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1 Basics

The basic stochastic multi-armed bandit problem [2] operates over a set of K
arms, each with mean reward p, for a € {1,..., K}. The setting proceeds as a
sequential learning and decision making problem as follows:

1. Initt=1
2. Algorithm chooses an arm a; € {1,... K}

3. World provides stochastic reward 7, with mean E[#;] = u,, and indepe-
dent noise

4. t =t+ 1, repeat from Step 2 until ¢ = T (T possibly unknown).

For the UCB1 algorithm [2], the choice at each time ¢ is:

ay = argmax,e1 . gy Hat T Cat, (1)

where fi,+ is the empirical mean estimate of p, at time ¢ given previous obser-
vations, and é,; = ct\/m is an upper confidence bound (with ¢; controlling
the confidence level). One interpretation is that this choice is a good trade-off
between exploitation (fi, ) and exploration (g ¢).

From this setup, we also know with some confidence level that, for each
action a € {1,..., K}, the true mean reward is contained in:

Ha € Ca,t = [,&a,t - 6(1,157 ,&a,t + éa,t]v (2)
since that is the definition of a confidence bound. One can thus rewrite (1) as:

Gy = ATEMAXqe (1., K} MAX U, (3)
The interpretation here is that we will be as optimistic as possible about what
each p, is, and then select the arm with the best optimistic estimate. Because
of the equivalence between (1) and (3), either can be used as the starting point
for extending to more complicated settings, depending on whichever is more
convenient.



1.1 Regret Analysis

For the basic stochastic MAB setting, we measure regret via:

T
Ry =Y [pt = fta], (4)

where p. denotes the mean reward of the best arm. If we run the UCB1 algo-
rithm, we can show that, with high probability:

Rr [1x — fia,] (5)
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(6) follows from the fact that a; is chosen to have the highest upper confidence
bound of any arm, so fig, ¢+ + €q,+ > ft+ With high probability. (7) follows from
the same fact applied to fia, + + Ca, .t > [ta, also holding with high probability.
Thus we can see that the regret of the UCBI1 algorithm is upper bounded by
the sum of diameters of the confidence regions. If the confidence regions shrink
fast enough, then the UCBI1 algorithm will have sub-linear regret with high
probability.! For the UCB1 algorithm with bounded rewards in [0,1], it was
shown that for ¢, = \/2logt/ng+, where ng; denotes the number of times
arm a has been played up to time ¢, the regret scales as O(% logT'), where
€ = [ly — MaXp£q, Mk i the minimum distinguishability between the best arm
and the rest. This same analysis will hold for more complicated settings as well,
so long as one can define suitable notions of confidence regions.

Note that one can always use a looser confidence bound. For instance, twice
the confidence region is still a high probability confidence region. But then the
regret would also be twice as much. So the trick is to use confidence bounds
that are as tight as possible — this has practical implications as well, because
over-exploring by a constant factor can be very bad in practice. Oftentimes,
in practice one uses really tight confidence regions that cannot be proven to
actually be high probability confidence regions [3].

INote that one would need a confidence bound that holds over all time steps. A naive
approach is to use the union bound.



2 Linear Contextual Bandits

For clarity, we focus here on the simple disjoint linear contextual bandits setting
from [3]. At each iteration ¢ we are given K contexts z;, € R in the form of
D-dimensional feature vectors, and that the expected reward of each action a
is fg,r = wgo:m, for unknown w,. The setup is then:

1. Initt =1
2. Receive contexts z; , € RY for each a € {1,..., K}
3. Algorithm chooses a; € {1,..., K}

4. Receive reward 7, with expected reward E[fy] = g, = wana:mt, and
independent noise.

5. t =t + 1, repeat from Step 2 until ¢ = T (T possibly unknown)

Regret. The regret definition is then modified to be:
T
Rp = Z [wg; Tppe = Wa,Tha, | s 9)
t=1

where af = argmax, wz;xt,a is the best action at time ¢ given features x; 4, and
» is the feature representation of the best action at time ¢. Note that
the best action now varies depending on the features/contexts provided at each
time step. For example, each action can be a news article, and features x; , can
describe characteristics such as the age, gender, and location of a user [3]. This
is still a stochastic setting because model doesn’t change adversarially, and the
reward is stochastic. In other words, if we knew each w, exactly, we would not
need to explore, just like in the UCB1 setting.

LinUCB. To develop the LinUCB algorithm, we begin by extending (3).
Our goal is to use confidence regions C,; that contain each w, with sufficient
confidence. Suppose that we use ellipsoid confidence regions:

Ttx = Tt,a

Cas = {0 | 0= asllgor < e}, (10)

where ¥, ¢ is a symmetric positive definite matrix, and:

o~ b llgms = /(0 — 0.t TS5} (0 — thae). (11)

For instance, if ¥, ; were the identity matrix, then (11) would simply be the
standard 2-norm, and C,; would be a (uniformly shaped) ball of radius ¢,
centered at w,,. Typically, W, is estimated via ridge regression:

g ¢ = argmin, A[|v]|? + Z (P — vl 2y o). (12)

t':ay=a



The form of (10) is reminicent of Gaussian confidence regions. For instance,
if one were Bayesian and modelled the posterior distribution of w, as Gaussian
with mean 0, and covariance 3, ¢, then (10) corresponds exactly to a high
confidence region that contains w, with confidence determined by the parameter
Ct.

