
Apprenticeship Learning for
Reinforcement Learning

with application to RC helicopter flight
Ritwik Anand, Nick Haliday, Audrey Huang

Table of Contents
● Introduction

○ Autonomous helicopter control problem
○ Reinforcement Learning
○ Apprenticeship Learning

● Theory
○ Learning dynamics [Abbeel, Ng 2005]
○ Learning reward function [Abbeel, Ng 2004]
○ Combining to get policy using control theory

● Putting into practice [Abbeel, Ng 2006]
● Conclusion

Autonomous Helicopter Flight
● Autonomous flight has important applications

○ Wildland fire fighting
○ Fixed-wing formation flight

● Helicopters have unique capabilities
○ In-place hover
○ Low-speed flight

● But it’s a challenging control problem
○ High-dimensional
○ Asymmetric
○ Noisy
○ Nonlinear, non-minimum phase dynamics

It’s a Reinforcement Learning (RL) Problem
Learn an optimal decision policy by interacting with an environment and observing
delayed or partial rewards.

● Learner (helicopter controller) performs actions (motion controls)
● Actions influence the state of the environment (helicopter)

○ Position
○ Orientation
○ Velocity
○ Angular velocity

● Environment returns reward
○ How closely we are following desired trajectory

Markov Decision Process (MDP)

Describes the reinforcement learning problem as a sextuple:

Objective: Find Optimal Policy
● A policy π maps states x ∊ S to actions u ∊ A
● Yields sum of rewards or value function

We want to:

● Find optimal policy π* that maximizes value function:

MDP dynamics are unknown

● states (S) and actions (A) are physical properties of system, thus easily
specified

● Time horizon (H) and initial state (I) and are given
● Assume for the moment that reward function (R) is known
● Dynamics (T) must be learned

○ Discrete
○ Continuous (linearly parameterized)

Discrete Dynamics

● Set of states S and actions A are finite
○ Games such as Go and Atari

● Discrete transition probabilities P(xt+1 | xt,ut)

Continuous Dynamics: Linearly Parameterized
● Set of states S and actions A are continuous

○ Suited for autonomous helicopter control problem
● Linearly parameterized dynamics given by:

○ xt+1 ∊ S is next state
○ xt ∊ S is current state
○ Φ is feature mapping of state space
○ ut ∊ A is current action
○ wt is process noise, I.I.D. multivariate Gaussian with known variance

We need to estimate coefficient matrices A and B.

Learning dynamics: Exploration vs Exploitation
Exploration

● Sufficiently visit all relevant parts of MDP
● Collect accurate transition probabilities

Exploitation

● Given current MDP, maximize sum of rewards over time

Exploration Policies Are Impractical

● Example exploration policy - E3 algorithm
○ Strong bias for exploration policies

■ Generate accurate MDP model
○ Then uses exploitation policy to maximize reward

● Too aggressive for real system
○ Computationally intractable
○ Unsafe trajectories

Solution: Apprenticeship Learning

? ?

?

Learns MDP dynamics from initial expert data.

?

Apprenticeship Learning: MDP for Helicopters

1. Only system dynamics (T) are unknown.
2. But we do know system dynamics are linearly parameterized by:

Apprenticeship Learning: High-Level Algorithm
INITIALIZE:

1. Expert demonstrates task. Record state-action trajectories.

MAIN LOOP:

2. Use all state-action trajectories thus far to learn a dynamics model. Find a
near-optimal policy using RL algorithm.

3. Test policy on real system.
a. If as good as expert, RETURN policy.
b. If not as good, add state-action trajectories to training set. GO to #2.

Executes purely greedy, exploitative policies.

Given: α > 0, parameters NE and k1, and expert policy πE.

INITIALIZE:

1. Run NE trials under expert policy πE.
2. Record state-action trajectories (xcurr, ucurr, xnext). Add to training set.
3. Compute average sum of rewards over all NE trials, the utility U(πE).

Algorithm: Details

Given: α > 0, parameters NE and k1, and expert policy πE.

INITIALIZE:

1. Run NE trials under expert policy πE.
2. Record state-action trajectories (scurr, acurr, snext). Add to training set.
3. Compute average sum of rewards over all NE trials, the utility U(πE).

MAIN LOOP:

1. Use regularized linear regression on all state-action trajectories thus far to
estimate A and B. Call the new dynamics T(i).

2. From new dynamics T(i), use RL to derive optimal policy π(i).
3. Run k1 trials under π(i) to get new trajectories and compute utility U(π(i)).
4. If U(π(i)) ≥ U(πE) - α/2, return π(i) and exit. Otherwise, add new trajectories to

training set and loop again.

