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Wow! | earned nothing from
the machine 1!

~ $ gambler




Multi-Armed Bandits Problem n slot machines (“bandits”)

(¢
il

ﬁw 12:01 PM

Wow! | earned $10 from the
machine 2.

~ $ gambler




Multi-Armed Bandits Problem n slot machines (“bandits”)

ﬁw"i 12:02 PM

Wow! | earned $2 from the
machine 5.

~ $ gambler




Multi-Armed Bandits Problem

Gambler has a row of n slot machines.

At each time step t = 0...T, choose a slot machine to play.

Experiences loss only from the attempted slot machine.

Does not know what would have happened had another slot machine been
chosen.



Example: Interactive News Recommender
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What Should Algorithm Recommend

Exploit: Explore: Best:

e ry

How to Optimally Balance Explore/Exploit Tradeoff?
Characterized by the Multi-Armed Bandit Problem

AverageLikes | -~ |0.44| 0.4 |0.33] 0.2 (3 :24

# Shown 0 25 10 15 20




Efficiency Measure = Regret

Born= S5(E) + S(E) + S5(E)
SALG) = 5(18) + (8 + 50

Time Horizon

o Alle
Regret: R(T) = (3(OPT) - (3(ALG)

» Opportunity cost of not knowing preferences
* “no-regret” if R(T)/T =0

— Efficiency measured by convergence rate



Formal Definition

K actions/classes

Each action a has an average reward: u., where 1</ < K

Fort=1..T:

Choose action g, Goal: Minimize Expected Regret

Receive reward Xl. .

K
' BT s |
o ZEMJE[T;(H)] where u* £ max p;
J:




Formal Definition

Each action a has an average reward: ., where 1</ < K

True averages for all arms are not known.
Only the reward associated with chosen arm is observed.

Weighted Majority

Multiplicative Weights

Multi-armed Bandits

Full Information

Full Information

Partial Information




Two Main Branches of Bandit Problems

Stochastic bandits

The reward X, is sampled from an unknown product distribution
v.e.. ey on[0,1fand X ~v.

Adversarial bandits

X. is chosen by an adversary. Adversary knows the strategy we are
employing and the history, but does not know the action we take at time n
prior to forming X, .



Comparison with other Online Learning Settings

® Can only know the loss of one arm at each timestep. “Partial Information”

® There exist algorithms where knowledge of horizon T is not required -
“Anytime Algorithm”

® Basic stochastic multi-armed bandits have no features.
We will primarily consider stochastic bandits.

Key theme: exploration vs. exploitation




Extensions of Multi-armed Bandit Problems

® We can consider (featurized) observations of the world when making a
decision. This is known as the contextual bandit problem

® UCB1is the building block for tree search algorithms (e.g. UCT, Monte Carlo
Tree Search) used to learn to play games (e.g. Go)

® Considering the effect of sequence of decisions (i.e. allowing
decisions to effect the world) is the general problem of reinforcement learning



Exploitation vs. Exploration

For stochastic bandits, there is some empirically found mean reward for each
of the arms.

We want to find arm with highest true mean reward.



Exploitation vs. Exploration

Exploitation
Choose the arm with the highest empirical mean reward.
Exploration

Test other arms to potentially higher actual mean reward.

How do we know when to exploit and when to explore?



Thought Experiment: Exploit-only

1. Find the average reward of a all arms by picking each a few times.

2. Exploit the arm with highest mean reward.

At timestep /, what if there exists another arm with much greater reward that was
not sufficiently explored?

To be confident that this other arm does not exist, we would need to test all of the
arms many times initially. This is exploring, in fact it is over-exploring!



Thought Experiment: Exploit-only

Imagine you have two arms:

® One with constant reward of 10
® And the other with 99% probability of O reward, 1% probability of 10000 reward

If you initially pull each level k times, there is a 99%X chance of the exploit-only
solution resulting in a very suboptimal strategy!



Thought Experiment: Incorporate Exploration

1 < 3 You have the these three bandits. The bars represent the
empirical mean, +/- the uncertainty. Assume the true mean is
Hemp} | within these ranges.
— Which bandit should you choose?

If you do “pure exploitation”: you choose bandit 1, and run
the risk of bandit 2 having a higher true mean.

If you do “pure exploration”: you choose bandit 3 since it has
the largest uncertainty, even though it clearly cannot be
1 Dbetter than bandit 1.




Thought Experiment: Incorporate Exploration

1 Z 3 Clearly, need an intermediate strategy that allows you to
explore bandit 2 since it still has a large uncertainty and
Hemp} | there is a chance that it is better than bandit 1.
— Perhaps you choose the bandit with the largest mean +

uncertainty?

