Apprenticeship Learning for

Reinforcement Learning

with application to RC helicopter flight
Ritwik Anand, Nick Haliday, Audrey Huang

Table of Contents

e Introduction
o Autonomous helicopter control problem
o Reinforcement Learning
o Apprenticeship Learning
e Theory
o Learning dynamics [Abbeel, Ng 2005]
o Learning reward function [Abbeel, Ng 2004]
o Combining to get policy using control theory

e Putting into practice [Abbeel, Ng 2006]
e Conclusion

Autonomous Helicopter Flight

e Autonomous flight has important applications
o Wildland fire fighting
o Fixed-wing formation flight

e Helicopters have unique capabilities
o In-place hover
o Low-speed flight

e But it's a challenging control problem

High-dimensional

Asymmetric

Noisy

Nonlinear, non-minimum phase dynamics

o O O O

It's a Reinforcement Learning (RL) Problem

Learn an optimal decision policy by interacting with an environment and observing
delayed or partial rewards.

e Learner (helicopter controller) performs actions (motion controls)
e Actions influence the state of the environment (helicopter)

o Position
o Orientation
o Velocity

o Angular velocity

e Environment returns reward
o How closely we are following desired trajectory

Markov Decision Process (MDP)

Describes the reinforcement learning problem as a sextuple:

(S, A, T,H,Z,R)

S = Set of states
A = Set of actions
7 = Dynamics model
H = Time Horizon
7T C 8§ = Set of initial states
R:S x A— R = Reward function

Objective: Find Optimal Policy

e A policy m maps states x € Sto actionsu € A
e Yields sum of rewards or value function E[Zf_o R(xs, ug|m)]

We want to:

e Find optimal policy ™ that maximizes value function:

H
r* = argma, B[S R(ar, um)

MDP dynamics are unknown

(S? A? T? H? I! R)

e states (S) and actions (A) are physical properties of system, thus easily
specified

e Time horizon (H) and initial state (/) and are given

e Assume for the moment that reward function (R) is known

e Dynamics (T) must be learned
o Discrete
o Continuous (linearly parameterized)

Discrete Dynamics

e Set of states S and actions A are finite
o Games such as Go and Atari
e Discrete transition probabilities P(x,, ., | x,u)

MakeaGIF.com

Continuous Dynamics: Linearly Parameterized

e Set of states S and actions A are continuous
o Suited for autonomous helicopter control problem
e Linearly parameterized dynamics given by:

Tiy1 = A¢(x) + Bug + wy

X,,, € Sis next state

x, € S is current state

@ is feature mapping of state space

u, € Ais current action

w, is process noise, I.1.D. multivariate Gaussian with known variance

o O O O O

We need to estimate coefficient matrices A and B.

Learning dynamics: Exploration vs Exploitation

Exploration

e Sufficiently visit all relevant parts of MDP
e C(ollect accurate transition probabilities

Exploitation

e Given current MDP, maximize sum of rewards over time

Exploration Policies Are Impractical

e Example exploration policy - E3 algorithm
o Strong bias for exploration policies
m Generate accurate MDP model
o Then uses exploitation policy to maximize reward
e Too aggressive for real system
o Computationally intractable
o Unsafe trajectories

Solution: Apprenticeship Learning

Teacher’s flights

| 2

?

|

?

<=

v

Autonomous flights

Dynamics model

Reward model

v

?

N

Controller

Learns MDP dynamics from initial expert data.

Autonomous flights

5

Reward model ——— ? > Controller

Apprenticeship Learning: MDP for Helicopters

(S:A: Ta Ha:z'-a R)

1. Only system dynamics (T) are unknown.
2. But we do know system dynamics are linearly parameterized by:

Tir1 = Ad(xy) + Bug + wy

Apprenticeship Learning: High-Level Algorithm

INITIALIZE:

1. Expert demonstrates task. Record state-action trajectories.

MAIN LOOP:

—> 2. Use all state-action trajectories thus far to learn a dynamics model. Find a
near-optimal policy using RL algorithm.
3. Test policy on real system.

a. Ifas good as expert, RETURN policy.
—@ b. If not as good, add state-action trajectories to training set. GO to #2.

