
Imitation Learning

Richard Zhu, Andrew Kang
April 26, 2016

Table of Contents

1. Introduction

2. Preliminaries

3. DAgger

4. Guarantees

5. Generalization

6. Performance

2

Introduction

Where we’ve been

The journey so far:

• Online learning
• Follow-the-Leader, Perceptron
• Multi-armed Bandits (UCB1, LinUCB)

• Reinforcement learning
• MCTS + deep NN→ AlphaGo
• Deep Q-learning→ DeepMind Atari
• Apprenticeship→ Autonomous helicopter flight

Trending towards generality (MAB a special case of MDP in
reinforcement learning) and more efficient exploration (esp. with
experts).

4

Takeaways

Simple iterative procedures can yield great performance.

In particular, utilizing expert demonstrations to learn a policy can do
very well, if done in a clever way.

5

Where we’ll go

The sequential prediction problem:

• States not drawn i.i.d. from true distribution!
• Future states depend on previous states / actions made.
• Breaks supervised learning (even expert demos fail).

Examples:

• Legged locomotion [Ratliff 2006]
• Outdoor navigation [Silver 2008]
• Car driving [Pomerleau 1989]
• Helicopter flight [Abbeel 2007] (last Thursday’s talk!)

6

Where we’ll go

7

Where we’ll go

Automation of these processes are challenging control problems

• high-dimensionality
• non-linearity of dynamics
• stochasticity

Reduce to sequence prediction problems, solved using imitation
learning.

We’ll examine the current state-of-the-art in imitation learning:
DAgger, a meta-algorithm which learns a stationary & deterministic
policy which is guaranteed to perform “well” (exact meaning TBA)
under its induced distribution of states.

8

Preliminaries

High-level view of imitation learning

Imitation learning approaches the sequential prediction problem by
seeking clever ways of using expert demonstrations (training
dataset) to learn a policy that makes predictions (actions) that
approximate expert actions.

In general, we interpret problems in imitation learning as follows:

• A learner makes actions (or predictions).
• These actions influence the current environment state.
• The environment returns reward to learner.

This sounds pretty similar to apprenticeship learning! What’s is the
difference?

10

Imitation v. apprenticeship learning

Typical approaches in reinforcement/apprenticeship learning seek
to balance explore/exploitation tradeoff.

Exploration is hard, computationally expensive!

• MCTS
• UCB1, LinUCB
• MDP - Q-learning, policy gradient, apprenticeship

11

Imitation v. apprenticeship learning

Apprenticeship learning (autonomous helicopter):

• Apprenticeship trades exploration completely for
exploitative/greedy policy - difficult to generalize.

• Hand-tweaking required to accomplish difficult maneuvers.
• Recovering from errors/unexplored states in state space
impossible.

What if we’re in new situations e.g. self-driving car? A more stable
and more reliable framework is desired.

12

Notation

• Policies: π ∈ Π, Π denotes class of policies considered by
learner

• Task horizon: T
• Distribution of states at time t given that π was executed from
time 1 to t− 1: dtπ

• Average distribution of states if we follow π for T steps:
dπ = 1

T
∑T

t=1 dtπ
• Expected immediate task cost of performing action a in state s:
C(s,a)

• Expected immediate policy cost of π in s (assume C bounded in
[0, 1]): Cπ(s) = Ea∼π(s)[C(s,a)]

13

Notation

• Total cost (cost-to-go) J(π) =
∑T

t=1 Es∼dtπ [Cπ(s)] = TEs∼dπ [Cπ(s)]
• May not necessarily know true costs C(s, a). Instead, observe
expert demonstrations π∗ and seek to bound J(π) with surrogate
loss based on how well π mimics, or “ imitates” the expert policy
π∗.

• We do this because π∗ is not necessarily in our policy class Π
under consideration.

• Observed surrogate loss ℓ(s, π)
• Possibilities: expected 0-1 loss of π w.r.t. π∗ in state s,
squared/hinge loss of π w.r.t. π∗ in s.

• Should become more clear as we proceed.

