
LQR, Inverse Reinforcement Learning, Learning

from Expert Demonstrations

Hoang M. Le

April 20, 2016

1 Introduction

This set of notes aims to provide a road map to understand the theory behind
the helicopter control application [1].

Typically a reinforcement learning problem can be described by a Markov
Decision Process (MDP) consisting of a sextuple (S,A, T , H, I,R) where S is
the set of states, A is the set of actions, T is the dynamics model, H is the time
horizon, I ⊂ S is the set of initial states; R : S × A → R is the reward (cost)
function.

As we deal with continuous state and action spaces, the focus is on (discrete-
time) dynamical systems where the transition dynamics can be described by a
(non-linear) function f : xt+1 = f(xt, ut) for some action ut ∈ A.

A policy π is a mapping from states x ∈ S to actions u ∈ A. Acting according

to policy π yields expected sum of rewards V (π) = E
[∑H

t=0R(xt, ut|π)
]

(also

called value function). The goal is to find an optimal policy π∗ that maximizes

the expected sum of rewards: π∗ = arg maxπ

[∑H
t=0R(xt, ut|π)

]
.

2 Linear Quadratic Regulator and Iterative LQR

Motivation. The key question from this section is: assume that we know
the dynamics and cost functions, how do we derive optimal actions (design
controller) to minimize cost or maximize rewards?

2.1 LQR for Linear Time Invariant Systems

We start with Linear Quadratic Regularization, which is a special case of the
general MDP framework where the optimal policy can be computed exactly
using dynamic programming.

Consider discrete-time system with linear dynamics:

xt+1 = Axt +But (1)

where xt ∈ S ⊂ Rn, ut ∈ A ⊂ Rm are continuous state and action (a.k.a control
input), with initial condition x0 = xinit. For now let’s assume A ∈ Rn×n and
B ∈ Rn×m are independent of time t - this is called Linear Time Invariant (LTI)
dynamical system in classical control. We will see later that our derivation of

1



optimal policy extends naturally to the case where A = At and B = Bt are
dependent on time (Linear Time Varying or LTV system).

The reward function is given by the quadratic form:

R(xt, ut) = −xᵀtQxt − u
ᵀ
tRut (2)

where Q = Qᵀ � 0 and R = Rᵀ � 0 are positive semi-definite matrices. For
convenience, we use the terms reward and cost function (negative of reward)
interchangeably.

Assume that A,B,Q,R are known. Optimal actions for linear dynamical
systems with quadratic cost can be computed efficiently with standard linear
algebra operations. This setting is the basic building-block of the Differential
Dynamic Programming (DDP) method used for helicopter control (Section 3.2
of [1]).

Note the interpretation of the quadratic cost function: We want to drive
the system from an initial condition x0 = xinit to the equilibrium (x∗, u∗) =
(0, 0) with “minimum actions” u0, . . . , uH (see figure 1). By reframing the state
variable x and control variable u, we can easily extend this framework to the
case of trajectory following.

Figure 1: Basic goal of LQR: stabilize a linear system around an equilibrium

For t = 0, . . . ,H define the “cost-to-go” Vt : Rn → R by the recursion:

Vt+1(x) = min
u
xᵀQx+ uᵀu+

∑
x′=Ax+Bu

Vt(x
′) (3)

= min
u

[xᵀQx+ uᵀRu+ Vt(Ax+Bu)] (4)

LQR framework is convenient because all cost-to-go functions take the quadratic
form Vt(x) = xᵀPtx, for all x ∈ Rn. This can be proved by backward induction
on t.

First note that VT (x) = xᵀQx is quadratic in x, by definition of the cost
function. Then assume Vt(x) = xᵀPtx for all x, we have:

Vt−1(x) = min
u

[xᵀQx+ uᵀRu+ Vt(Ax+Bu)] (5)

= min
u

[xᵀQx+ uᵀRu+ (Ax+Bu)ᵀPt(Ax+Bu)] (6)

= xᵀ
(
AᵀPtA+Q− (AᵀPtB)(BᵀPtB)−1(BᵀPtA)

)︸ ︷︷ ︸
Pt−1

x (7)

2



where equation (7) is obtained by setting the gradient of expression from (6)
w.r.t. x to 0. This enables exact dynamic programming solution to the optimal
policy via the Ricatti recursion:

1. initialize PH := Q

2. for each t = H,H − 1, . . . , 1 set:

Pt−1 = AᵀPtA+Q− (AᵀPtB)(BᵀPtB)−1(BᵀPtA) (8)

3. at each step, the optimal action (a.k.a control input) is given by

u∗t = −(BᵀPtB +R)−1BᵀPtA︸ ︷︷ ︸
Kt

xt (9)

This is a well-known result in control theory: optimal policy for the LQR prob-
lem is a linear feedback controller, which can be efficiently computed using
dynamic programming. The value function and cost-to-go for any time step t
is given by Vt(x) = xᵀPtx.