Algorithm: Details

Algorithm: Regularized Linear Regression

Then the kth rows of A and B are estimated by:

Recall the linear dynamics predicts the next state using:

Algorithm: Analysis

The returned policy will be approximately optimal after a polynomial number
of iterations and trials NE & k1, with high probability.

optimal policy

polynomial iterations

polynomial expert trials

polynomial policy trials

High-Level Proof: Basis
Lemmas:

1. Simulation Lemma: Accurate transition probabilities are sufficient for accurate
policy evaluation.

Facts:

1. After we have sufficient expert data, the estimated model is accurate for
evaluating the utility of the expert’s policy in every iteration.

2. Inaccurately modeled state-action pairs can only be visited a “small” number
of times until all state-action pairs are accurately modeled.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. π(i) is the optimal policy for

the current training set/model.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s.

Recall Termination Condition: If U(π(i)) ≥ U(πE) - α/2, return π(i) and exit.
Otherwise, add new trajectories to training set and loop again.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s. Fact #1 says πE must be

evaluated correctly.

Recall Fact #1: After we have sufficient expert data, the estimated model
is accurate for evaluating the utility of the expert’s policy in every iteration.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s. Fact #1 says πE must be evaluated

correctly. Then π(i) must be evaluated incorrectly.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s. Fact #1 says πE must be evaluated

correctly. Then π(i) must be evaluated incorrectly.
3. From the Simulation Lemma, π(i) must be visiting inaccurately modeled

state-action pairs.

Recall Simulation Lemma: Accurate transition probabilities are sufficient for accurate
policy evaluation.

Contrapositive: Inaccurate policy evaluation means inaccurate transition probabilities.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s. Fact #1 says πE must be evaluated

correctly. Then π(i) must be evaluated incorrectly.
3. From the Simulation Lemma, π(i) must be visiting inaccurately modeled state-

action pairs.
4. Fact #2 says we will only visit inaccurate pairs a small number of times

until the dynamics are learned.

Recall Fact #2: Inaccurately modeled state-action pairs can only be visited a
“small” number of times until all state-action pairs are accurately modeled.

High-Level Proof: Details
1. Consider policy π(i) in iteration i of the algorithm. We chose it because it’s the

optimal policy for the current training set/model.
2. π(i) utility is valued as lower than the πE’s. Fact #1 says πE must be evaluated

correctly. Then π(i) must be evaluated incorrectly.
3. From the Simulation Lemma, π(i) must be visiting inaccurately modeled state-

action pairs.
4. Fact #2 says we will only visit inaccurate pairs a small number of times until

the dynamics are learned.
5. The iterations are bounded.

Apprenticeship Learning: Review
Applications:

● Find unknown dynamics for RL
● Exploration is risky
● Driving cars & aircraft

Algorithm:

● Learns dynamics from expert demo
● Greedy, exploitation-only policy

improvements
● Polynomial iterations

Now we have a dynamics model.

How can we learn a useful reward function?

Roadmap

● Will solve the problem of deriving a reward function from expert behavior
● Assume: expert maximizes some unknown reward function
● Assume: reward function is linear combination of known features
● Algorithm indirectly updates a reward function at each iteration

Variables Used

● MDP defined by tuple (S, A, T, γ, D, R)
● S: finite set of states of the system
● A: set of actions which cause a transition from a state to state with a given distribution of

probabilities
● T: is the set of state transition probabilities, when taking a given action in a specific state
● γ: is the discount factor
● D: initial state distribution
● Φ: some vector of features which maps a state to [0, 1]k

● R: reward function linear w.r.t. Φ so R = w* ⨉ Φ(s) with weights w* ∊ Rk
○ R is bounded by 1
○ ||w*|| ≤ 1 for the bound to hold

More Variables
● A policy π is a mapping from states to probability distributions over actions

● The expected value of a policy π is :

● Where the expectation is taken with respect to a initial start state s(0) drawn
from distribution D and picking actions according to policy π

Feature Expectations
● For a policy π, define μ(π) to be the feature expectations:

● R is a linear combination of the known features Φ

● μ(π) completely determine the expected sum of discounted rewards for acting
according to π

Initial Simplification
● We assume we are given an Markov Decision Process without the reward

function, a feature mapping, , ,

● We want to find a policy whose performance is close to that of the experts on
the unknown reward function

● This is equivalent to finding s.t. :

Initial Simplification
● We use the fact that expectation is linear w.r.t. μ to get:

Reduced the problem to finding μ(π’) close enough to μ(πE)

Inverse Reinforcement Algorithm
● Pick some arbitrary policy , compute and set i = 1
● Compute

● Let be the value of w that attains the max
● If we terminate
● Using the RL algorithm, compute the optimal policy for the MDP using the Reward function
● Compute
● Set i = i+1 and loop back to step 2
● Return the reward function
● Also generates a sequence of policies corresponding to maximizing the reward function at each

iteration

Getting the Reward Function
● The maximization can be re-written as :

● Thus we can see that the algorithm is trying to find a reward function s.t. :

● Essentially a reward function on which the expert does better by a margin of t than any of the set of
policies generated by the algorithm thus far

Assumptions of the Algorithm
● One key assumption we made was that the algorithm does eventually

terminate. From Theorem 1 [Abbeel, Ng 2004] we have that the number of
steps before the algorithm terminates with t(i) ≤ ϵ is upper bounded by

● We also assumed that the value μE was known
● In practice must be estimated from monte-carlo samples. Theorem 2 [Abbeel,

Ng 2004] states that Theorem 1 holds with probability 1-δ if we use m
trajectories as samples. Where

So far...