14

Example situation: learning to drive from demonstrations

15

Learning goal

Objective: Find a policy π̂ which minimizes the observed surrogate
loss ℓ under its induced distribution of states.

π̂ = argminπ∈ΠEs∼dπ [ℓ(s, π)]

In the case of apprenticeship learning for the helicopter problem,
the dynamics and progression from state to state (by necessity) were
also part of the learning process, i.e. explicitly modeled. In order to
maintain generality, we assume unknown and complex system
dynamics.

Ultimately, this is a non-i.i.d. supervised learning problem (dπ
depends on π). Optimization is difficult, since the influence of policy
on future states makes the objective non-convex (even if ℓ(s, ·) is
convex in π for all s).

16

Reduction-based approach/analysis

For generality, employ reductions. Abstract away the learner
algorithm, allows leveraging of any supervised learning algorithm!

17

Previous approaches

We begin by reviewing some previous approaches, along with their
performance guarantees. Overview of algorithms (spoilers!):

• Standard supervised learning
• O(T2ϵ) regret, terribly impractical

• Forward Training [Ross and Bagnell 2010]
• O(uTϵ) (near-linear) regret
• Impractical - maintains T non-stationary policies

• Stochastic Mixing Iterative Learning (SMILe) [Ross and Bagnell
2010]

• O(uTϵ) (near-linear) regret
• Impractical - adds a new policy to mixture at each iteration; policy
is stochastic and thus unstable

• Dataset Aggregation (DAgger) [Ross et al. 2011]
• Stationary (mostly) deterministic policy (stable finite mixture of
policies)

• No regret (in suitable conditions)

These bounds all assume that the base learner has ϵ error rate. 18

Consistent / no-regret algorithms

19

Supervised Learning

The naive approach at solving the learning objective is simply to
train a policy π over the distribution of states encountered by the
expert, dπ∗ .

Reducing the “hard” imitation learning problem to many decoupled
supervised learning problems, we may employ any standard
supervised learning algorithm:

π̂sup = argminπ∈ΠEs∼dπ∗ [ℓ(s, π)]

Note that our actual objective is to find π̂:

π̂ = argminπ∈ΠEs∼dπ [ℓ(s, π)]

A small difference, right? Obviously minor...

20

Supervised Learning Performance

Assuming ℓ is the 0-1 loss, we get the following performance
guarantee:

Theorem

Let Es∼d∗π [ℓ(s, π)] = ϵ, then J(π) ≤ J(π∗) + T2ϵ.

Details of proof may be found in references, similar approach
demonstrated later.

Intuition: as soon as π̂ makes a mistake (Tϵ factor), it might end up
in new states not visited by expert policy π∗, always incurring
maximal 0-1 loss of 1 at each step from then on (T factor).

Prefer approaches with performance closer to O(Tϵ) or “near”-linear
O(uTϵ).

What is u? Max difference between cost of worst action and optimal
action.

21

Supervised Learning Summary

Loss grows superlinearly in time horizon: O(T2ϵ).

Intuition: naive supervised learning fails to capture the change in
states, and is unable to generalize to unseen situations. If the
algorithm makes an error, it does not know how to get back to states
seen by the expert.

State distribution mismatch between training distribution and
testing distribution. Errors cascade!

22

Forward Training

The forward training algorithm (Ross and Bagnell 2010) trains a
non-stationary policy (one policy πt at each timestep t) iteratively
over T iterations.

At each iteration t, πt is trained to mimic π∗ on the distribution of
states induced by the previously trained policies π1, π2, . . . , πt−1.

Rectifies fundamental errors in naive supervised learning approach!

23

Forward Training Intuition

In iteration i (up to T iterations), correct πii in the final policy
πi = {πi1, . . . , πiT}.

• Generate trajectories by following πi−1 = {πi−11 , . . . , πi−1T }.
• D = {(si, π∗(si)} - states + actions taken by expert at step i
• Train a learner πii on objective

πii = argminπ∈ΠEs∼D(eπ(s))

• Keep all other policies constant.

Iterative training on state distribution after each round, has good
performance!