There is an upper bound to how much worse bandit 2 can be
relative to bandit 1 based on the uncertainties.




UCB1 Algorithm



UCB1 Algorithm

Initialization: Play each action once.

Loop at each round 7} : Play action :} that maximizes

Index of round, so total

/ number of attempts thus
far
\ Number of times 7 has

Average reward been played so far
observed from 7




UCB1 Confidence Interval

Estimate of Expected

Reward from data \

Number of rounds so far

2 ln M, < (70 in example below)

#times arm j was chosen

average likes -- 10.44| 0.4 10.33| 0.2

#times chosen 0 25 10 15 20




Confidence Interval

> Maintain confidence interval for each action
o Inthe UCBI1 case: derived using Chernoff-Hoeffding bounds

- 0.1, 1.0]

=[-0.4, 1.1]

-\.Hr

|H = [0.5, 0.8]
average likes -- |0.44| 0.4 |0.33 | 0.2

#times chosen
0 25 | 10 | 15 | 20 @Undeﬁned




Balancing Exploration / Exploitation

> Optimism in the Face of Uncertainty

o At any time n, from past observations and argimax I)_CJ +
probabilistic derivations, we have an upper J
confidence bound on the expected rewards /
o  Simple implementation: o
B Play the arm having the current largest UCB Exploitation Term ExplorationTerm

average likes

#times chosen 0 25 10 15 20




Thought Experiment

> Could we stay a long time taking a wrong action?
o No, because:
B The more we draw a wrong arm j the closer UCB gets to the expected reward [

p; < p* < UCBon u*

Inn
B Number of times sub-optimal action is taken O

(" = 15)?



Thought Experiment

> What if a good action never gets taken?
o An arm never gets selected if:

p + \/(21Hn) /nj < p*

\

Bound grows Shrinks quickly
slowly with time with #trials



Simulation

500 Iterations 2000 Iterations

¥

158 145 89 34 74 913 676 139 82 195
_ Sl‘.‘ll‘_.'lﬂ Iteratipns : 25000 |terations

.|

2442 1401 713 131 318 20094 2844 1418 181 468



High-Level Intuition of Analysis

. _ 2Inn
At current round, chosen arm j = argmax; + -
1 7
Can show with hlgh prObablllty Upper Confidence Bound of Best Arm Value of
L
L Best Arm
B 2Inn S o *
ZTj + o = H
B 21nn The true value is greater than
5 2T the lower confidence bound.

Bound on regret attime n less than
twice the size of confidence interval



Balancing Exploitation vs. Exploration in UCB

UCB1 chooses the bandit with the maximum empirical mean + confidence
interval = upper confidence bound (UCB).

Confidence interval is defined so that real mean of chosen bandit is at least 2
confidence intervals less than the optimal payoff (with high probability).

Exploration: less-explored bandits have large confidence intervals, so they will
be chosen until their UCB is too low to be chosen again.

Exploitation: confidence intervals shrink and the high empirical mean bandits
are chosen.



Regret Bound of UCB1 - Formal Statement

Theorem: For K > 1,if UCB1is run on [ machines having arbitrary reward
distributions £1, . . ., Px with support in [0,1] | then its expected regret after any

number 1 of plays is at most

8 ) (12_71) +(1+%2> jilAj

Ly <p

where A; £ * — p,; is positive constant (unknown) gap



Regret Bound of UCB1

Takeaway: logarithmic regret, anytime algorithm

In comparison with previous online learning setting, with high probability, UCB1

accumulates regret at most:
#Actions

e

R(T) e O(E ln T)/ Time Horizon
£

Gap between best & 2™ best
E=W - I,



Proof of Theorem 1 - Notations

> X ;n = empirical average of j after action j has been taken n times
B 1 T
= ok g
B = > X
=1
> Tj(n) = number of times arm j played in the first n plays

K
Z Ti(n) =n
3=1



Proof of Theorem 1 - Notations

Action j selected at time n, shorthand notation for UCB:

2Inn

T;(n)

UJ(TL) =T+

— _j,Tj(”) T Cn.1;(n) with ¢, s = \/(2 Inn)/s

Random variable I; denotes the arm played at time ¢t Vit



Detailed Proof of Theorem 1

ZTj(n) =n

Rewrite:

K
Regret = pu*n — Z E [T;(n)] where p* £ [JaxX p;
=1 =5

= ) AE[Tin)]