Executes purely greedy, exploitative policies.

Algorithm: Details

Given: a > 0, parameters N_ and k_, and expert policy ..

INITIALIZE:

1. Run N_ trials under expert policy ...
2. Record state-action trajectories (x_ , u_ , x__). Add to training set.
3. Compute average sum of rewards over all N_ trials, the utility U(mr,).

Algorithm: Details

Given: a > 0, parameters N and k, and expert policy ..
INITIALIZE:

1. Run N_ trials under expert policy .
2. Record state-action trajectories (s, a_,s S,0x)- Add to training set.

3. Compute average sum of rewards over all N trials, the utility U(1r,).

MAIN LOOP:

1. Use regularized linear regression on all state-action trajectories thus far to
estimate A and B. Call the new dynamics T®.

2. From new dynamics T%, use RL to derive optimal policy .

Run k. trials under) to get new trajectories and compute utility U(mr®).

4. IfUm) 2 U(mr) - a/2, return ¥ and exit. Otherwise, add new trajectories to
training set and loop again.

W

Algorithm: Regularized Linear Regression

Recall the linear dynamics predicts the next state using:

Tiy1 = A¢(x) + Bug + wy

Then the kth rows of A and B are estimated by:

: 2 1
argmin Y (202 = (Ax:0(2),,) + B, ugzzw)) + 53 Ul Akal3 + 11 Be.sl5)

j indexes over all state-action-state triples{(z7) .. u{) . :cneﬂ)} j

occurring after each other in the system’s observed trajectories.

Algorithm: Analysis

Given dynamics 7 and «,d > 0, then for

U(ﬂ') Z U(?TE) — (X, optimal policy

N = O(p(ﬂ};(é} %’ T)) polynomial iterations

to hold with probability at least 1 — o, it suffices that
11

Ng = Q(poly(: ,’T)) polynomial expert trials

QIrQ|
S| =

k1 = Q(poly(,T)) polynomial policy trials

?

The returned policy will be approximately optimal after a polynomial number
of iterations and trials N_ & k_, with high probability.

High-Level Proof: Basis

Lemmas:

1. Simulation Lemma: Accurate transition probabilities are sufficient for accurate
policy evaluation.

Facts:

1. After we have sufficient expert data, the estimated model is accurate for
evaluating the utility of the expert’s policy in every iteration.

2. Inaccurately modeled state-action pairs can only be visited a “small” number
of times until all state-action pairs are accurately modeled.

High-Level Proof: Details

1. Consider policy) in iteration i of the algorithm. ” is the optimal policy for
the current training set/model.

High-Level Proof: Details

1. Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.
2. ') utility is valued as lower than the m_’s.

Recall Termination Condition: If U(m) 2 U(rr,) - a/2, return) and exit.
Otherwise, add new trajectories to training set and loop again.

High-Level Proof: Details

1. Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.

2. ¥ utility is valued as lower than the 1_’s. Fact #1 says m_ must be
evaluated correctly.

Recall Fact #1: After we have sufficient expert data, the estimated model
is accurate for evaluating the utility of the expert’s policy in every iteration.

High-Level Proof: Details

1. Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.

2. utility is valued as lower than the 1_'s. Fact #1 says . must be evaluated
correctly. Then m” must be evaluated incorrectly.

High-Level Proof: Details

1. Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.

2. utility is valued as lower than the _'s. Fact #1 says . must be evaluated
correctly. Then m must be evaluated incorrectly.

3. From the Simulation Lemma, m? must be visiting inaccurately modeled
state-action pairs.

Recall Simulation Lemma: Accurate transition probabilities are sufficient for accurate
policy evaluation.