24

Forward Training Algorithm

25

Forward Training Algorithm

26

Forward Training Performance

Let Qπ′

t (s, π) denote the cost of following π in initial state s and then
following π′ at timestep t. Further, assume ℓ(s, π) is 0-1 loss (or
upper bound on 0-1 loss). With task cost function C ∈ [0, 1], we are
guaranteed performance by the following theorem:

Theorem

Let π be such thatEs∼dπ [ℓ(s, π)] = ϵ andQπ∗

T−t+1(s,a)−Qπ∗

T−t+1(s, π∗) ≤
u for all actions a and t ∈ {1, 2, . . . , T} with dtπ(s) > 0. Then

J(π) ≤ J(π∗) + uTϵ

Near-linear regret! O(uTϵ). What is u?

27

Forward Training Performance

28

Forward Training Performance

Proof. Let π1:t be the policy which executes π in the first t-steps, then
executes π∗. We then have

J(π) = J(π∗) +
T−1∑
t=0

[J(π1:T−t)− J(π1:T−t−1)] telescoping sum

= J(π∗) +
T∑
t=1

Es∼dtπ [Q
π∗

T−t+1(s, π)− Qπ∗

T−t+1(s, π∗)] definition

≤ J(π∗) + u
T∑
t=1

Es∼dtπ [ℓ(s, π)] ℓ upper bounds 0-1 loss

= J(π∗) + uTϵ

29

Forward Training Performance

Worst case, u ∼ O(T) and forward algorithm provides no
improvement over naive supervised learning.

Best case (often), u ∼ O(1) or u sublinear in T.

In particular, if π∗ (expert) can recover from mistakes made by π,
then u ∼ O(1). What does recover mean? Within few steps,
dtπ → dt+∆t

π∗ .

30

Forward Training Summary

Pros:

• Recovery from mistakes.
• Trained on the distribution of states actually encountered.

Cons:

• Requires T iterations (what if undefined?) For large T, lots of
iterations and policies to maintain. Cannot stop before all T
completed.

• Non-stationary (not time-invariant) policy.
• Impractical in real-world.

31

SMILe

Stochastic Mixing Iterative Learning (SMILe), also proposed by Ross
and Bagnell (2010), succeeds where Forward Training fails.

It can be applied when T is large or undefined by adopting an
approach similar to SEARN (Daumé III et al., 2009) where a stochastic
stationary policy is trained over several iterations.

32

SMILe Algorithm

33

SMILe Intuition

High-level understanding: “geometric” stochastic mixing of policies
trained.

• Start with a policy π0 which mimics exactly the expert’s actions.
• At each iteration n, train policy π̂n to mimic the expert under the
trajectories induced by πn−1.

• Add trained policy to previous mix of policies with a geometric
discount factor α(1− α)n−1.

Result: πn then is a mix of n policies, with the probability of using
the expert’s action as (1− α)n.

Selecting α = O(1T2) and N = O(T2 log T) guarantees near-linear
regret in T, ϵ for some classes of problems.

34

DAgger

DAgger

DAgger (Dataset Aggregation): iterative algorithm that trains a
deterministic policy that achieves good performance guarantees
under its induced distribution of states.

Unlike the previous algorithms, DAggertrains a single non-stochastic
policy and remembers experience of the expert and previous
policies by aggregating data.

36

Overview

High level overview:

• Uses expert policy to gather dataset of trajectories D and train a
policy that best mimics the expert on those trajectories.

• Iteratively uses previous policy to collect more trajectories and
add them to D.

• Next policy is the policy that best mimics the expert on whole D.

37

Overview

In other words, at each iteration n: collect dataset with π̂n and then
train π̂n+1 with dataset aggregate.

Intuition: build a set of inputs that the final policy is likely to
encounter based on previous experience.

Can be interpreted as a Follow-The-Leader algorithm, since it
chooses the best next policy in hindsight.

38

Example

39

Example

40

Overview

Optional: at iteration i, use πi = βiπ
∗ + (1− βi)π̂i, i.e. stochastic

sampling.

Imagine flipping a coin, weighted with probability βi, to choose
whether to use π∗ (expert) or π̂i (learned) to determine the next
action.