2.2 LQR for Time Varying Systems

The derivation above carries analogously to time varying systems setting, where
the dynamics is governed by:

xt+1 = Atxt +Btut (10)

with the same quadratic cost function xᵀtQxt + uᵀtRut.
The Ricatti recursion for optimal policy looks almost the same as before,

except with time-dependent At, Bt:

Pt−1 = Aᵀ
t PtAt +Q− (Aᵀ

t PtBt)(B
ᵀ
t PtBt)

−1(Bᵀ
t PtAt) (11)

u∗t = Ktxt = −(Bᵀ
t PtBt +R)−1Bᵀ

t PtAtxt (12)

Similar solutions easily extend to time-varying quadratic cost with Q = Qt and
R = Rt, but it is not necessary to consider this for the helicopter application.

2.3 LQR Around of Trajectory with Non-Linear Dynam-
ics

Suppose we have a (discrete time) non-linear dynamical system:

xt+1 = f(xt, ut), x0 = xinit (13)

and a method to generate a trajectory {x∗t , u∗t }Ht=0 that satisfies the dynamics.
We want to stabilize the system around this trajectory (because running u∗t on a
real system may not necessarily result in x∗t due to modeling errors and noises).
This objective is an extension of keeping the system around a fixed equilibrium
point in the basic LTI LQR setting.

3



The goal of this trajectory following problem can be formalized as:

min
u0,...,uH

H∑
t=0

(xt − x∗t )ᵀQ(xt − x∗t ) + (ut − u∗t )ᵀR(ut − u∗t ) (14)

s.t. xt+1 = f(xt, ut) (15)

We linearize the non-linear system around the desired trajectory by first-order
Taylor expansion as follows:

xt+1 ≈ f(x∗t , u
∗
t ) +

∂f

∂x
(x∗t , u

∗
t )︸ ︷︷ ︸

At

(xt − x∗t ) +
∂f

∂u
(x∗t , u

∗
t )︸ ︷︷ ︸

Bt

(ut − u∗t ) (16)

where At and Bt are the Jacobian matrices of f w.r.t. x and u, evaluated at
points along the trajectory. This linearization transforms the original problem
into a linear time varyting (LTV) LQR problem with the approximately linear
dynamics:

xt+1 − x∗t+1 ≈ At(xt − x∗t ) +Bt(ut − u∗t ) (17)

2.4 Following Expert Trajectory with Iterative LQR

Imagine we have an expert trajectory {x∗t , u∗t }Ht=0 that we wish to follow.
As before, assume we know the dynamics of the non-linear system: xt+1 =

f(xt, ut), x0 = xinit, and the objective is to minimize:

V (u0, . . . , uH) =

H∑
t=0

(xt − x∗t )ᵀQ(xt − x∗t ) + (ut − u∗t )ᵀR(ut − u∗t ) (18)

For a given sequence of action u, we could simulate the system to find x using
xt+1 = f(xt, ut). The key problem here is that current trajectory {xt, ut}Ht=0

might be far away from the desired expert trajectory {x∗t , u∗t }Ht=0, and thus local
approximation by linearizing around the current trajectory {xt, ut} as described
in Section 2.3 does not guarantee to converge to the expert trajectory. See Figure
2 for an example. To address this problem, Differential Dynamic Programming

Figure 2: Linearization around current trajectory may not converge to desired
expert trajectory. Thus iterative LQR is used to update the action (control law)

(Section 3.2 of [1]) is used to iteratively update the actions (or control inputs)
as follows:

4



• Initialize with some guess of u = {u0, . . . , uH}

• With each iteration, given the current u:

1. simulate the system to find x, using xt+1 = f(xt, ut)

2. linearize around the current trajectory (as desribed in subsection 2.3)
to obtain a linear system

x̄t+1 = Atx̄t +Btūt (19)

where At =
∂f

∂x
(xt, ut), Bt =

∂f

∂u
(xt, ut) (20)

3. solve time-varying LQR problem with cost

V =

H∑
t=0

(xt+ x̄t−x∗t )ᵀQ(xt+ x̄t−x∗t )+(ut+ ūt−u∗t )ᵀR(ut+ ūt−u∗t )

(21)

4. update ut := ut + ūt and repeat

Remark: Note that the full version of Differential Dynamic Programming in-
volves not only linear approximation of dynamics but also quadratic approxi-
mation of the cost function. The technique used in [1] is essentially iterative
LQR, not full-blown DDP.