Contrapositive: Inaccurate policy evaluation means inaccurate transition probabilities.

High-Level Proof: Details

1. Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.

2. utility is valued as lower than the _'s. Fact #1 says . must be evaluated
correctly. Then m must be evaluated incorrectly.

3. From the Simulation Lemma, ’ must be visiting inaccurately modeled state-
action pairs.

4. Fact #2 says we will only visit inaccurate pairs a small number of times
until the dynamics are learned.

Recall Fact #2: Inaccurately modeled state-action pairs can only be visited a
“small” number of times until all state-action pairs are accurately modeled.

High-Level Proof: Details

1.

Consider policy ' in iteration i of the algorithm. We chose it because it's the
optimal policy for the current training set/model.

r” utility is valued as lower than the 1_'s. Fact #1 says . must be evaluated
correctly. Then m must be evaluated incorrectly.

From the Simulation Lemma, m must be visiting inaccurately modeled state-
action pairs.

Fact #2 says we will only visit inaccurate pairs a small number of times until
the dynamics are learned.

The iterations are bounded.

Apprenticeship Learning: Review

Applications:

e Find unknown dynamics for RL
e Exploration is risky
e Driving cars & aircraft

Algorithm:

e Learns dynamics from expert demo

e Greedy, exploitation-only policy
improvements

e Polynomial iterations

Now we have a dynamics model.

Teacher’s flights RegUiarized nadr
regression

Autonomous flights

5

Reward model ——— 2 > Controller

How can we learn a useful reward function?

Autonomous flights

L\

Teacher’s flights Regulatizec linaar
regression
\/
Dynamics model

f?
Reward model ? > Controller

Roadmap

Will solve the problem of deriving a reward function from expert behavior
Assume: expert maximizes some unknown reward function

Assume: reward function is linear combination of known features
Algorithm indirectly updates a reward function at each iteration

Variables Used

e MDP defined by tuple (S, A, T, v, D, R)
e S: finite set of states of the system
A: set of actions which cause a transition from a state to state with a given distribution of
probabilities
T: is the set of state transition probabilities, when taking a given action in a specific state
v: is the discount factor
D: initial state distribution
@: some vector of features which maps a state to [0, 1}
R: reward function linear w.r.t. ® so R = w* x @(s) with weights w* € R*
o Ris bounded by 1
o ||w*| < 1 for the bound to hold

More Variables

e A policy 1T is a mapping from states to probability distributions over actions
e The expected value of a policy Tis :

By lV™(50)] = B[S 7*R(s0)l]
t=0

& &

= E[S_ 7w ¢(sy)|]

t=0
=w*E[)_7'¢(se)l7]
t=0

e \Where the expectation is taken with respect to a initial start state s(0) drawn
from distribution D and picking actions according to policy 17

Feature Expectations

e Fora policy m, define u(m) to be the feature expectations:

u(m) = E[3 "o v*o(st)|7]

e R s alinear combination of the known features @

e u(m) completely determine the expected sum of discounted rewards for acting
according to T

Initial Simplification

e \We assume we are given an Markov Decision Process without the reward
function, a feature mapping, ¢, 7E, M7E)

e \We want to find a policy whose performance is close to that of the experts on
the unknown reward function

e This is equivalent to finding =n’s.t. :

|E 20 v R(se)Ime] — B[} o2 v R(se)In']| < e

Initial Simplification

e \We use the fact that expectation is linear w.r.t. u to get:

E[> _7'R(st)lms] — E[>_7'R(s¢)|n’)

t=0 t=0

= |w' (") — w' pg|

< [Jwll2||(7) = pell2
<lxe=c¢€

Reduced the problem to finding u(m’) close enough to u(m,)

Inverse Reinforcement Algorithm

e Pick some arbitrary policy 7(?) | compute w9 = (7)) and set i = 1
e Compute ; . ;
g t) = max min wl (g — pl9)