Intuition: first few policies may make many more mistakes as they
are trained on smaller datasets and visit states that are irrelevant as
the policy improves.

41

Stochastic Sampling

Typically:

1. β1 = 1→ π̂1 = π∗, i.e. no initial policy needs to be specified
2. βi = pi−1, i.e. exponential decay

Only requirement for guarantees is that β̄N = 1
N
∑N

i=1 βi → 0 as
N→ ∞.

42

Algorithm

43

Guarantees

Notation

Notation:

• Sequence of policies: π1:N = π1, . . . , πN

• True loss of best policy in hindight:
ϵN = minπ∈Π

1
N
∑N

i=1 Es∼dπi [ℓ(s, π)]
• Regret: γN s.t.:

1
N

N∑
i=1

ℓi(πi)−min
π∈Π

1
N

N∑
i=1

ℓi(π) ≤ γN

In particular, the algorithm is no regret if limN→∞ γN = 0.

45

Guarantees

Assumptions:

• ℓ is strongly convex and bounded over Π
• βi ≤ (1− α)i−1 ∀i for some constant α independent of T

The following holds in the infinite sample case:

Theorem

For DAgger, if N is Õ(T) there exists a policy π̂ ∈ π̂1:N s.t.
Es∼dπ̂ [ℓ(s, π̂)] ≤ ϵN + O(1/T).

46

Guarantees

Note:

• Must hold for best policy in hindsight
• If ℓ upper bounds C, then J(π̂) ≤ TϵN + O(1)

Then similarly to theorem from Forward Training:

Theorem

For DAgger, if N is Õ(uT) there exists a policy π̂ ∈ π̂1:N s.t.
J(π̂) ≤ J(π∗) + uTϵN + O(1).

47

No Regret Properties

• Relies solely on no regret property of underlying
Follow-The-Leader algorithm on strong convex losses which
picks the sequence of policies π̂1:N.

• By reduction, the following results hold for any other no regret
online learning algorithm!

• No regret algorithms can be useful for finding a policy which
has good performance guarantees under its own distribution of
states if we choose loss functions to be loss under distribution
of states of current policy ℓi(π) = Es∼dπi [ℓ(s, π)].

48

Lemma

Total variation distance: We first bound the difference between
distributions encountered by π̂i and πi:

Lemma

∥dπi − dπ̂i∥1 ≤ 2Tβi

49

Lemma Proof

Proof: If d is the distribution of states over T steps where πi picks π∗

at least once, then dπ̂i = (1− βi)
Tdπ̂i + (1− (1− βi)

T)d:

since (1− β)T ≥ 1− βT for any β ∈ [0, 1].

(Only better than trivial bound ∥dπi − dπ̂i∥1 ≤ 2 for βi ≤ 1
T !)

50

Theorem

Assumptions:

• βi is non-increasing
• nβ is the largest n ≤ N such that βn > 1

T

• ℓmax is an upper bound on loss, i.e. ℓi(s, π̂i) ≤ ℓmax

We have the following:

Theorem

For DAgger, there exists a policy π̂ ∈ π̂1:N s.t.
Es∼dπ̂ [ℓ(s, π̂)] ≤ ϵN+γN+

2ℓmax
N [nβ + T

∑N
i=nβ+1 βi], for γN the average

regret of π̂1:N.

51

Theorem Proof

By lemma: Es∼dπ̂i (ℓi(s, π̂i)) ≤ Es∼dπ̂i (ℓi(s, π̂i)) + 2ℓmaxmin(1, Tβi).

Thus:

52

Generalization

Theorem

Finite sample case: The finite case is a sort of generalization, as we
cannot make infinite samples in practice. Assume we sample some
finite number of trajectories m at each iteration. Then using
Azuma-Hoeffding’s inequality:

Theorem

For DAgger, if N is O(T2 log(1/δ)) and m is O(1) then with probability
at least 1− δ there exists a policy π̂ ∈ π̂1:N s.t.
Es∼dπ̂ [ℓ(s, ϕ)] ≤ ϵ̂N + O(1/T).