More generally, one only needs to assume that that the measurements we
receive at time t, 7, are independent random variables with mean w?;t Tt,q, and
sub-Gaussian tails. It was shown in Theorem 2 in [1] that this is a sufficient
condition for using ellipsoid confidence regions.

Using ellipsoid confidence regions, then the UCB1-style approach would be
to choose:

T
ap = argmaX,e(1, i} vIélCaX V' Ty, (13)
a,t

which can be shown to be equivalent to:

_ ~T T —1
ap = argmax,e(y g}y Wo Tt + Ce\/ T4 a¥a 1 Tta- (14)

(14) is essentially the LinUCB algorithm that generalizes the basic K-armed
bandit setting to the feature-based linear setting.

3 General Linear Stochastic Bandits

The disjoint linear contextual bandits setting above is a special case of general
linear stochastic bandits [1], and in fact the LinUCB algorithm can applied
to this more general setting as well with rigorous regret bounds. In this more
general setting, at each iteration, we are given a set of A; arms, each of which has
a feature vector x,. There is a single global weight vector w that characterizes
the mean payoffs of each arm w”z,. The setting proceeds as:

1. Initt =1
2. Receive contexts z; , for a € A,
3. Algorithm chooses a; € A;

4. Receive reward 7; with expected reward E[#;] = wat’at, and independent
noise.

5. t =t+ 1, repeat from Step 2 until ¢ =T (T possibly unknown)

Note that the set A; can change from iteration to iteration.
In this case, LinUCB maintains a single w;, and at each iteration chooses
the action such that:

. [ Ty—1
ay = argmax, ¢ 4, Wy Tq + cp\/ 278 7. (15)



The global ellipsoid confidence region for w is then:
Cr={v | o -l < e} (16)

Regret is measured relative to mean reward of the optimal actions from each
AtZ

T
Rr = Z (w2 0r — 0 204,] (17)
=1

where af = argmax,¢ 4, wlzy .

Mapping to Disjoint Linear Contextual Bandits. One can map the
linear contextual bandits setting into the general setting by simply choosing
the global vector w as the concatenation of the K vectors from the contextual
bandits setting:

w1
w S (18)

WK

and the action set A; as set of K actions from the contextual bandits setting.
The feature vector for action a € A; is written as:

Tt,a = jt,a ) (19)

where Z; , denotes the feature vector from the disjoint linear contextual bandits
setting. It is straightforward to check that this is an equivalent model, but now
everything is written as a single global model. Furthermore, the “hybrid model”
in [3] can also be written as some global model as well. This means that we
can apply the technical results from [1] to develop regret bounds for the linear
contextual bandits setting.

Regret Analysis. The regret analysis of LinUCB hinges on three concep-
tual steps:

1. If we have valid confidence intervals, then the regret analysis from (5)-
(8) applies, and the regret can be bounded by the size of the confidence
intervals used at each time step.

2. Theorem 2 in [1] provides general conditions on when ellipsoid confidence
intervals are valid, which we elaborate on below.

3. Lemma 11 in [1] provides a bound on the sum of confidence intervals
Zle Cq, t» when they are ellipsoid confidence intervals. That is used in to
prove the regret bound stated as Theorem 3 in [1]. We elaborate on this
below as well.



Ellipsoid Confidence Interals. If we assume that everything is Gaussian,
as described briefly in Section 2, then it is easy to show that for:

t
=M+ Z xtmxza” (20)
t=1

then (16) forms a valid confidence region that contains the true w with confi-
dence controlled by ¢;. Theorem 2 in [1] provides a more general condition where
one can use ellipsoid confidence regions. Specifically, if the true model is linear,
and the randomness of each feedback is independent with R-sub-Gaussian tails,

then:
det(Z;)1/2 det(N)—1/2
||v—wt||z;s1%\/2log< o(Z) 17 det(M) )+A1/25},<21>

Ct:{’l} 5

where 1 — ¢ is the target confidence and S > ||w||. Generalizing from (12) to
the global model setting, we have that w; is:

t—1
Wy = argmin, Al|v||? + Z(ft/ — vy, )% (22)
=1

Deploying this confidence region requires knowing that the noise has R-sub-
Gaussian tails and an upper bound S on ||wl||. It can be shown that (10) is at
most:

O(RvV/DK log(t/8) + \'/259), (23)

where DK is the total dimensionality of w.

Regret Bound. Assume that the regularization parameter \ satisfies A >
max, ||z||?. Following (a simplification of) the proof of Theorem 3 in [1], starting
from (8), we have:

T
Ry <2 a4 (24)
t=1
T
=23 el I (25)
t=1
T
<2\ Elwrald (26)
t=1 ¢
T
<23 ol 1)
t=1 )

T
= 2er [ Itvadl?
=1 !



(25) is a substitution of the definition of the confidence interval. (26) follows
from Cauchy-Schwartz. (27) follows from ¢; being monotincally increasing,.
Lemma 11 in [1] proved that, for A > max, ||z||?, we have:

T
>zt |31 < 2logdet(Sr) < O(DK log(T)), (29)
t=1 )

which combined with (28) and (23) yield a regret bound of:
Rr=0 (RSAU?DKlog(T/(s)\/:F) , (30)

where R is the width of the tail of the randomness of the feedback, S > |Jw]| is an
upper bound on the norm of the true model, X is the regularization parameter
for estimating the mean and is required to be A > max, ||z|?, DK is the total
dimensional of the global model, and 1 — § is the target confidence.
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