3 Inverse Reinforcement Learning for Learning
the Cost Function

Motivation. So far we have derived the optimal policy for discrete-time, contin-
uous space and action dynamical systems with known dynamics and quadratic
cost functions:

xt+1 = f(xt, ut) (22)

V (u0, . . . , uH) =

H∑
t=0

xᵀtQxt + uᵀtRut (23)

It is common to assume that the cost / reward function is given (AlphaGo
example: most of the time the cost is 0, cost is -1 or +1 when the game ends).
However, in many cases a natural specification of the cost function is difficult,
and may need to be learned from data. The problem of learning a cost / reward
function from observed behavior is referred to as inverse reinforcement learning
[2].

The key assumption from [2] is that the true reward function can be ex-
pressed as a linear combination of known “features”.

In the helicopter example, we can think of the cost matrices Q and R as
diagonal matrices:

Q =


q1 0 0 . . . 0
0 q2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . qn

 , R =


r1 0 0 . . . 0
0 r2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . rm

 (24)

5



Designing cost matrices Q and R then becomes the problem of choosing the
coefficients that trade-off different state and action variables. The cost function
in this case becomes:

xᵀQx+ uᵀRu = w∗ · φ(x, u) where w∗ =



q1
...
qn
r1
...
rm


∈ Rm+n (25)

The unknown vector w∗ specifies the relative weighting between different desider-
ata (see section 3.3 of [1]).

Learning goal. The expected value of a policy π can be written as:

Ex0∼I [V π(x0)] = E

[
H∑
t=0

R(xt, ut)

]
= E

[
H∑
t=0

w · φ(xt, ut)

]
(26)

= w · E

[
H∑
t=0

φ(xt, ut)

]
= w · µ(π) (27)

where µ(π) = E
[∑H

t=0 φ(xt, ut)
]

is called the feature expectation. Thus the

value function can be compactly expressed as an inner product of w and feature
expectation of the policy.

To learn such a set of coefficients w, we use demonstrations by some expert
policy πE , with the corresponding feature expectation µE = µ(πE). Assume
a bounded set of coefficients w ∈ Rk with ‖w‖1 ≤ 1, the goal is to find a
policy π̃ such that ‖µ(π̃)− µE‖2 ≤ ε, since such a policy π̃ will yield:∣∣∣∣∣E

[
H∑
t=0

R(xt, ut)|πE

]
− E

[
H∑
t=0

R(xt, ut)|πE

]∣∣∣∣∣ = |wᵀµ(π̃)− wᵀµE | (28)

≤ ‖w‖2 ‖µ(π̃)− µE‖2 (29)

≤ 1 · ε = ε (30)

Inverse RL Algorithm. The main algorithm proceeds as follows: (section 3
of [2])

• Initialize: randomly pick some policy π0, compute (or approximate via
Monte Carlo) µ0 = µ(π0)

• Main Loop:

1. for each i ≥ 1, compute

ti = max
w:‖w‖2≤1

min
j∈{0,...,i−1}

wᵀ(µE − µj) (31)

and let wi be the value of w that attains this maximum.

2. if ti ≤ ε, terminate

6



3. otherwise, using some RL algorithm to compute the optimal policy
πi for the MDP using rewards R = wᵀ

i φ

4. Compute (or estimate) µi = µ(πi)

5. set i = i+ 1, and go back to Step 1

Note that the optimization in Step 1 of the main loop is equivalent to an SVM
optimization problem:

max
t,w

t (32)

s.t. wᵀµE ≥ wᵀµj + t, j = 0, . . . , i− 1 (33)

‖w‖2 ≤ 1 (34)

Suppose the algorithm terminates after n steps with tn+1 ≤ ε, then as a
consequence of the optimization problem above, we have:

∀w with ‖w‖2 ≤ 1 ∃i s.t. wᵀµi ≥ wᵀµE − ε (35)

In particular, since ‖w∗‖2 ≤ ‖w∗‖1 ≤ 1, this means there is at least one policy
among π0, . . . , πn whose performance underR∗ is at least as good as the expert’s
performance minus ε.

Analysis. The algorithm is guaranteed to terminate after n = O( kε2 log k
ε )

iterations, where k is the dimension of feature mapping φ (Theorem 1 of [2]).
Finally, although the algorithm optimizes over expert feature expectation πE ,
this quantity is often unknown and thus m different Monte Carlo samples of
expert trajectories are obtained to provide an estimate π̂E of πE (empirical
mean of m estimates). Theorem 2 of [2] provides a sufficient number of expert
trajectories needed to guarantee the correctness of the algorithm with high
probability. See [2] for detailed theorem statement and proof.