Jipg<p*
So we can bound the regret simply by bounding each E [Tj [ﬂ)]

In fact, we will show that | [T};(n)] < % Inn plus a small constant
J



Detailed Proof of Theorem 1

Number of times
jhas been taken after

n plays

\ T
T(n)=1+ Y. HI =j}

t=K+1

<l+ Y KL=jTit-1)> ¢}
t=K+1

true for any positive integer ¢



Detailed Proof of Theorem 1

Tin) =1+ Y I{I, =3} (1)
t=K+1

<+ Y L =jT(t—1)> ¢ (2)
t=K+1

<0+ Zn: {U;(t—1)>U*(t—1),T;(t —1) > £} (3)
t=K+1

where at each round n we denote the upper confidence bound:

2lnn
Ui(n) =Z; + 4/ ——

= X, 1,(n) + Cn,1;(n) With ¢ s = /(2Inn)/s



Detailed Proof of Theorem 1

Relax the event: {U;(t —1) >U*(t—1) and T;(t — 1) > £}

UCB of arm j exceeds that of optimal arm = max UCB of arm j during first ¢ trials
exceeds minimum UCB of the optimal arm, so:

Ti(n) < £+ Zn: {U;(t—1)>U*(t—-1),T;(t — 1) > ¢} (3)

t=K+41

n
</l+ Z H{flﬁgﬁﬁ Xis+cio1s> Ogﬁgtf;ﬁ + ct—1,6'} (4)
t=K+1 —



Detailed Proof of Theorem 1

Further relaxing event in eq (4): { max X’j,s +ci_1.¢ 2 min X’;‘; +Ci_1.60}
g st ‘ ' Dl !

At least one pair s,s' for which the values of the quantities inside the max/min will
satisfy the inequality. So:

T;(n) <L+ Z [{max X, s+ ci—1s> min X} +ci_1.¢} (4)

fx o<t Q=< 5'<t
t=K+1
n t—1 t—1
<0+ > Y Y HXjates 2 X e} (5)
=K+l s=£ /=1
oo t—1 t—1
SE+Y YD XKt 2 XJ +enw) (6)

=1 s=l 5'=1



Detailed Proof of Theorem 1

To summarize what we have so far:

T =1+ Y KL =7}

t=K+1

<0+ Y HL=5Tit-1) >

t=K+41

<o Y KU 1) > UG- 1), Ty - 1) > 0
t=K+1

T
<L+ E [{max X;s+c—1s > min X5 +c¢i—1,¢}
p<s<t ! 0<s' <t '
t=K+1

oo t—1 t-—1

<04 Z Z Z I{Xjs+cts > Xy +ces}

t=1 s=¢ s'=1



Detailed Proof of Theorem 1

The @ of the argument: bound IP’{XJ-}S +Cp g = X5+ st }

> Considerthree events:  ¥* < ;* _ ¢, (7)
X;‘,s > M o= Ct,s (8)
fJ'* < M + QCt,s (9)

Claim: event {X; s+ ¢;s > X2 + ¢} implies

a. One of the 3 events (7),(8),(9) must occur
b. Event (9) cannot occur with well chosen ¢
c. Probability of (7) and (8) occurring can be bounded by Chernoff-Hoeffding

Proof of (a): assume (7) and (8) are false, then (9) is true since

e +26t,3 ~ ijs -+ Ct,s = X:f "‘Ct,s»’ e }'J:k



Detailed Proof of Theorem 1

Claim (b): p* > p; + 2¢+,s with well chosen £

" 8Inn
Proof of (b): ™ > p; + 2¢¢ s oE £ = ( A2 1
Indeed, !
2Int
W Hi = 200 = 10— i — 24 f > pt —pi—A;=0
8lnn
for s >

A2

J



Detailed Proof of Theorem 1

Recall Chernoff-Hoeffding:

X1,..., X, are independent random variables with [0,1] support

_ 1 _
Let X = EZ:X?; and p = E [X]

Then we have:

P(X+c<p)<e® andP(X —c>p) <e 2
Yielding (c):

Probability of (7) =P{X} < p* —¢; o} < e 4t = ¢4

Probability of (8) =P{X;, > u; + ¢t} < g~ Hnt _ -4

2



Detailed Proof of Theorem 1

Inn
Putting it all together using union bound and ¢= (SAg 1, recall eq (5):

oo t—1 t—1

T;(n) < e+ ZZ Z {Xs+ces > X5 +cers)
t=1 s=¥¢ s'=1
So, oo t-1t-1 .
E[T(n)] <€+) Y > P{Xjetcs>Xh+ee) (10)

t=1 s=¢ s'=1

oo

81nn +Z Z ZP{PQ(7}+P{eq(8)} (11)

=1 o— (S‘Ian]s =

< [8212”] o Z i > ot (12)
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Advertisement Placement

Goal: Place ad that a user will most likely click when a page is rendered.
Problem: Don’t know if user will click on ad unless it is shown.