Let () be the value of w that attains the max

If t) <e we terminate

Using the RL algorithm, compute the optimal policy 7#(*) for the MDP using the Reward function
R=uw®Tgy

Seti=i+1 ¥ = (7)) and loop back to step 2

Return the reward function

Also generates a sequence i = w
iteration

(i)T

¢ 2sponding to maximizing the reward function at each

Getting the Reward Function

e The maximization can be re-written as :

max t

t,w

st wlipyg >wlpyW +¢, j=0,...,i—1
lwll2 <1

e Thus we can see that the algorithm is trying to find a reward function R = u,-":i}r;b s.t.:
T (<) ol | 8 -
plV™ "(s0)] +t < Esy, p[V™®(s0)]

e Essentially a reward function on which the expert does better by a margin of t than any of the set of
policies generated by the algorithm thus far

Assumptions of the Algorithm

e One key assumption we made was that the algorithm does eventually
terminate. From Theorem 1 [Abbeel, Ng 2004] we have that the number of
steps before the algorithm terminates with) < € is upper bounded by

k k
Aot a=¢

e We also assumed that the value y_ was known

e In practice must be estimated from monte-carlo samples. Theorem 2 [Abbeel,
Ng 2004] states that Theorem 1 holds with probability 1-0 if we use m
trajectories as samples. Where 2k 2k

) i

So far...

Teacher’s flights

Autonomous flights

Regularized linear
regression

\/
Dynamics model

Inverse RL

®

Controller

Reward model

How do we get our policy?

Teacher’s flights

Inverse RL

Reward model

Autonomous flights

N\

Controller

How do we derive optimal actions to maximize
reward?

Control Theory

e Once we know the reward function, R, and the dynamics, f, we are left with a
dynamic programming problem.

H
max Vg(x,u) = ZR(mt,ut)
t=0
s.t. Tt41 — f(.’Et,’ILt)

mgx VH('u,) — mu%X(R(SBH, uH) + ulglgiil VH—l(uo:H—l))

e Our reward function will be based on expert trajectory and two parameters
(from inverse RL).
e Will build up solution from special case (LQR).

LQR: Linear dynamics with quadratic reward

e Suppose fislinear: f(z,u) = Az + Bu
o AndRis quadratic: R(z,u) = -7 Qz — ul Ru, for Q,R =0

e Then...

LQR: Linear dynamics with quadratic reward

e \We can define the reward-to-go function, Vt, and show via induction that it is
quadratic and has simple to express policy (Riccati equation):

Vi(z) = sup(—2TQz — uT Ru + Vi1 (Az + Bu))
Vigr(z) = —2T Pz = Vi(z) = sup(—27Qxr — uTRu — (Az + Bu)T P, 1(Az + Bu))

uw* = —(BTP,;1B+ R) 'BTP, 1Az
Vi(z) = =T (AP A+ Q — (ATPiB)(BTPoa B) (BT P A))

e Find by setting gradient to zero (valid by conca?/:i:ty).
Assuming Q positive definite (PD), R positive semidefinite (PSD), P,,, PD, B

full rank, everything is well-defined.
e P is PD by definition of V, (negative for all nonzero x).

Time-dependence

e Same idea with time dependent dynamics and rewards (will need the former).

fe(x,u) = Az + Bu

Ri(z,u) = —2TQsx — 2T Ryx

e Just substitute time dependent parameters in place of A, B, Q, R in Riccati
equation.

e Also fine if f, has zero-mean noise term (maximizing expectation so don't
care).

What about non-linear dynamics?

e QOur dynamics were only linear parameterized, not linear.
e Instead of optimizing over x, u, optimize over the error with respect to target
trajectory:

- * - *
Lt = Tt — Ly, Ut = U — Uy

e Errors will be small, so we can approximate the dynamics to first order
e Makes sense to design a reward function around deviation from the teacher’s
trajectory anyway.