4 Learning Dynamics from Expert Demonstra-
tions

Motivation. Techniques from section 2 and section 3 assume that somehow the
dynamics of the system is known. In fact, this is frequently the most difficult
part of the reinforcement learning problem. Many existing methods (E3,tree
search, model-based RL with ε-greedy) require extensive exploration to accu-
rately learn the dynamics, which could be computationally intractable, or could
lead the systems to unsafe trajectories (e.g. the helicopter may crash while try-
ing to aggressively explore poorly modeled parts of the state space). The key
idea from [3] leverages expert demonstrations to lessen this burden on explo-
ration and focus the learning on repeatedly executing the exploitation policies.

For the helicopter control application, we assume linearly parameterized dy-
namics given by:

xt+1 = Aφ(xt) +But + wt (36)

where φ is a feature mapping of the state space. Note that this is not a linear
dynamical system, only a linearly parameterized one, since φ may be non-
linear. The process noise wt is assumed to be IID multivariate Gaussian with

7



known variance. The key question from this section is: how do we estimate
matrices A and B from expert data collected from expert policy πE?

Algorithm. The rephrased version of the main algorithm proceeds as
follows (section 4 of [3]):

• given α > 0, parameters NE and k1

• Initialize: run NE trials from expert πE . Collect the state-action trajec-
tories during these trials. Estimate the value function V̂ (πE) of expert πE
by averaging the sum of rewards in each of NE trials. Set i = 1

• Main Loop:

1. aggregate the state-action trajectories from (unsuccessful) test to the
training set so far, and use the combined data set to estimate A and
B using regularized linear regression. Call the estimated dynamics
T̂i

2. derive the optimal policy of the system with dynamics T̂i using (it-
erative) LQR. Call this policy πi

3. evaluate the value function of πi by running k1 trials on the real
system. Let V̂ (πi) be the average sum of rewards of the k1 trials

4. If V̂ (πi) ≥ V̂ (πE)− α/2, return πi and exit. Otherwise set i = i+ 1
and return to step 1.

For the regularized linear regression step from step 1 of the main loop, the kth

rows of A and B are estimated by:

arg min
Ak,:,Bk,:

∑
j

(
x
(j)
next − (Ak,:φ(x(j)curr) +Bk,:u

(j)
curr)

)2
+

1

λ2
(‖Ak,:‖22+‖Bk,:‖22) (37)

where j indexes over all state-action-state triples {(x(j)curr, u(j)curr, x(j)next)}j occur-
ing after each other in the trajectories observed for the system.

Analysis. The key takeaway from theorem 3 (main theorem of [3]) is that
using a polynomial number of trials NE , k1 and after a polynomial number of
iterations, the returned policy will be approximately optimal, in the sense that
the true value function V (π) of the returned policy π will be no less than α
within the true value function of the expert policy, with high probability.

The proof rests on showing the following two facts:

1. After we have collected sufficient data from the expert, the estimated
model is accurate for evaluating the value function of the expert’s policy
in every iteration of the algorithm. (Note this does not merely require that
the model has to be accurate after the NE trials under the expert’s policy,
but also has to stay accurate after extra data is collected from testing the
policies {πi})

2. One can visit inaccurately modeled state-action pairs only a “small” num-
ber of times until all state-action pairs are accurately modeled

Below is a high-level intuition behind how these two facts are proved. After
we have collected sufficient data from the expert, the state-action pairs that are

8



visited often under the expert’s policy are modeled well. From the Simulation
Lemma (Lemma 1 from [3]), we know that an accurate model of the state-action
pairs visited often under the expert’s policy is sufficient for accurate evaluation
of the value function of the expert’s policy. This establishes (1). Every time an
inaccurate state-action pair is visited, the data collected for that state-action
pair can be used to improve the model. However the model can be improved
only a “small” number of times until it is accurate for all state-action pairs.
This establishes (2).

9



Acknowledgement

These notes, especially the optimal control sections, were prepared in consulta-
tion with Pieter Abbeel’s lecture slides at UC Berkeley CS287 class and lecture
slides from Stephen Boyd’s EE363 class at Stanford University.

References

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforce-
ment learning to aerobatic helicopter flight. Advances in neural information
processing systems, 19:1, 2007.

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning (ICML), 2004.

[3] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in re-
inforcement learning. In International Conference on Machine Learning
(ICML), 2005.

10