Multi-armed bandits solution:

T = sequence of user viewing ads ~ Bd— —pm

The must-have wardrobe essentials

X = possible ads

¢, = click (1) or no click (O) for x,



Ethical Clinical Trials

Goal: Find the most effective treatment over time.

Naive solution: Each group of subjects gets a unique treatment.

Problem arises when new subjects
get bad treatment.




Ethical Clinical Trials

Reduce to multi-armed bandits problem. One of the first motivations for
studying multi-armed bandits!

Assume sequential order of subjects.

T = sequence of subjects

X = treatments

® O
c,= result of treatment x, & R
,"F




Network Server Selection

Goal: Choose server in distributed system with minimal response time.
Problem: Don’t know server latency until actual connection.
Multi-armed bandits solution:
I = sequence of connections
X = servers

¢, = response time for x,




Another Exploration Strategy: e-greedy

> Simple key idea:
o Pick a parameter() < e < 1
o At eachround
B Greedily play the arm with highest empirical mean w.p1 — ¢
B Play random arm with probability €

> Theoretical Result (theorem 3):

>

For E-'n‘ .
d?n’

, provided 0 < d < min A;

Klnn
regret = O ( )
i

42

> Draw-backs:
o Naive exploration for K>2: no distinction of sub-optimal arms
o Requires knowledge of A
o  Outperformed by UCB in practice



Extensions of UCB!

Monte Carlo Tree Search / UCT - used in first iteration of Go Al
LinUCB - contextual bandits with linear reward functions
UCBogram - contextual bandits with non-linear reward functions
NeuralBandit - using neural nets

UCB-ALP - contextual bandits, used a lot in practice



Adversarial Bandits and EXP3



Adversarial Bandit Setting

> Payoff generation process
o No statistical assumption made, can be adversarial
o  Similar to previous adversarial online learning setting, payoff cannot depend on the random
choices made by the player during the game
> Measure of success

o Focus is typically on weak-regret, which measures the regret for the best single action



EXP3 Algorithm

For non-stochastic bandits (eg. adversarial bandits)
Similar idea to multiplicative weights algorithms
Upper bound of the weak regret:

Theorem 3.1 For any K > 0 and for any v € (0,1],

KInK

Gmax - E[GExpS] E (6 - 1)7Gmax ~+ ~y

holds for any assignment of rewards and for any T' > Q.



EXP3 Algorithm

Algorithm Exp3
Parameters: Real v € (0, 1]
Initialization: w;(1) =1fori=1,..., K.

Foreacht=1,2 ...
L. Set

pi(t)z(l_’)’);mi—i-l i=1,...,K.

> j=1Wj (t) K
2. Draw i; randomly accordingly to the probabilities p; (t), ..., px(1).
3. Receive reward z;, () € [0, 1].
4. Forj=1,..., K set

Al = {%(f)/p;(t) if j = iy

0 otherwise,
wi(t+1) = w;(t) exp (v, (t)/K) .



EXP3 vs UCB1

Algorithm Exp3
Parameters: Real v € (0, 1]
Initialization: w;(1) =1fori=1,..., K.

Foreacht=1,2,...

1. Set

i=1,... K.

2. Draw i; randomly accordingly to the probabilities p1 (¢), . . . , pr (£).

3. Receive reward z;,(t) € [0, 1].

4, Forj=1,..., K set

#() = {f’fj(t)/Pj(t) if j =i,

0

otherwise,

wi(t+1) = w;(t) exp (yi;()/K) .

Deterministic policy: ucsl.
Initialization: Play each machine once.
Loop:

2lnn
— Play machine j that maximizes z; + / ——, where z; is the
"o

J
average reward obtained from machine j, n; is the number of

times machine j has been played so far, and n is the overall
number of plays done so far.



Sources

http://homes.di.unimi.it/~cesabian/Pubblicazioni/ml|-02.pdf

http://arxiv.org/pdf/1204.5721v2.pdf

http://www.cs.cornell.edu/courses/cs683/2007sp/lecnotes/week8.pdf

http://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-
algorithm/

http://cseweb.ucsd.edu/yfreund/papers/bandits.pdf
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