54

Theorem

More refined analysis assuming strongly convex loss:

Theorem

For DAgger, if N is O(u2T2log(1/δ)) and m is O(1) then with proba-
bility at least 1− δ there exists a policy π̂ ∈ π̂1:N s.t.
J(π̂) ≤ J(π∗) + uTϵ̂N + O(1).

55

Theorem

At each iteration i with dataset Di:

• Online learner guarantees
1
N
∑N

i=1 Es∼Di [l(s, πi)]−minπ∈Π
1
N
∑N

i=1 Es∼Di [l(s, πi)] ≤ γN

• ϵ̂N = minπ∈Π
1
N
∑N

i=1 Es∼Di [l(s, πi)]

We obtain:

Theorem

For DAgger, with probability at least 1 − δ, there exists a policy
π̂ ∈ π̂1:N s.t. Es∼dπ̂ [l(s, π̂)] ≤ ϵ̂N + γN + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi] +

ℓmax

√
2 log(1/δ)

mN , for γN the average regret of π̂1:N.

56

Theorem Proof

Proof:

• Yij is the difference between expected per step loss of π̂i under
dπi and average per step loss π̂i under jth sample trajectory with
πi at iteration i

• Yij are all zero mean and bounded in [−ℓmax, ℓmax] and form a
martinagle

• By Azuma-Hoeffding’s inequality
1
mN

∑N
i=1

∑m
j=1 Yij ≤ ℓmax

√
2 log(1/δ)

mN

57

Theorem Proof

58

Performance

Problems

To test the algorithm, two imitation learning problems and one
benchmark sequence labeling problem were used:

• Super Tux Kart
• Super Mario Bros.
• Handwriting Recognition

60

Experiment 1: Super Tux Kart

Super Tux Kart: 3D racing game similar to Mario Kart

• Input: Current game image
• Output: Analog joystick value in [-1, 1]
• Expert: Human feedback for each observed game image
• Base learner: Linear controller minimizing ridge regression
• Setting: “Star Track”: track floats in space (kart can fall off)
• Performance: Average number of falls per lap

61

Experiment 1: Super Tux Kart

62

Experiment 1: Super Tux Kart

Takeaway:

• Improvements as more data is collected
• Only a few iterations required, i.e. quadratic training time not a
big problem

• Qualitatively better

63

Experiment 2: Super Mario Bros.

Super Mario Bros: Simulator from Mario Bros. AI competition which
can randomly generate stages of varying difficulty

• Input: Current game image
• Output: Subset of {left, right, jump, speed}
• Expert: Planning algorithm with full access to internal state
• Base learner: 4 independent linear SVM
• Setting: Stage with difficulty 1 and time limit 60 seconds
• Performance: Average distance travelled

64

Experiment 2: Super Mario Bros.

65

Experiment 2: Super Mario Bros.

Takeaway:

• Discrete actions
• Different stages
• Policy sampling
• Expert easily accessible (rare!)

66

Experiment 3: Handwriting Recognition

Handwriting Recognition: Parsing handwriting into words

• Input: Handwritten words, partitioned in 10 folds
• Output: Word predictions
• Expert: Tagged data
• Base learner: Linear SVM
• Setting: General handwriting dataset
• Performance: Character accuracy

67

Experiment 3: Handwriting Recognition

68

Experiment 3: Handwriting Recognition

Takeaway:

• DAgger works for simple problems too

69

Video

Video party time! *cue video*

70

References I

S. Ross and J. A. Bagnell. Efficient reductions for imitation learning.
In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010.

S. Ross. Comparison of imitation learning approaches on Super Tux
Kart, 2010a. URL http://www. youtube.com/watch?v=V00npNnWzSU.

S. Ross. Comparison of imitation learning approaches on Super
Mario Bros, 2010b. URL
http://www.youtube.com/watch?v=anOI0xZ3kGM.

S. Ross, G. J. Gordon, J. A. Bagnell. A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning. arXiv
preprint. arXiv:1011:0686v3, 2011.

71

Questions?

72

	Introduction
	Preliminaries
	DAgger
	Guarantees
	Generalization
	Performance