How do we get our policy?

How do we derive optimal actions to maximize
reward?

Control Theory
● Once we know the reward function, R, and the dynamics, f, we are left with a

dynamic programming problem.

● Our reward function will be based on expert trajectory and two parameters
(from inverse RL).

● Will build up solution from special case (LQR).

LQR: Linear dynamics with quadratic reward
● Suppose f is linear:

● And R is quadratic:

● Then...

LQR: Linear dynamics with quadratic reward
● We can define the reward-to-go function, Vt, and show via induction that it is

quadratic and has simple to express policy (Riccati equation):

● Find by setting gradient to zero (valid by concavity).
● Assuming Q positive definite (PD), R positive semidefinite (PSD), Pt+1 PD, B

full rank, everything is well-defined.
● Pt is PD by definition of Vt (negative for all nonzero x).

Time-dependence
● Same idea with time dependent dynamics and rewards (will need the former).

● Just substitute time dependent parameters in place of A, B, Q, R in Riccati
equation.

● Also fine if ft has zero-mean noise term (maximizing expectation so don’t
care).

What about non-linear dynamics?
● Our dynamics were only linear parameterized, not linear.
● Instead of optimizing over xt, ut, optimize over the error with respect to target

trajectory:

● Errors will be small, so we can approximate the dynamics to first order
● Makes sense to design a reward function around deviation from the teacher’s

trajectory anyway.

Nonlinear optimization problem

Linearization

Linearized optimization problem

Iterative LQR
● Problem:

○ We need the errors to be small.
○ In practice this might not be true. So linear approximation will not match actual dynamics well.

● The solution:
○ Linearize around current trajectory instead of target.
○ Still penalize distance from target.
○ Iteratively update toward target trajectory.

Iterative LQR

Results

Attempted four difficult maneuvers
● Flip
● Roll
● Tail-in funnel
● Nose-in funnel

Flip and Roll
Flip: 360° rotation in place about lateral axis

● Initial cost matrices (Q, R) from algorithm oscillated

● Hand-tweaked matrices in simulator (following “spirit but not letter” of inverse RL
algorithm).

● Eventually got a controller that could flip indefinitely.

● Penalty for changes in inputs over consecutive time steps was increased for final
controller.

Roll: 360° rotation in place about longitudinal axis

● Same Q, R as flips

Tail-in Funnel and Nose-in Funnel
Tail-In Funnel: sideways medium-high speed circle, tail pointed towards center

● Repeatability (looping in place) is desired

● Autonomous funnels more accurate than human expert funnels.

○ error over course of 12 autonomous funnels same as error over 2 human expert funnels

Nose-In Funnel: sideways medium-high speed circle, nose pointed towards center

● Achieves same degree of increased accuracy as tail-in funnel

Video

http://www.youtube.com/watch?v=VCdxqn0fcnE

Conclusion
● Can replace exploration with expert demonstrations and adjustments from

repeated exploitation.
● Both reward and dynamics model can be learned from data.

○ Inverse RL

● Good policy via iterative LQR
● Good theoretical guarantees (polynomial).
● Good performance in practice (with some hand-tweaking).
● More details at http://heli.stanford.edu/.
● Simulator at https://sites.google.

com/site/rlcompetition2014/domains/helicopter.

http://heli.stanford.edu/
https://sites.google.com/site/rlcompetition2014/domains/helicopter
https://sites.google.com/site/rlcompetition2014/domains/helicopter
https://sites.google.com/site/rlcompetition2014/domains/helicopter

● P. Abbeel, A. Coates, M. Quigley, A.Y. Ng, An Application of Reinforcement
Learning to Aerobatic Helicopter Flight, NIPS 2006.

● P. Abbeel, A.Y. Ng, Apprenticeship Learning via Inverse Reinforcement
Learning, ICML 2004.

● P. Abbeel, A.Y. Ng, Exploration and Apprenticeship Learning in
Reinforcement Learning, ICML 2005.

● Later papers:
○ A. Coates, P. Abbeel, A.Y. Ng, Learning for control from multiple demonstrations, ICML.

(2008) 144–151. doi:10.1145/1390156.1390175.

○ P. Abbeel, A. Coates, A.Y. Ng, Autonomous Helicopter Aerobatics through Apprenticeship

Learning, The International Journal of Robotics Research. 29 (2010) 1608–1639. doi:10.1177
/0278364910371999.

References & Questions