Nonlinear optimization problem

H
max V= (o~)T Qor — o) — (ue —uf) " Rlus —)
t=0

S.t. Tt+1 — f($t, Ut)

Linearization

Tiy1 R f(xg,uf) +

2 (g u) e — o) + oL (o) (e —)

Ter1 = ATs + By

Linearized optimization problem

H
“ t=0
S.t. fEt_|_1 — At:’ft -+ Btﬁ:t

lterative LQR

e Problem:

o We need the errors to be small.

o In practice this might not be true. So linear approximation will not match actual dynamics well.
e The solution:

o Linearize around current trajectory instead of target.
o Still penalize distance from target.
o lteratively update toward target trajectory.

lterative LQR

e Initialize with some guess of u = {ug,...,un}

e With each iteration, given the current u:

1.
2.

simulate the system to find z, using z; 11 = f(z, us)

linearize around the current trajectory to obtain a linear system

ZTyy1 = AvTy + Byt (1)
0 0
where A; = 8—£($t,ut),3t = 8_£(33t5ut) (2)

. solve time-varying LQR problem with cost

H

V= Z(.’Et +x; —.’E?)TQ(CEt-i—.’Et—CEI) + (ut—l—’&t—u:)TR(ut + Uy —'U,:)
t=0

(3)

update u; = u; + %; and repeat

Results

Attempted four difficult maneuvers

Flip

Roll

Tail-in funnel
Nose-in funnel

Flip and Roll

Flip: 360° rotation in place about lateral axis

e Initial cost matrices (Q, R) from algorithm oscillated

e Hand-tweaked matrices in simulator (following “spirit but not letter” of inverse RL
algorithm).

e Eventually got a controller that could flip indefinitely.

e Penalty for changes in inputs over consecutive time steps was increased for final
controller.

Roll: 360° rotation in place about longitudinal axis

e Same Q, R as flips

Tail-in Funnel and Nose-in Funnel

Tail-In Funnel: sideways medium-high speed circle, tail pointed towards center

e Repeatability (looping in place) is desired
e Autonomous funnels more accurate than human expert funnels.
o error over course of 12 autonomous funnels same as error over 2 human expert funnels

Nose-In Funnel: sideways medium-high speed circle, nose pointed towards center

e Achieves same degree of increased accuracy as tail-in funnel

Video

- I* e
Hurricane
Urric

http://www.youtube.com/watch?v=VCdxqn0fcnE

Conclusion

e Can replace exploration with expert demonstrations and adjustments from
repeated exploitation.

e Both reward and dynamics model can be learned from data.
o Inverse RL

Good policy via iterative LQR

Good theoretical guarantees (polynomial).

Good performance in practice (with some hand-tweaking).
More details at http://heli.stanford.edu/.

Simulator at https://sites.google.
com/site/rlcompetition2014/domains/helicopter.

http://heli.stanford.edu/
https://sites.google.com/site/rlcompetition2014/domains/helicopter
https://sites.google.com/site/rlcompetition2014/domains/helicopter
https://sites.google.com/site/rlcompetition2014/domains/helicopter

References & Questions

e P. Abbeel, A. Coates, M. Quigley, A.Y. Ng, An Application of Reinforcement
Learning to Aerobatic Helicopter Flight, NIPS 2006.

e P. Abbeel, A.Y. Ng, Apprenticeship Learning via Inverse Reinforcement
Learning, ICML 2004.

e P. Abbeel, A.Y. Ng, Exploration and Apprenticeship Learning in
Reinforcement Learning, ICML 2005.

e Later papers:

o A. Coates, P. Abbeel, A.Y. Ng, Learning for control from multiple demonstrations, ICML.
(2008) 144—-151. d0i:10.1145/1390156.1390175.
o P. Abbeel, A. Coates, A.Y. Ng, Autonomous Helicopter Aerobatics through Apprenticeship

Learning, The International Journal of Robotics Research. 29 (2010) 1608-1639. doi:10.1177
/0278364910371999.

