing α, up to α = 5



Difficulty Level of Teaching
● Measured in terms of expected 

uncertainty (entropy)
● SetCover

○ Assumes learner is perfect

○ Starts with difficult lessons, then randomly 
selects lessons

● STRICT follows a curriculum based 
learning

○ Lessons get increasingly hard

○ A useful teaching mechanism proved by 
Basu & Christensen (2013)



Results on MTurk Workers
● Teaching sequence generated for STRICT, Random and SetCover
●  α = 2 for STRICT
● Feature spaces ᭛ and hypothesis spaces ℋ used
● 780 workers recruited for VW dataset; 300 for BM; 520 for WP
● 10 examples for VW and BM; 16 examples for WP



Test Error Results for MTurk Workers
● Accurate improvement as workers classify unseen images for all 3 datasets
● Results from both simulated and MTurk workers show that teaching does help



Does STRICT Teaching Help?
● Improvement in STRICT is monotonic w.r.t the length of the teaching phase
● Welch’s t-test shows STRICT significantly improves classification accuracy

○ P < 0.001 for VW and WP datasets
○ P = 0.01 for BM task

● VW results:
○ STRICT is significantly better than SetCover (P = .05)
○ STRICT is significantly better than Random (P = .05)

● WP results:
○ STRICT is significantly better than SetCover (P = .002)



Conclusion



Summary
● Proposed noise-tolerant stochastic model of learning process in 

crowdsourcing classification tasks
● Developed STRICT that uses this model

○ Increased robustness
○ Convergence to a desired error rate
○ Effectiveness of teaching approach

● Future applications with STRICT include:
○ Data-driven online education
○ Tutoring systems

● Learner model not necessarily good approximation for real human behavior, 
but nonetheless the experiments show interesting results



Questions?


